1
|
Dunce JM, Davies OR. BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode. Nat Commun 2024; 15:8292. [PMID: 39333100 PMCID: PMC11436757 DOI: 10.1038/s41467-024-52699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments. However, the mechanism of filament stabilisation has hitherto remained unknown. Here, we report the crystal structure of a BRCA2-DMC1 complex, revealing how core interaction sites of PhePP motifs bind to recombinases. The interaction mode is conserved for RAD51 and DMC1, which selectively bind to BRCA2's two distinct PhePP motifs via subtly divergent binding pockets. PhePP motif sequences surrounding their core interaction sites protect nucleoprotein filaments from BRC-mediated disruption. Hence, we report the structural basis of how BRCA2's PhePP motifs stabilise RAD51 and DMC1 nucleoprotein filaments for their essential roles in mitotic and meiotic recombination.
Collapse
Affiliation(s)
- James M Dunce
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK.
| |
Collapse
|
2
|
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert SE, Ristic D, Majeed A, Kanaar R, Zinn-Justin S, Zelensky A. DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces. Nucleic Acids Res 2024; 52:7337-7353. [PMID: 38828772 PMCID: PMC11229353 DOI: 10.1093/nar/gkae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.
Collapse
Affiliation(s)
- Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Atifa Majeed
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Alvaro-Aranda L, Petitalot A, Djeghmoum Y, Panigada D, Singh J, Ehlén Å, Vugic D, Martin C, Miron S, Contreras-Perez A, Nhiri N, Boucherit V, Lafitte P, Dumoulin I, Quiles F, Rouleau E, Jacquet E, Feliubadaló L, del Valle J, Sharan SK, Stoppa-Lyonnet D, Zinn-Justin S, Lázaro C, Caputo S, Carreira A. The BRCA2 R2645G variant increases DNA binding and induces hyper-recombination. Nucleic Acids Res 2024; 52:6964-6976. [PMID: 38142462 PMCID: PMC11229362 DOI: 10.1093/nar/gkad1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.
Collapse
Affiliation(s)
- Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Yasmina Djeghmoum
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Davide Panigada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Jenny Kaur Singh
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Philippe Lafitte
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Francisco Quiles
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Etienne Rouleau
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Jesús del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris 75005, France
- Paris-Cité University, Paris, France
- INSERM U830, Institut Curie, Paris 75005, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| |
Collapse
|
4
|
Grigore LG, Radoi VE, Serban A, Mihai AD, Stoica I. The Molecular Detection of Germline Mutations in the BRCA1 and BRCA2 Genes Associated with Breast and Ovarian Cancer in a Romanian Cohort of 616 Patients. Curr Issues Mol Biol 2024; 46:4630-4645. [PMID: 38785549 PMCID: PMC11119367 DOI: 10.3390/cimb46050281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of this study was to identify and classify the spectrum of mutations found in the BRCA1 and BRCA2 genes associated with breast and ovarian cancer in female patients in Romania. Germline BRCA1 and BRCA2 mutations were investigated in a cohort of 616 female patients using NGS and/or MLPA methods followed by software-based data analysis and classification according to international guidelines. Out of the 616 female patients included in this study, we found that 482 patients (78.2%) did not have any mutation present in the two genes investigated; 69 patients (11.2%) had a BRCA1 mutation, 34 (5.5%) had a BRCA2 mutation, and 31 (5%) presented different type of mutations with uncertain clinical significance, moderate risk or a large mutation in the BRCA1 gene. Our investigation indicates the most common mutations in the BRCA1 and BRCA2 genes, associated with breast and ovarian cancer in the Romanian population. Our results also bring more data in support of the frequency of the c.5266 mutation in the BRCA1 gene, acknowledged in the literature as a founder mutation in Eastern Europe. We consider that the results of our study will provide necessary data regarding BRCA1 and BRCA2 mutations that would help to create a genetic database for the Romanian population.
Collapse
Affiliation(s)
- Liliana-Georgiana Grigore
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
- Personal Genetics, 010987 Bucharest, Romania
| | - Viorica-Elena Radoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | | | | | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
5
|
Hu C, Huang H, Na J, Lumby C, Abozaid M, Holdren MA, Rao TJ, Karam R, Pesaran T, Weyandt JD, Csuy CM, Seelaus CA, Young CC, Fulk K, Heidari Z, Morais Lyra PC, Couch RE, Persons B, Polley EC, Gnanaolivu RD, Boddicker NJ, Monteiro ANA, Yadav S, Domchek SM, Richardson ME, Couch FJ. Functional analysis and clinical classification of 462 germline BRCA2 missense variants affecting the DNA binding domain. Am J Hum Genet 2024; 111:584-593. [PMID: 38417439 PMCID: PMC10940015 DOI: 10.1016/j.ajhg.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.
Collapse
Affiliation(s)
- Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Huaizhi Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Carolyn Lumby
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Mohamed Abozaid
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Megan A Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Tara J Rao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | | | | | | | | | | | | | - Kelly Fulk
- Ambry Genetics, Aliso Viejo, CA 92656, USA
| | | | | | - Ronan E Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Benjamin Persons
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA
| | - Eric C Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Rohan D Gnanaolivu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Nicholas J Boddicker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | | | - Siddhartha Yadav
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Susan M Domchek
- Division of Hematology Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55902, USA; Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
6
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Biswas K, Mitrophanov AY, Sahu S, Sullivan T, Southon E, Nousome D, Reid S, Narula S, Smolen J, Sengupta T, Riedel-Topper M, Kapoor M, Babbar A, Stauffer S, Cleveland L, Tandon M, Malys T, Sharan SK. Sequencing-based functional assays for classification of BRCA2 variants in mouse ESCs. CELL REPORTS METHODS 2023; 3:100628. [PMID: 37922907 PMCID: PMC10694496 DOI: 10.1016/j.crmeth.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Sequencing of genes, such as BRCA1 and BRCA2, is recommended for individuals with a personal or family history of early onset and/or bilateral breast and/or ovarian cancer or a history of male breast cancer. Such sequencing efforts have resulted in the identification of more than 17,000 BRCA2 variants. The functional significance of most variants remains unknown; consequently, they are called variants of uncertain clinical significance (VUSs). We have previously developed mouse embryonic stem cell (mESC)-based assays for functional classification of BRCA2 variants. We now developed a next-generation sequencing (NGS)-based approach for functional evaluation of BRCA2 variants using pools of mESCs expressing 10-25 BRCA2 variants from a given exon. We use this approach for functional evaluation of 223 variants listed in ClinVar. Our functional classification of BRCA2 variants is concordant with the classification reported in ClinVar or those reported by other orthogonal assays.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alexander Y Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Leidos Biomed Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Darryl Nousome
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sakshi Narula
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julia Smolen
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Trisha Sengupta
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Medha Kapoor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Anav Babbar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Mayank Tandon
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
8
|
Sahu S, Sullivan TL, Mitrophanov AY, Galloux M, Nousome D, Southon E, Caylor D, Mishra AP, Evans CN, Clapp ME, Burkett S, Malys T, Chari R, Biswas K, Sharan SK. Saturation genome editing of 11 codons and exon 13 of BRCA2 coupled with chemotherapeutic drug response accurately determines pathogenicity of variants. PLoS Genet 2023; 19:e1010940. [PMID: 37713444 PMCID: PMC10529611 DOI: 10.1371/journal.pgen.1010940] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/27/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
The unknown pathogenicity of a significant number of variants found in cancer-related genes is attributed to limited epidemiological data, resulting in their classification as variant of uncertain significance (VUS). To date, Breast Cancer gene-2 (BRCA2) has the highest number of VUSs, which has necessitated the development of several robust functional assays to determine their functional significance. Here we report the use of a humanized-mouse embryonic stem cell (mESC) line expressing a single copy of the human BRCA2 for a CRISPR-Cas9-based high-throughput functional assay. As a proof-of-principle, we have saturated 11 codons encoded by BRCA2 exons 3, 18, 19 and all possible single-nucleotide variants in exon 13 and multiplexed these variants for their functional categorization. Specifically, we used a pool of 180-mer single-stranded donor DNA to generate all possible combination of variants. Using a high throughput sequencing-based approach, we show a significant drop in the frequency of non-functional variants, whereas functional variants are enriched in the pool of the cells. We further demonstrate the response of these variants to the DNA-damaging agents, cisplatin and olaparib, allowing us to use cellular survival and drug response as parameters for variant classification. Using this approach, we have categorized 599 BRCA2 variants including 93-single nucleotide variants (SNVs) across the 11 codons, of which 28 are reported in ClinVar. We also functionally categorized 252 SNVs from exon 13 into 188 functional and 60 non-functional variants, demonstrating that saturation genome editing (SGE) coupled with drug sensitivity assays can enhance functional annotation of BRCA2 VUS.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Teresa L. Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Alexander Y. Mitrophanov
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | | | - Darryl Nousome
- CCR Bioinformatics Resource, Leidos Biomedical Sciences, Inc. Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Christine N. Evans
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michelle E. Clapp
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Tyler Malys
- Statistical Consulting and Scientific Programming, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland, United States of America
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
9
|
Thomassen M, Mesman RLS, Hansen TVO, Menendez M, Rossing M, Esteban‐Sánchez A, Tudini E, Törngren T, Parsons MT, Pedersen IS, Teo SH, Kruse TA, Møller P, Borg Å, Jensen UB, Christensen LL, Singer CF, Muhr D, Santamarina M, Brandao R, Andresen BS, Feng B, Canson D, Richardson ME, Karam R, Pesaran T, LaDuca H, Conner BR, Abualkheir N, Hoang L, Calléja FMGR, Andrews L, James PA, Bunyan D, Hamblett A, Radice P, Goldgar DE, Walker LC, Engel C, Claes KBM, Macháčková E, Baralle D, Viel A, Wappenschmidt B, Lazaro C, Vega A, Vreeswijk MPG, de la Hoya M, Spurdle AB. Clinical, splicing, and functional analysis to classify BRCA2 exon 3 variants: Application of a points-based ACMG/AMP approach. Hum Mutat 2022; 43:1921-1944. [PMID: 35979650 PMCID: PMC10946542 DOI: 10.1002/humu.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023]
Abstract
Skipping of BRCA2 exon 3 (∆E3) is a naturally occurring splicing event, complicating clinical classification of variants that may alter ∆E3 expression. This study used multiple evidence types to assess pathogenicity of 85 variants in/near BRCA2 exon 3. Bioinformatically predicted spliceogenic variants underwent mRNA splicing analysis using minigenes and/or patient samples. ∆E3 was measured using quantitative analysis. A mouse embryonic stem cell (mESC) based assay was used to determine the impact of 18 variants on mRNA splicing and protein function. For each variant, population frequency, bioinformatic predictions, clinical data, and existing mRNA splicing and functional results were collated. Variant class was assigned using a gene-specific adaptation of ACMG/AMP guidelines, following a recently proposed points-based system. mRNA and mESC analysis combined identified six variants with transcript and/or functional profiles interpreted as loss of function. Cryptic splice site use for acceptor site variants generated a transcript encoding a shorter protein that retains activity. Overall, 69/85 (81%) variants were classified using the points-based approach. Our analysis shows the value of applying gene-specific ACMG/AMP guidelines using a points-based approach and highlights the consideration of cryptic splice site usage to appropriately assign PVS1 code strength.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Romy L. S. Mesman
- Department of Human GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | - Thomas V. O. Hansen
- Department of Clinical Genetics, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Mireia Menendez
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Maria Rossing
- Center for Genomic Medicine, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Ada Esteban‐Sánchez
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Therese Törngren
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Inge S. Pedersen
- Molecular Diagnostics, Aalborg University HospitalAalborgDenmark
- Clinical Cancer Research CenterAalborg University HospitalAalborgDenmark
- Department of Clinical MedicineAalborg UniversityAalborgDenmark
| | - Soo H. Teo
- Breast Cancer Research ProgrammeCancer Research MalaysiaSubang JayaSelangorMalaysia
- Department of Surgery, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Torben A. Kruse
- Department of Clinical GeneticsOdense University HospitalOdence CDenmark
| | - Pål Møller
- Department of Tumour BiologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Åke Borg
- Division of Oncology, Department of Clinical Sciences LundLund UniversityLundSweden
| | - Uffe B. Jensen
- Department of Clinical GeneticsAarhus University HospitalAarhus NDenmark
| | | | - Christian F. Singer
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Daniela Muhr
- Department of OB/GYN and Comprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Marta Santamarina
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - Rita Brandao
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Brage S. Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Bing‐Jian Feng
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Daffodil Canson
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | | | | | | | | | | | | | | | - Lesley Andrews
- Hereditary Cancer Clinic, Nelune Comprehensive Cancer Care CentreSydneyNew South WalesAustralia
| | - Paul A. James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer CenterMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Dave Bunyan
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Amanda Hamblett
- Middlesex Health Shoreline Cancer CenterWestbrookConnecticutUSA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of ResearchFondazione IRCCS Istituto Nazionale dei Tumori (INT)MilanItaly
| | - David E. Goldgar
- Department of DermatologyHuntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | | | - Eva Macháčková
- Department of Cancer Epidemiology and GeneticsMasaryk Memorial Cancer InstituteBrnoCzech Republic
| | - Diana Baralle
- Human Development and Health, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Alessandra Viel
- Division of Functional Onco‐genomics and GeneticsCentro di Riferimento Oncologico di Aviano (CRO), IRCCSAvianoItaly
| | - Barbara Wappenschmidt
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Conxi Lazaro
- Hereditary Cancer ProgramCatalan Institute of Oncology, ONCOBELL‐IDIBELL‐IDTP, CIBERONCHospitalet de LlobregatSpain
| | - Ana Vega
- Fundación Pública Galega de Medicina XenómicaSantiago de CompostelaSpain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGASSantiago de CompostelaSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)MadridSpain
| | - ENIGMA Consortium
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
10
|
Xia B, Biswas K, Foo TK, Torres T, Riedel-Topper M, Southon E, Kang Z, Huo Y, Reid S, Stauffer S, Zhou W, Zhu B, Koka H, Yepes S, Brodie SA, Jones K, Vogt A, Zhu B, Cater B, Freedman ND, Hicks B, Yeager M, Chanock SJ, Couch F, Parry DM, Monteiro AN, Goldstein AM, Carvalho MA, Sharan SK, Yang XR. Rare germline variants in PALB2 and BRCA2 in familial and sporadic chordoma. Hum Mutat 2022; 43:1396-1407. [PMID: 35762214 PMCID: PMC9444938 DOI: 10.1002/humu.24427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Chordoma is a rare bone tumor with genetic risk factors largely unknown. We conducted a whole-exome sequencing (WES) analysis of germline DNA from 19 familial chordoma cases in five pedigrees and 137 sporadic chordoma patients and identified 17 rare germline variants in PALB2 and BRCA2, whose products play essential roles in homologous recombination (HR) and tumor suppression. One PALB2 variant showed disease cosegregation in a family with four affected people or obligate gene carrier. Chordoma cases had a significantly increased burden of rare variants in both genes when compared to population-based controls. Four of the six PALB2 variants identified from chordoma patients modestly affected HR function and three of the 11 BRCA2 variants caused loss of function in experimental assays. These results, together with previous reports of abnormal morphology and Brachyury expression of the notochord in Palb2 knockout mouse embryos and genomic signatures associated with HR defect and HR gene mutations in advanced chordomas, suggest that germline mutations in PALB2 and BRCA2 may increase chordoma susceptibility. Our data shed light on the etiology of chordoma and support the previous finding that PARP-1 inhibitors may be a potential therapy for some chordoma patients.
Collapse
Affiliation(s)
- Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Thiago Torres
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
| | - Maximilian Riedel-Topper
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yanying Huo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Hela Koka
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Sally Yepes
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Seth A. Brodie
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Aurelie Vogt
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Brian Cater
- American Cancer Society, Inc, Atlanta, GA 30303, USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Fergus Couch
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dilys M. Parry
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Alvaro N. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alisa M. Goldstein
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Marcelo A. Carvalho
- Instituto Nacional de Câncer, Divisão de Pesquisa Clínica, Rio de Janeiro 20230-130, Brazil
- Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro 20270-021, Brazil
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, DHHS, Frederick, MD, USA
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
11
|
Jimenez-Sainz J, Mathew J, Moore G, Lahiri S, Garbarino J, Eder JP, Rothenberg E, Jensen RB. BRCA2 BRC missense variants disrupt RAD51-dependent DNA repair. eLife 2022; 11:e79183. [PMID: 36098506 PMCID: PMC9545528 DOI: 10.7554/elife.79183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
Pathogenic mutations in the BRCA2 tumor suppressor gene predispose to breast, ovarian, pancreatic, prostate, and other cancers. BRCA2 maintains genome stability through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) and replication fork protection. Nonsense or frameshift mutations leading to truncation of the BRCA2 protein are typically considered pathogenic; however, missense mutations resulting in single amino acid substitutions can be challenging to functionally interpret. The majority of missense mutations in BRCA2 have been classified as Variants of Uncertain Significance (VUS) with unknown functional consequences. In this study, we identified three BRCA2 VUS located within the BRC repeat region to determine their impact on canonical HDR and fork protection functions. We provide evidence that S1221P and T1980I, which map to conserved residues in the BRC2 and BRC7 repeats, compromise the cellular response to chemotherapeutics and ionizing radiation, and display deficits in fork protection. We further demonstrate biochemically that S1221P and T1980I disrupt RAD51 binding and diminish the ability of BRCA2 to stabilize RAD51-ssDNA complexes. The third variant, T1346I, located within the spacer region between BRC2 and BRC3 repeats, is fully functional. We conclude that T1346I is a benign allele, whereas S1221P and T1980I are hypomorphic disrupting the ability of BRCA2 to fully engage and stabilize RAD51 nucleoprotein filaments. Our results underscore the importance of correctly classifying BRCA2 VUS as pathogenic variants can impact both future cancer risk and guide therapy selection during cancer treatment.
Collapse
Affiliation(s)
| | - Joshua Mathew
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Gemma Moore
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Sudipta Lahiri
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Jennifer Garbarino
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| | - Joseph P Eder
- Department of Medical Oncology, Yale University School of Medicine, Yale Cancer CenterNew HavenUnited States
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York UniversityNew YorkUnited States
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale UniversityNew HavenUnited States
| |
Collapse
|
12
|
Hu C, Susswein LR, Roberts ME, Yang H, Marshall ML, Hiraki S, Berkofsky-Fessler W, Gupta S, Shen W, Dunn CA, Huang H, Na J, Domchek SM, Yadav S, Monteiro AN, Polley EC, Hart SN, Hruska KS, Couch FJ. Classification of BRCA2 Variants of Uncertain Significance (VUS) Using an ACMG/AMP Model Incorporating a Homology-Directed Repair (HDR) Functional Assay. Clin Cancer Res 2022; 28:3742-3751. [PMID: 35736817 PMCID: PMC9433957 DOI: 10.1158/1078-0432.ccr-22-0203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 01/09/2023]
Abstract
PURPOSE The identification of variants of uncertain significance (VUS) in the BRCA1 and BRCA2 genes by hereditary cancer testing poses great challenges for the clinical management of variant carriers. The ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology) variant classification framework, which incorporates multiple sources of evidence, has the potential to establish the clinical relevance of many VUS. We sought to classify the clinical relevance of 133 single-nucleotide substitution variants encoding missense variants in the DNA-binding domain (DBD) of BRCA2 by incorporating results from a validated functional assay into an ACMG/AMP-variant classification model from a hereditary cancer-testing laboratory. EXPERIMENTAL DESIGN The 133 selected VUS were evaluated using a validated homology-directed double-strand DNA break repair (HDR) functional assay. Results were combined with clinical and genetic data from variant carriers in a rules-based variant classification model for BRCA2. RESULTS Of 133 missense variants, 44 were designated as non-functional and 89 were designated as functional in the HDR assay. When combined with genetic and clinical information from a single diagnostic laboratory in an ACMG/AMP-variant classification framework, 66 variants previously classified by the diagnostic laboratory were correctly classified, and 62 of 67 VUS (92.5%) were reclassified as likely pathogenic (n = 22) or likely benign (n = 40). In total, 44 variants were classified as pathogenic/likely pathogenic, 84 as benign/likely benign, and 5 remained as VUS. CONCLUSIONS Incorporation of HDR functional analysis into an ACMG/AMP framework model substantially improves BRCA2 VUS re-classification and provides an important tool for determining the clinical relevance of individual BRCA2 VUS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Shen
- Mayo Clinic, Rochester, Minnesota
| | | | | | - Jie Na
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Aljarf R, Shen M, Pires DEV, Ascher DB. Understanding and predicting the functional consequences of missense mutations in BRCA1 and BRCA2. Sci Rep 2022; 12:10458. [PMID: 35729312 PMCID: PMC9213547 DOI: 10.1038/s41598-022-13508-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
BRCA1 and BRCA2 are tumour suppressor genes that play a critical role in maintaining genomic stability via the DNA repair mechanism. DNA repair defects caused by BRCA1 and BRCA2 missense variants increase the risk of developing breast and ovarian cancers. Accurate identification of these variants becomes clinically relevant, as means to guide personalized patient management and early detection. Next-generation sequencing efforts have significantly increased data availability but also the discovery of variants of uncertain significance that need interpretation. Experimental approaches used to measure the molecular consequences of these variants, however, are usually costly and time-consuming. Therefore, computational tools have emerged as faster alternatives for assisting in the interpretation of the clinical significance of newly discovered variants. To better understand and predict variant pathogenicity in BRCA1 and BRCA2, various machine learning algorithms have been proposed, however presented limited performance. Here we present BRCA1 and BRCA2 gene-specific models and a generic model for quantifying the functional impacts of single-point missense variants in these genes. Across tenfold cross-validation, our final models achieved a Matthew's Correlation Coefficient (MCC) of up to 0.98 and comparable performance of up to 0.89 across independent, non-redundant blind tests, outperforming alternative approaches. We believe our predictive tool will be a valuable resource for providing insights into understanding and interpreting the functional consequences of missense variants in these genes and as a tool for guiding the interpretation of newly discovered variants and prioritizing mutations for experimental validation.
Collapse
Affiliation(s)
- Raghad Aljarf
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Mengyuan Shen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia. .,School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, 3053, Australia.
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia. .,Systems and Computational Biology, Bio21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, VIC, 3052, Australia. .,Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge, CB2 1GA, UK.
| |
Collapse
|
14
|
McReynolds LJ, Biswas K, Giri N, Sharan SK, Alter BP. Genotype-cancer association in patients with Fanconi anemia due to pathogenic variants in FANCD1 (BRCA2) or FANCN (PALB2). Cancer Genet 2021; 258-259:101-109. [PMID: 34687993 DOI: 10.1016/j.cancergen.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome and a cancer predisposition disorder. Cancers in FA include acute leukemia and solid tumors; the most frequent solid tumor is head and neck squamous cell carcinoma. FA is a primarily autosomal recessive disorder. Several of the genes in which biallelic pathogenic variants cause FA are also autosomal monoallelic cancer predisposition genes e.g. FANCD1 (BRCA2) and FANCN (PALB2). We observed that patients with FA due to biallelic or homozygous pathogenic variants in FANCD1 and FANCN have a unique cancer association. We curated published cases plus our NCI cohort cases, including 71 patients in the FANCD1 group (94 cancers and 69 variants) and 16 patients in the FANCN group (23 cancers and 20 variants). Only patients in FANCD1 and FANCN groups had one or more of these tumors: brain tumors (primarily medulloblastoma), Wilms tumor and neuroblastoma; this is a genotype-specific cancer combination of tumors of embryonal origin. Acute leukemias, seen in all FA genotypes, also occurred in FANCD1 and FANCN group patients at young ages. In silico predictions of pathogenicity for FANCD1 variants were compared with results from a mouse embryonic stem cell-based functional assay. Patients with two null FANCD1 variants did not have an increased frequency of cancer nor earlier onset of cancer compared with those with hypomorphic variants. Patients with FA and these specific cancers should consider genetic testing focused on FANCD1 and FANCN, and patients with these genotypes may consider ongoing surveillance for these specific cancers.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Caputo SM, Golmard L, Léone M, Damiola F, Guillaud-Bataille M, Revillion F, Rouleau E, Derive N, Buisson A, Basset N, Schwartz M, Vilquin P, Garrec C, Privat M, Gay-Bellile M, Abadie C, Abidallah K, Airaud F, Allary AS, Barouk-Simonet E, Belotti M, Benigni C, Benusiglio PR, Berthemin C, Berthet P, Bertrand O, Bézieau S, Bidart M, Bignon YJ, Birot AM, Blanluet M, Bloucard A, Bombled J, Bonadona V, Bonnet F, Bonnet-Dupeyron MN, Boulaire M, Boulouard F, Bouras A, Bourdon V, Brahimi A, Brayotel F, Bressac de Paillerets B, Bronnec N, Bubien V, Buecher B, Cabaret O, Carriere J, Chiesa J, Chieze-Valéro S, Cohen C, Cohen-Haguenauer O, Colas C, Collonge-Rame MA, Conoy AL, Coulet F, Coupier I, Crivelli L, Cusin V, De Pauw A, Dehainault C, Delhomelle H, Delnatte C, Demontety S, Denizeau P, Devulder P, Dreyfus H, d’Enghein CD, Dupré A, Durlach A, Dussart S, Fajac A, Fekairi S, Fert-Ferrer S, Fiévet A, Fouillet R, Mouret-Fourme E, Gauthier-Villars M, Gesta P, Giraud S, Gladieff L, Goldbarg V, Goussot V, Guibert V, Guillerm E, Guy C, Hardouin A, Heude C, Houdayer C, Ingster O, Jacquot-Sawka C, Jones N, Krieger S, Lacoste S, Lallaoui H, Larbre H, Laugé A, Le Guyadec G, Le Mentec M, Lecerf C, Le Gall J, Legendre B, Legrand C, Legros A, Lejeune S, Lidereau R, Lignon N, Limacher JM, Doriane Livon, Lizard S, Longy M, Lortholary A, Macquere P, Mailliez A, Malsa S, Margot H, Mari V, Maugard C, Meira C, Menjard J, Molière D, Moncoutier V, Moretta-Serra J, Muller E, Nevière Z, Nguyen Minh Tuan TV, Noguchi T, Noguès C, Oca F, Popovici C, Prieur F, Raad S, Rey JM, Ricou A, Salle L, Saule C, Sevenet N, Simaga F, Sobol H, Suybeng V, Tennevet I, Tenreiro H, Tinat J, Toulas C, Turbiez I, Uhrhammer N, Vande Perre P, Vaur D, Venat L, Viellard N, Villy MC, Warcoin M, Yvard A, Zattara H, Caron O, Lasset C, Remenieras A, Boutry-Kryza N, Castéra L, Stoppa-Lyonnet D. Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach. Am J Hum Genet 2021; 108:1907-1923. [PMID: 34597585 DOI: 10.1016/j.ajhg.2021.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022] Open
Abstract
Up to 80% of BRCA1 and BRCA2 genetic variants remain of uncertain clinical significance (VUSs). Only variants classified as pathogenic or likely pathogenic can guide breast and ovarian cancer prevention measures and treatment by PARP inhibitors. We report the first results of the ongoing French national COVAR (cosegregation variant) study, the aim of which is to classify BRCA1/2 VUSs. The classification method was a multifactorial model combining different associations between VUSs and cancer, including cosegregation data. At this time, among the 653 variants selected, 101 (15%) distinct variants shared by 1,624 families were classified as pathogenic/likely pathogenic or benign/likely benign by the COVAR study. Sixty-six of the 101 (65%) variants classified by COVAR would have remained VUSs without cosegregation data. Of note, among the 34 variants classified as pathogenic by COVAR, 16 remained VUSs or likely pathogenic when following the ACMG/AMP variant classification guidelines. Although the initiation and organization of cosegregation analyses require a considerable effort, the growing number of available genetic tests results in an increasing number of families sharing a particular variant, and thereby increases the power of such analyses. Here we demonstrate that variant cosegregation analyses are a powerful tool for the classification of variants in the BRCA1/2 breast-ovarian cancer predisposition genes.
Collapse
|
16
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
17
|
The Genetic Analyses of French Canadians of Quebec Facilitate the Characterization of New Cancer Predisposing Genes Implicated in Hereditary Breast and/or Ovarian Cancer Syndrome Families. Cancers (Basel) 2021; 13:cancers13143406. [PMID: 34298626 PMCID: PMC8305212 DOI: 10.3390/cancers13143406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022] Open
Abstract
The French Canadian population of the province of Quebec has been recognized for its contribution to research in medical genetics, especially in defining the role of heritable pathogenic variants in cancer predisposing genes. Multiple carriers of a limited number of pathogenic variants in BRCA1 and BRCA2, the major risk genes for hereditary breast and/or ovarian cancer syndrome families, have been identified in French Canadians, which is in stark contrast to the array of over 2000 different pathogenic variants reported in each of these genes in other populations. As not all such cancer syndrome families are explained by BRCA1 and BRCA2, newly proposed gene candidates identified in other populations have been investigated for their role in conferring risk in French Canadian cancer families. For example, multiple carriers of distinct variants were identified in PALB2 and RAD51D. The unique genetic architecture of French Canadians has been attributed to shared ancestry due to common ancestors of early settlers of this population with origins mainly from France. In this review, we discuss the merits of genetically characterizing cancer predisposing genes in French Canadians of Quebec. We focused on genes that have been implicated in hereditary breast and/or ovarian cancer syndrome families as they have been the most thoroughly characterized cancer syndromes in this population. We describe how genetic analyses of French Canadians have facilitated: (i) the classification of variants in BRCA1 and BRCA2; (ii) the identification and classification of variants in newly proposed breast and/or ovarian cancer predisposing genes; and (iii) the identification of a new breast cancer predisposing gene candidate, RECQL. The genetic architecture of French Canadians provides a unique opportunity to evaluate new candidate cancer predisposing genes regardless of the population in which they were identified.
Collapse
|
18
|
Andreassen PR, Seo J, Wiek C, Hanenberg H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes (Basel) 2021; 12:genes12071034. [PMID: 34356050 PMCID: PMC8307705 DOI: 10.3390/genes12071034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023] Open
Abstract
BRCA2 is an essential genome stability gene that has various functions in cells, including roles in homologous recombination, G2 checkpoint control, protection of stalled replication forks, and promotion of cellular resistance to numerous types of DNA damage. Heterozygous mutation of BRCA2 is associated with an increased risk of developing cancers of the breast, ovaries, pancreas, and other sites, thus BRCA2 acts as a classic tumor suppressor gene. However, understanding BRCA2 function as a tumor suppressor is severely limited by the fact that ~70% of the encoded protein has not been tested or assigned a function in the cellular DNA damage response. Remarkably, even the specific role(s) of many known domains in BRCA2 are not well characterized, predominantly because stable expression of the very large BRCA2 protein in cells, for experimental purposes, is challenging. Here, we review what is known about these domains and the assay systems that are available to study the cellular roles of BRCA2 domains in DNA damage responses. We also list criteria for better testing systems because, ultimately, functional assays for assessing the impact of germline and acquired mutations identified in genetic screens are important for guiding cancer prevention measures and for tailored cancer treatments.
Collapse
Affiliation(s)
- Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-(513)-636-0499
| | - Joonbae Seo
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
- Department of Pediatrics III, Children’s Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
19
|
Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Front Cell Dev Biol 2021; 9:672191. [PMID: 34109178 PMCID: PMC8181746 DOI: 10.3389/fcell.2021.672191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
A distinguishing feature of meiotic DNA double-strand breaks (DSBs), compared to DSBs in somatic cells, is the fact that they are induced in a programmed and specifically orchestrated manner, which includes chromatin remodeling prior to DSB induction. In addition, the meiotic homologous recombination (HR) repair process that follows, is different from HR repair of accidental DSBs in somatic cells. For instance, meiotic HR involves preferred use of the homolog instead of the sister chromatid as a repair template and subsequent formation of crossovers and non-crossovers in a tightly regulated manner. An important outcome of this distinct repair pathway is the pairing of homologous chromosomes. Central to the initial steps in homology recognition during meiotic HR is the cooperation between the strand exchange proteins (recombinases) RAD51 and its meiosis-specific paralog DMC1. Despite our understanding of their enzymatic activity, details on the regulation of their assembly and subsequent molecular organization at meiotic DSBs in mammals have remained largely enigmatic. In this review, we summarize recent mouse data on recombinase regulation via meiosis-specific factors. Also, we reflect on bulk “omics” studies of initial meiotic DSB processing, compare these with studies using super-resolution microscopy in single cells, at single DSB sites, and explore the implications of these findings for our understanding of the molecular mechanisms underlying meiotic HR regulation.
Collapse
Affiliation(s)
- Aditya N Mhaskar
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, Rotterdam, Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
20
|
Jimenez-Sainz J, Jensen RB. Imprecise Medicine: BRCA2 Variants of Uncertain Significance (VUS), the Challenges and Benefits to Integrate a Functional Assay Workflow with Clinical Decision Rules. Genes (Basel) 2021; 12:genes12050780. [PMID: 34065235 PMCID: PMC8161351 DOI: 10.3390/genes12050780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Pathological mutations in homology-directed repair (HDR) genes impact both future cancer risk and therapeutic options for patients. HDR is a high-fidelity DNA repair pathway for resolving DNA double-strand breaks throughout the genome. BRCA2 is an essential protein that mediates the loading of RAD51 onto resected DNA breaks, a key step in HDR. Germline mutations in BRCA2 are associated with an increased risk for breast, ovarian, prostate, and pancreatic cancer. Clinical findings of germline or somatic BRCA2 mutations in tumors suggest treatment with platinum agents or PARP inhibitors. However, when genetic analysis reveals a variant of uncertain significance (VUS) in the BRCA2 gene, precision medicine-based decisions become complex. VUS are genetic changes with unknown pathological impact. Current statistics indicate that between 10–20% of BRCA sequencing results are VUS, and of these, more than 50% are missense mutations. Functional assays to determine the pathological outcome of VUS are urgently needed to provide clinical guidance regarding cancer risk and treatment options. In this review, we provide a brief overview of BRCA2 functions in HDR, describe how BRCA2 VUS are currently assessed in the clinic, and how genetic and biochemical functional assays could be integrated into the clinical decision process. We suggest a multi-step workflow composed of robust and accurate functional assays to correctly evaluate the potential pathogenic or benign nature of BRCA2 VUS. Success in this precision medicine endeavor will offer actionable information to patients and their physicians.
Collapse
Affiliation(s)
- Judit Jimenez-Sainz
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| | - Ryan B. Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
- Correspondence: (J.J.-S.); (R.B.J.); Tel.:+1-203-737-6456 (R.B.J.)
| |
Collapse
|
21
|
Kim JH, Park S, Park HS, Park JS, Lee ST, Kim SW, Lee JW, Lee MH, Park SK, Noh WC, Choi DH, Han W, Jung SH. Analysis of BRCA1/2 variants of unknown significance in the prospective Korean Hereditary Breast Cancer study. Sci Rep 2021; 11:8485. [PMID: 33875706 PMCID: PMC8055990 DOI: 10.1038/s41598-021-87792-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Genetic testing for BRCA1 and BRCA2 is crucial in diagnosing hereditary breast and ovarian cancer syndromes and has increased with the development of multigene panel tests. However, results classified as variants of uncertain significance (VUS) present challenges to clinicians in attempting to choose an appropriate management plans. We reviewed a total of 676 breast cancer patients included in the Korean Hereditary Breast Cancer (KOHBRA) study with a VUS on BRCA mutation tests between November 2007 and April 2013. These results were compared to the ClinVar database. We calculated the incidence and odds ratios for these variants using the Korean Reference Genome Database. A total of 58 and 91 distinct VUS in BRCA1 and BRCA2 were identified in the KOHBRA study (comprising 278 and 453 patients, respectively). A total of 27 variants in the KOHBRA study were not registered in the Single Nucleotide Polymorphism database. Among BRCA1 VUSs, 20 were reclassified as benign or likely benign, four were reclassified as pathogenic or likely pathogenic, and eight remained as VUSs according to the ClinVar database. Of the BRCA2 VUSs, 25 were reclassified as benign or likely benign, two were reclassified as pathogenic or likely pathogenic, and 33 remained as VUS according to the ClinVar database. There were 12 variants with conflicting interpretations of pathogenicity for BRCA1 and 18 for BRCA2. Among them, p.Leu1780Pro showed a particularly high odds ratio. Six pathogenic variants and one conflicting variant identified using ClinVar could be reclassified as pathogenic variants in this study. Using updated ClinVar information and calculating odds ratios can be helpful when reclassifying VUSs in BRCA1/2.
Collapse
Affiliation(s)
- Joo Heung Kim
- Department of Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
| | - Sunggyun Park
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Ji Soo Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Won Kim
- Department of Surgery, Daerim St. Mary's Hospital, Seoul, Republic of Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Woo-Chul Noh
- Department of Surgery, Korea Institute of Radiological & Medical Science, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Chonbuk National University Hospital, Jeonju, Jeollabuk, Republic of Korea
| |
Collapse
|
22
|
Richardson ME, Hu C, Lee KY, LaDuca H, Fulk K, Durda KM, Deckman AM, Goldgar DE, Monteiro AN, Gnanaolivu R, Hart SN, Polley EC, Chao E, Pesaran T, Couch FJ. Strong functional data for pathogenicity or neutrality classify BRCA2 DNA-binding-domain variants of uncertain significance. Am J Hum Genet 2021; 108:458-468. [PMID: 33609447 PMCID: PMC8008494 DOI: 10.1016/j.ajhg.2021.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Determination of the clinical relevance of rare germline variants of uncertain significance (VUSs) in the BRCA2 cancer predisposition gene remains a challenge as a result of limited availability of data for use in classification models. However, laboratory-based functional data derived from validated functional assays of known sensitivity and specificity may influence the interpretation of VUSs. We evaluated 252 missense VUSs from the BRCA2 DNA-binding domain by using a homology-directed DNA repair (HDR) assay and identified 90 as non-functional and 162 as functional. The functional assay results were integrated with other available data sources into an ACMG/AMP rules-based classification framework used by a hereditary cancer testing laboratory. Of the 186 missense variants observed by the testing laboratory, 154 were classified as VUSs without functional data. However, after applying protein functional data, 86% (132/154) of the VUSs were reclassified as either likely pathogenic/pathogenic (39/132) or likely benign/benign (93/132), which impacted testing results for 1,900 individuals. These results indicate that validated functional assay data can have a substantial impact on VUS classification and associated clinical management for many individuals with inherited alterations in BRCA2.
Collapse
|
23
|
Sullivan T, Thirthagiri E, Chong CE, Stauffer S, Reid S, Southon E, Hassan T, Ravichandran A, Wijaya E, Lim J, Taib NAM, Fadzli F, Yip CH, Hartman M, Li J, van Dam RM, North SL, Das R, Easton DF, Biswas K, Teo SH, Sharan SK. Epidemiological and ES cell-based functional evaluation of BRCA2 variants identified in families with breast cancer. Hum Mutat 2021; 42:200-212. [PMID: 33314489 PMCID: PMC7919386 DOI: 10.1002/humu.24154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/29/2020] [Accepted: 11/28/2020] [Indexed: 01/06/2023]
Abstract
The discovery of high-risk breast cancer susceptibility genes, such as Breast cancer associated gene 1 (BRCA1) and Breast cancer associated gene 2 (BRCA2) has led to accurate identification of individuals for risk management and targeted therapy. The rapid decline in sequencing costs has tremendously increased the number of individuals who are undergoing genetic testing world-wide. However, given the significant differences in population-specific variants, interpreting the results of these tests can be challenging especially for novel genetic variants in understudied populations. Here we report the characterization of novel variants in the Malaysian and Singaporean population that consist of different ethnic groups (Malays, Chinese, Indian, and other indigenous groups). We have evaluated the functional significance of 14 BRCA2 variants of uncertain clinical significance by using multiple in silico prediction tools and examined their frequency in a cohort of 7840 breast cancer cases and 7928 healthy controls. In addition, we have used a mouse embryonic stem cell (mESC)-based functional assay to assess the impact of these variants on BRCA2 function. We found these variants to be functionally indistinguishable from wild-type BRCA2. These variants could fully rescue the lethality of Brca2-null mESCs and exhibited no sensitivity to six different DNA damaging agents including a poly ADP ribose polymerase inhibitor. Our findings strongly suggest that all 14 evaluated variants are functionally neutral. Our findings should be valuable in risk assessment of individuals carrying these variants.
Collapse
Affiliation(s)
- Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eswary Thirthagiri
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.,Servier, Kuala Lumpur, Malaysia.,Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Chan-Eng Chong
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Tiara Hassan
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Aravind Ravichandran
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,SASTRA University, Thirumalaisamudram, Thanjavur, Tamil Nadu, India
| | | | - Joanna Lim
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Farhana Fadzli
- Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | | | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Jingmei Li
- Genome Institute of Singapore, Human Genetics, Singapore, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - Susan L North
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia.,Breast Cancer Research Unit, UM Cancer Research Institute, University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | |
Collapse
|
24
|
Biswas K, Lipton GB, Stauffer S, Sullivan T, Cleveland L, Southon E, Reid S, Magidson V, Iversen ES, Sharan SK. A computational model for classification of BRCA2 variants using mouse embryonic stem cell-based functional assays. NPJ Genom Med 2020; 5:52. [PMID: 33293522 PMCID: PMC7722754 DOI: 10.1038/s41525-020-00158-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Sequencing-based genetic tests to identify individuals at increased risk of hereditary breast and ovarian cancers have resulted in the identification of more than 40,000 sequence variants of BRCA1 and BRCA2. A majority of these variants are considered to be variants of uncertain significance (VUS) because their impact on disease risk remains unknown, largely due to lack of sufficient familial linkage and epidemiological data. Several assays have been developed to examine the effect of VUS on protein function, which can be used to assess their impact on cancer susceptibility. In this study, we report the functional characterization of 88 BRCA2 variants, including several previously uncharacterized variants, using a well-established mouse embryonic stem cell (mESC)-based assay. We have examined their ability to rescue the lethality of Brca2 null mESC as well as sensitivity to six DNA damaging agents including ionizing radiation and a PARP inhibitor. We have also examined the impact of BRCA2 variants on splicing. In addition, we have developed a computational model to determine the probability of impact on function of the variants that can be used for risk assessment. In contrast to the previous VarCall models that are based on a single functional assay, we have developed a new platform to analyze the data from multiple functional assays separately and in combination. We have validated our VarCall models using 12 known pathogenic and 10 neutral variants and demonstrated their usefulness in determining the pathogenicity of BRCA2 variants that are listed as VUS or as variants with conflicting functional interpretation.
Collapse
Affiliation(s)
- Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC, 27708, USA.
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
25
|
Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, Hauchard J, Castelain G, Fiévet A, Meulemans L, Révillion F, Léoné M, Boutry-Kryza N, Delnatte C, Guillaud-Bataille M, Cleveland L, Reid S, Southon E, Soukarieh O, Drouet A, Di Giacomo D, Vezain M, Bonnet-Dorion F, Bourdon V, Larbre H, Muller D, Pujol P, Vaz F, Audebert-Bellanger S, Colas C, Venat-Bouvet L, Solano AR, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Gaildrat P, Sharan SK, Martins A. Calibration of Pathogenicity Due to Variant-Induced Leaky Splicing Defects by Using BRCA2 Exon 3 as a Model System. Cancer Res 2020; 80:3593-3605. [PMID: 32641407 DOI: 10.1158/0008-5472.can-20-0895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Julie Rondeaux
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Krieger
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France - Normandie University, UNICAEN, Caen, France
| | | | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Gaia Castelain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alice Fiévet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Laëtitia Meulemans
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | | | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Daniela Di Giacomo
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Myriam Vezain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Larbre
- Laboratoire d'Oncogénétique Moléculaire, Institut Godinot, Reims, France
| | - Danièle Muller
- Unité d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Pascal Pujol
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Fátima Vaz
- Breast Cancer Risk Evaluation Clinic, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | | | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | | | - Angela R Solano
- Genotipificacion y Cancer Hereditario, Departmento de Analisis Clinicos, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC), Ciudad Autonoma de Buenos Aires, Argentina
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
26
|
Sato K, Brandsma I, van Rossum-Fikkert SE, Verkaik N, Oostra AB, Dorsman JC, van Gent DC, Knipscheer P, Kanaar R, Zelensky AN. HSF2BP negatively regulates homologous recombination in DNA interstrand crosslink repair. Nucleic Acids Res 2020; 48:2442-2456. [PMID: 31960047 PMCID: PMC7049687 DOI: 10.1093/nar/gkz1219] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability and DNA interstrand crosslink (ICL) repair in vertebrates. We show that ectopic production of HSF2BP, a BRCA2-interacting protein required for meiotic HR during mouse spermatogenesis, in non-germline human cells acutely sensitize them to ICL-inducing agents (mitomycin C and cisplatin) and PARP inhibitors, resulting in a phenotype characteristic of cells from Fanconi anemia (FA) patients. We biochemically recapitulate the suppression of ICL repair and establish that excess HSF2BP compromises HR by triggering the removal of BRCA2 from the ICL site and thereby preventing the loading of RAD51. This establishes ectopic expression of a wild-type meiotic protein in the absence of any other protein-coding mutations as a new mechanism that can lead to an FA-like cellular phenotype. Naturally occurring elevated production of HSF2BP in tumors may be a source of cancer-promoting genomic instability and also a targetable vulnerability.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Nicole Verkaik
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anneke B Oostra
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Josephine C Dorsman
- Department of Clinical Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
27
|
Bypass of premature stop codons and generation of functional BRCA2 by exon skipping. J Hum Genet 2020; 65:805-809. [PMID: 32393813 DOI: 10.1038/s10038-020-0768-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 11/08/2022]
Abstract
A pathogenic mutation in BRCA2 significantly increases the risk of breast and ovarian cancers making it imperative to examine the functional consequences of variants of uncertain clinical significance. Variants that are predicted to result in a truncated protein are unambiguously classified as pathogenic. We have previously shown how a pathogenic splice site variant known to generate a premature termination codon (PTC) in exon 9 and a nonsense mutation at exon 7, can generate functional BRCA2 by skipping exons 4-7 and restoring the reading frame. Using a well-established mouse embryonic stem cell-based assay, we functionally characterize here one splice site mutation and 11 pathogenic BRCA2 variants that are either nonsense mutation or generate PTC in different exons ranging from exons 4 to 7. Our study shows that five variants can restore the open reading frame by exon skipping and generate a functional protein. This suggests further need to exercise prudence when classifying clearly pathogenic variants.
Collapse
|
28
|
Sirisena N, Biswas K, Sullivan T, Stauffer S, Cleveland L, Southon E, Dissanayake VHW, Sharan SK. Functional evaluation of five BRCA2 unclassified variants identified in a Sri Lankan cohort with inherited cancer syndromes using a mouse embryonic stem cell-based assay. Breast Cancer Res 2020; 22:43. [PMID: 32393398 PMCID: PMC7216543 DOI: 10.1186/s13058-020-01272-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/30/2020] [Indexed: 11/10/2022] Open
Abstract
Next-generation sequencing of Sri Lankan families with inherited cancer syndromes resulted in the identification of five BRCA2 variants of unknown clinical significance. Interpreting such variants poses significant challenges for both clinicians and patients. Using a mouse embryonic stem cell-based functional assay, we found I785V, N830D, and K2077N to be functionally indistinguishable from wild-type BRCA2. Specific but mild sensitivity to olaparib and reduction in homologous recombination (HR) efficiency suggest partial loss of function of the A262T variant. This variant is located in the N-terminal DNA binding domain of BRCA2 that can facilitate HR by binding to dsDNA/ssDNA junctions. P3039P is clearly pathogenic because of premature protein truncation caused by exon 23 skipping. These findings highlight the value of mouse embryonic stem cell-based assays for determining the functional significance of variants of unknown clinical significance and provide valuable information regarding risk estimation and genetic counseling of families carrying these BRCA2 variants.
Collapse
Affiliation(s)
- Nirmala Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Colombo, 8, Sri Lanka
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Stacey Stauffer
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA
| | | | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Bldg 560, Room 32-33, 1050 Boyles Street, Frederick, MD, 21702, USA.
| |
Collapse
|
29
|
Samadder NJ, Giridhar KV, Baffy N, Riegert-Johnson D, Couch FJ. Hereditary Cancer Syndromes-A Primer on Diagnosis and Management: Part 1: Breast-Ovarian Cancer Syndromes. Mayo Clin Proc 2019; 94:1084-1098. [PMID: 31171119 DOI: 10.1016/j.mayocp.2019.02.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
Cancer is the second leading cause of death in both men and women in the United States, with colorectal cancer and breast cancer being two of the most frequent cancer types. Hereditary causes occurring due to pathogenic sequence variants and defects in certain genes makes up roughly 5% of all colorectal cancers and breast-ovarian cancers. High-risk hereditary predisposition syndromes have been associated with a substantially increased lifetime risk for the development of colorectal cancers and breast-ovarian cancers depending on the genetic syndrome, and many people also carry an increased risk of several other cancers compared with the general population. The aim of this review was to provide comprehensive literature on the most commonly encountered hereditary predisposition syndromes, including Lynch syndrome, familial adenomatous polyposis, MUTYH-associated polyposis, hamartomatous polyposis, and breast-ovarian cancer conditions. This will be presented as a 2-part series: the first part will cover the breast-ovarian cancer syndromes, and the second will focus on the inherited colorectal cancer and polyposis conditions.
Collapse
Affiliation(s)
- N Jewel Samadder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ; Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL.
| | | | - Noemi Baffy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ
| | - Douglas Riegert-Johnson
- Department of Clinical Genomics, Mayo Clinic, Scottsdale, AZ; Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL
| | - Fergus J Couch
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
30
|
Genetic Testing to Guide Risk-Stratified Screens for Breast Cancer. J Pers Med 2019; 9:jpm9010015. [PMID: 30832243 PMCID: PMC6462925 DOI: 10.3390/jpm9010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer screening modalities and guidelines continue to evolve and are increasingly based on risk factors, including genetic risk and a personal or family history of cancer. Here, we review genetic testing of high-penetrance hereditary breast and ovarian cancer genes, including BRCA1 and BRCA2, for the purpose of identifying high-risk individuals who would benefit from earlier screening and more sensitive methods such as magnetic resonance imaging. We also consider risk-based screening in the general population, including whether every woman should be genetically tested for high-risk genes and the potential use of polygenic risk scores. In addition to enabling early detection, the results of genetic screens of breast cancer susceptibility genes can be utilized to guide decision-making about when to elect prophylactic surgeries that reduce cancer risk and the choice of therapeutic options. Variants of uncertain significance, especially missense variants, are being identified during panel testing for hereditary breast and ovarian cancer. A finding of a variant of uncertain significance does not provide a basis for increased cancer surveillance or prophylactic procedures. Given that variant classification is often challenging, we also consider the role of multifactorial statistical analyses by large consortia and functional tests for this purpose.
Collapse
|
31
|
Turner SA, Rao SK, Morgan RH, Vnencak-Jones CL, Wiesner GL. The impact of variant classification on the clinical management of hereditary cancer syndromes. Genet Med 2018; 21:426-430. [PMID: 29875428 DOI: 10.1038/s41436-018-0063-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The reclassification of genetic variants poses a significant challenge for laboratories and clinicians. Variant review has resulted in the reclassification of variants of unknown significance as well as the reclassification of previously established pathogenic and likely pathogenic variants. These reclassifications have the potential to alter the clinical management of patients with hereditary cancer syndromes. METHODS Results were reviewed for 1694 patients seen for hereditary cancer evaluation between August 2012 and May 2017 to determine the frequency and types of variant reclassification. Patients with reclassifications with high potential for impact were monitored for alterations in organ surveillance, prophylactic surgery, and cascade testing. RESULTS One hundred forty-two variants were reclassified representing 124/1694 (7.3%) patients; 11.3% of reclassifications (16/142) had a high potential for clinical impact with 94% (15/16) altering clinical management of patients with 56% (9/16) changing multiple areas of management. CONCLUSION While reclassifications are rare, the impact on clinical management is profound. In many cases, patients with downgraded pathogenic/likely pathogenic variants had years of unnecessary organ surveillance and underwent unneeded surgical intervention. In addition, cascade testing misidentified those at risk for developing cancers, thereby altering the management across generations. The frequency and types of alterations to clinical management highlight the need for timely variant reclassification.
Collapse
Affiliation(s)
- Scott A Turner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Smita K Rao
- Vanderbilt Clinical and Translational Hereditary Cancer Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - R Hayes Morgan
- Vanderbilt Clinical and Translational Hereditary Cancer Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cindy L Vnencak-Jones
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Georgia L Wiesner
- Vanderbilt Clinical and Translational Hereditary Cancer Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
32
|
Goidescu IG, Caracostea G, Eniu DT, Stamatian FV. Prevalence of deleterious mutations among patients with breast cancer referred for multigene panel testing in a Romanian population. ACTA ACUST UNITED AC 2018; 91:157-165. [PMID: 29785153 PMCID: PMC5958980 DOI: 10.15386/cjmed-894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 01/30/2023]
Abstract
Aim Multigene panel testing for Hereditary Breast and Ovarian Cancer (HBOC) using next generation sequencing is becoming more common in medical care. We report our experience regarding deleterious mutations of high and moderate-risk breast cancer genes (BRCA1/2, TP53, STK11, CDH1, PTEN, PALB2, CHEK2, ATM), as well as more recently identified cancer genes, many of which have increased risk but less well-defined penetrance. Methods Genetic testing was performed in 130 consecutive cases with breast cancer referred to our clinic for surgical evaluation and who met the 2016 National Comprehensive Cancer Network (NCCN) criteria for genetic testing. Results 82 patients had pathogenic/likely pathogenic mutations and VUS mutations, and 48 were negative; 36 of the pathogenic mutations were in the high-risk genes and 16 were in the moderate risk genes and only 5 cases in the intermediary risk group. From the VUS mutation group 21 cases were in the intermediary risk group, 9 cases were in the moderate risk group and only 7 cases in high risk group. The most frequent BRCA1 variant was c.3607C>T (7 cases) followed by c.5266dupC and c.4035delA (each in 4 cases). Regarding BRCA-2 mutations we identified c.9371A>T and c.8755-1G>A in 6 cases and we diagnosed VUS mutations in 3 cases. Conclusion Our study identified 2 mutations in the BRCA1 gene that are less common in the Romanian population, c.3607C>T and c.4035delA. Both variants had particular molecular phenotypes, c.3607C>T variant respecting the triple negative pattern of BRCA1 breast cancer while c.4035delA were Luminal B HER positive.
Collapse
Affiliation(s)
- Iulian Gabriel Goidescu
- Department of Obstetrics and Gynecology I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,IMOGEN Research Center Institute, Cluj-Napoca, Romania
| | - Gabriela Caracostea
- Department of Obstetrics and Gynecology I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Tudor Eniu
- Department of Oncological Surgery and Oncological Gynecology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Vasile Stamatian
- Department of Obstetrics and Gynecology I, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
33
|
Guidugli L, Shimelis H, Masica DL, Pankratz VS, Lipton GB, Singh N, Hu C, Monteiro AN, Lindor NM, Goldgar DE, Karchin R, Iversen ES, Couch FJ. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. Am J Hum Genet 2018. [DOI: 10.1016/j.ajhg.2017.12.013 helena] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
|
34
|
Guidugli L, Shimelis H, Masica DL, Pankratz VS, Lipton GB, Singh N, Hu C, Monteiro ANA, Lindor NM, Goldgar DE, Karchin R, Iversen ES, Couch FJ. Assessment of the Clinical Relevance of BRCA2 Missense Variants by Functional and Computational Approaches. Am J Hum Genet 2018; 102:233-248. [PMID: 29394989 DOI: 10.1016/j.ajhg.2017.12.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 11/30/2022] Open
Abstract
Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ?99% probability of pathogenicity, and 73 had ?95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS.
Collapse
Affiliation(s)
- Lucia Guidugli
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hermela Shimelis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vernon S Pankratz
- Division of Nephrology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Gary B Lipton
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Namit Singh
- Department of Structural Biology, University of California, San Diego, San Diego, CA 92093, USA
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah, Salt Lake City, UT 84132, USA
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Edwin S Iversen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
35
|
A comprehensive analysis of BRCA2 gene: focus on mechanistic aspects of its functions, spectrum of deleterious mutations, and therapeutic strategies targeting BRCA2-deficient tumors. Med Oncol 2018; 35:18. [PMID: 29387975 DOI: 10.1007/s12032-018-1085-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 12/23/2022]
Abstract
BRCA2is the main susceptibility gene known to be involved in the pathogenesis of breast cancer. It plays an important role in maintaining the genome stability by homologous recombination through DNA double-strand breaks repairing, by interacting with various other proteins including RAD51, DSS1, RPA, MRE11, PALB2, and p53. BRCA2-deficient cells show the abnormalities of chromosome number. BRCA2 is also found to be involved in centrosome duplication specifically in the metaphase to anaphase transition. Inactivation or depletion of BRCA2 leads to centrosome amplification that results in unequal separation of chromosomes. BRCA2 localizes with central spindle and midbody during telophase and cytokinesis. Inactivation or depletion of BRCA2 leads to multinucleation of cell. Around 2000 mutations have been reported in BRCA2 gene. BRCA2-deficient tumors are being taking into consideration for targeted cancer therapy by using different inhibitors like poly ADP-ribose polymerase and thymidylate synthase. The present review focusses on the role of BRCA2 in various critical cellular processes based on the mechanistic approaches. Mutations reported in the BRCA2 gene in various ethnic groups till date have also been compiled with an insight into the functional aspects of these alterations. The therapeutic strategies for targeting BRCA2-deficient tumors have also been targeted.
Collapse
|
36
|
Toland AE, Andreassen PR. DNA repair-related functional assays for the classification of BRCA1 and BRCA2 variants: a critical review and needs assessment. J Med Genet 2017; 54:721-731. [PMID: 28866612 DOI: 10.1136/jmedgenet-2017-104707] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/04/2017] [Accepted: 06/27/2017] [Indexed: 01/02/2023]
Abstract
Mutation of BRCA1 and BRCA2 is the most common cause of inherited breast and ovarian cancer. Genetic screens to detect carriers of variants can aid in cancer prevention by identifying individuals with a greater cancer risk and can potentially be used to predict the responsiveness of tumours to therapy. Frequently, classification cannot be performed based on traditional approaches such as segregation analyses, including for many missense variants, which are therefore referred to as variants of uncertain significance (VUS). Functional assays provide an important alternative for classification of BRCA1 and BRCA2 VUS. As reviewed here, both of these tumour suppressors promote the maintenance of genome stability via homologous recombination. Thus, related assays may be particularly relevant to cancer risk. Progress in implementing functional assays to assess missense variants of BRCA1 and BRCA2 is considered here, along with current limitations and the path to more impactful assay systems. While functional assays have been developed to independently evaluate BRCA1 and BRCA2 VUS, high-throughput assays with sufficient sensitivity to characterise the large number of identified variants are lacking. Additionally, because of relatively low conservation of certain domains of BRCA1, and of BRCA2, between humans and rodents, heterologous expression in rodent cells may have limited reliability or capacity to assess variants present throughout either protein. Moving forward, it will be important to perform assays in human cell lines with relevance to particular tumour types, and to strengthen risk predictions based on multifactorial statistical analyses that also include available data on cosegregation and tumour pathology.
Collapse
Affiliation(s)
- Amanda Ewart Toland
- Department of Cancer Biology & Genetics and Division of Human Genetics, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Meyer S, Stevens A, Paredes R, Schneider M, Walker MJ, Williamson AJK, Gonzalez-Sanchez MB, Smetsers S, Dalal V, Teng HY, White DJ, Taylor S, Muter J, Pierce A, de Leonibus C, Rockx DAP, Rooimans MA, Spooncer E, Stauffer S, Biswas K, Godthelp B, Dorsman J, Clayton PE, Sharan SK, Whetton AD. Acquired cross-linker resistance associated with a novel spliced BRCA2 protein variant for molecular phenotyping of BRCA2 disruption. Cell Death Dis 2017; 8:e2875. [PMID: 28617445 PMCID: PMC5520920 DOI: 10.1038/cddis.2017.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/29/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022]
Abstract
BRCA2 encodes a protein with a fundamental role in homologous recombination that is essential for normal development. Carrier status of mutations in BRCA2 is associated with familial breast and ovarian cancer, while bi-allelic BRCA2 mutations can cause Fanconi anemia (FA), a cancer predisposition syndrome with cellular cross-linker hypersensitivity. Cancers associated with BRCA2 mutations can acquire chemo-resistance on relapse. We modeled acquired cross-linker resistance with an FA-derived BRCA2-mutated acute myeloid leukemia (AML) platform. Associated with acquired cross-linker resistance was the expression of a functional BRCA2 protein variant lacking exon 5 and exon 7 (BRCA2ΔE5+7), implying a role for BRCA2 splicing for acquired chemo-resistance. Integrated network analysis of transcriptomic and proteomic differences for phenotyping of BRCA2 disruption infers impact on transcription and chromatin remodeling in addition to the DNA damage response. The striking overlap with transcriptional profiles of FA patient hematopoiesis and BRCA mutation associated ovarian cancer helps define and explicate the ‘BRCAness’ profile.
Collapse
Affiliation(s)
- Stefan Meyer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric and Adolescent Oncology, Royal Manchester Children's Hospital, Manchester, UK.,Young Oncology Unit, Christie Hospital, Manchester, UK
| | - Adam Stevens
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Roberto Paredes
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Marion Schneider
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Walker
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew J K Williamson
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Maria-Belen Gonzalez-Sanchez
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stephanie Smetsers
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Vineet Dalal
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Hsiang Ying Teng
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Daniel J White
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Sam Taylor
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Joanne Muter
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew Pierce
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Chiara de Leonibus
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Davy A P Rockx
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin A Rooimans
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Elaine Spooncer
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK
| | - Stacey Stauffer
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Barbara Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Josephine Dorsman
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Peter E Clayton
- Manchester Academic Health Science Centre, Manchester, UK.,Department of Paediatric Endocrinology, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK
| | - Shyam K Sharan
- Mouse Cancer Genetics Program; Center for Cancer Research; Frederick National Laboratory for Cancer Research; National Cancer Institute, Frederick, MD, USA
| | - Anthony D Whetton
- Stem Cell &Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine &Health, University of Manchester, Manchester, UK.,Manchester Academic Health Science Centre, Manchester, UK.,Stoller Biomarker Discovery Centre, University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Shimelis H, Mesman RLS, Von Nicolai C, Ehlen A, Guidugli L, Martin C, Calléja FMGR, Meeks H, Hallberg E, Hinton J, Lilyquist J, Hu C, Aalfs CM, Aittomäki K, Andrulis I, Anton-Culver H, Arndt V, Beckmann MW, Benitez J, Bogdanova NV, Bojesen SE, Bolla MK, Borresen-Dale AL, Brauch H, Brennan P, Brenner H, Broeks A, Brouwers B, Brüning T, Burwinkel B, Chang-Claude J, Chenevix-Trench G, Cheng CY, Choi JY, Collée JM, Cox A, Cross SS, Czene K, Darabi H, Dennis J, Dörk T, Dos-Santos-Silva I, Dunning AM, Fasching PA, Figueroa J, Flyger H, García-Closas M, Giles GG, Glendon G, Guénel P, Haiman CA, Hall P, Hamann U, Hartman M, Hogervorst FB, Hollestelle A, Hopper JL, Ito H, Jakubowska A, Kang D, Kosma VM, Kristensen V, Lai KN, Lambrechts D, Marchand LL, Li J, Lindblom A, Lophatananon A, Lubinski J, Machackova E, Mannermaa A, Margolin S, Marme F, Matsuo K, Miao H, Michailidou K, Milne RL, Muir K, Neuhausen SL, Nevanlinna H, Olson JE, Olswold C, Oosterwijk JJC, Osorio A, Peterlongo P, Peto J, Pharoah PDP, Pylkäs K, Radice P, Rashid MU, Rhenius V, Rudolph A, Sangrajrang S, Sawyer EJ, Schmidt MK, Schoemaker MJ, Seynaeve C, Shah M, Shen CY, Shrubsole M, Shu XO, Slager S, Southey MC, Stram DO, Swerdlow A, Teo SH, Tomlinson I, Torres D, Truong T, van Asperen CJ, van der Kolk LE, Wang Q, Winqvist R, Wu AH, Yu JC, Zheng W, Zheng Y, Leary J, Walker L, Foretova L, Fostira F, Claes KBM, Varesco L, Moghadasi S, Easton DF, Spurdle A, Devilee P, Vrieling H, Monteiro ANA, Goldgar DE, Carreira A, Vreeswijk MPG, Couch FJ. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Res 2017; 77:2789-2799. [PMID: 28283652 PMCID: PMC5508554 DOI: 10.1158/0008-5472.can-16-2568] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/14/2016] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA1 c.5096G>A, p.Arg1699Gln (OR = 4.29; P = 0.009) variant were associated with moderately increased risks of breast cancer among Europeans, whereas BRCA2 c.7522G>A, p.Gly2508Ser (OR = 2.68; P = 0.004), and c.8187G>T, p.Lys2729Asn (OR = 1.4; P = 0.004) were associated with moderate and low risks of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR.
Collapse
Affiliation(s)
- Hermela Shimelis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Romy L S Mesman
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Asa Ehlen
- Genotoxic Stress and Cancer, Institut Curie, Orsay, France
| | - Lucia Guidugli
- Department of Human Genetics, University of Chicago, Chicago, Illinois
| | | | | | - Huong Meeks
- Cancer Control and Population Sciences, University of Utah, Salt Lake City, Utah
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jamie Hinton
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jenna Lilyquist
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cora M Aalfs
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, California
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlevand Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Anne-Lise Borresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Barbara Brouwers
- Laboratory of Experimental Oncology, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ching-Yu Cheng
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joe Dennis
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M Dunning
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, United Kingdom
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Frans B Hogervorst
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Veli-Matti Kosma
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | - Kah-Nyin Lai
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | | | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Eva Machackova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Keitaro Matsuo
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hui Miao
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jan J C Oosterwijk
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Ana Osorio
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Paolo Peterlongo
- IFOM, The FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Muhammad Usman Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Valerie Rhenius
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, United Kingdom
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mitul Shah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Martha Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Soo H Teo
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lizet E van der Kolk
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Qin Wang
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jyh-Cherng Yu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jennifer Leary
- Westmead Millenium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Logan Walker
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, Institute of Radioisotopes and Radiodiagnostic Products (IRRP), Athens, Greece
| | | | - Liliana Varesco
- Unit of Hereditary Cancers, IRCCS AOU San Martino, Genova, Italy
| | - Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Douglas F Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Amanda Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Oncologic Science, University of South Florida, Tampa, Florida
| | - David E Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah, Salt Lake City, Utah
| | - Aura Carreira
- Genotoxic Stress and Cancer, Institut Curie, Orsay, France
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
39
|
Golan T, Raitses-Gurevich M, Kelley RK, Bocobo AG, Borgida A, Shroff RT, Holter S, Gallinger S, Ahn DH, Aderka D, Apurva J, Bekaii-Saab T, Friedman E, Javle M. Overall Survival and Clinical Characteristics of BRCA-Associated Cholangiocarcinoma: A Multicenter Retrospective Study. Oncologist 2017; 22:804-810. [PMID: 28487467 DOI: 10.1634/theoncologist.2016-0415] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Biliary tract malignancies, in particular cholangiocarcinomas (CCA), are rare tumors that carry a poor prognosis. BRCA2 mutation carriers have an increased risk of developing CCA with a reported relative risk of ∼5 according to the Breast Cancer Linkage Consortium. In addition to this risk, there are potential therapeutic implications in those harboring somatic and/or germline (GL) BRCA mutations. Therefore, it is important to define the clinical characteristics of GL/somatic BRCA1/2 variants in CCA patients. MATERIALS AND METHODS We performed a multicenter retrospective analysis of CCA patients diagnosed between January 2000 and December 2013 with GL or somatic variants in BRCA1/2 genes detected by GL mutations testing and/or by tumor next generation sequencing. Cases were identified from clinical databases at participating institutions. Data including demographics, clinical history, surgical procedures, and systemic chemotherapy or radiation were extracted from patients' records. RESULTS Overall, 18 cases were identified: 5 carriers of GL BRCA1/2 mutations (4 BRCA2; 1 BRCA1) and 13 harboring somatic variations (7 BRCA1; 6 BRCA2). Mean age at diagnosis was 60, SD ± 10 years (range 36-75 years), with male and female prevalence rates of 61.2% and 38.8%, respectively. Stage at diagnosis was I (n = 4), II (n = 3), III (n = 3), and IV (n = 8). Six patients had extrahepatic CCA and the rest intrahepatic CCA. Thirteen patients received platinum-based therapy and four were treated with poly ADP ribose polymerase inhibitors, of whom one experienced sustained disease response with a progression-free survival of 42.6 months. Median overall survival from diagnosis for patients with stage I/II in this study was 40.3 months (95% confidence interval [CI], 6.73-108.15) and with stages III/IV was 25 months (95% CI, 15.23-40.57). CONCLUSION BRCA-associated CCA is uncommon. This multicenter retrospective study provides a thorough clinical analysis of a BRCA-associated CCA cohort, which can serve as a benchmark for future development and design of expanded analyses and clinical trials. IMPLICATIONS FOR PRACTICE BRCA-associated CCA is uncommon but a very important subtype of hepatic malignancies, due to its rising prevalence. Better clinical characterization of this subtype might allow application of targeted therapy for CCA patients with germline or somatic mutations in BRCA1/2 genes, especially due to previously reported success of such therapies in other BRCA-associated malignancies. Thus this study, first of its kind, provides a basis for future multi-centered analyses in larger cohorts, as well as clinical trials. Additionally, this study emphasizes the importance of both germline and somatic genotyping for all CCA patients.
Collapse
Affiliation(s)
- Talia Golan
- Department of Oncology, Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maria Raitses-Gurevich
- Department of Oncology, Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Robin K Kelley
- The University of California, San Francisco Medical Center, San Francisco, California, USA
| | - Andrea G Bocobo
- The University of California, San Francisco Medical Center, San Francisco, California, USA
| | - Ayelet Borgida
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rachna T Shroff
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Spring Holter
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Dan Aderka
- Department of Oncology, Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jain Apurva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Eitan Friedman
- Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Milind Javle
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
40
|
Molecular characterization and clinical interpretation of BRCA1/BRCA2 variants in families from Murcia (south-eastern Spain) with hereditary breast and ovarian cancer: clinical–pathological features in BRCA carriers and non-carriers. Fam Cancer 2017; 16:477-489. [DOI: 10.1007/s10689-017-9985-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
41
|
Fradet-Turcotte A, Sitz J, Grapton D, Orthwein A. BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer 2016; 23:T1-T17. [PMID: 27530658 DOI: 10.1530/erc-16-0297] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Maintaining genomic integrity is essential to preserve normal cellular physiology and to prevent the emergence of several human pathologies including cancer. The breast cancer susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation group D1 (FANCD1)) is a potent tumor suppressor that has been extensively studied in DNA double-stranded break (DSB) repair by homologous recombination (HR). However, BRCA2 participates in numerous other processes central to maintaining genome stability, including DNA replication, telomere homeostasis and cell cycle progression. Consequently, inherited mutations in BRCA2 are associated with an increased risk of breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent developments underlying the functions of BRCA2 in the maintenance of genomic integrity. The current model places BRCA2 as a central regulator of genome stability by repairing DSBs and limiting replication stress. These findings have direct implications for the development of novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Justine Sitz
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Damien Grapton
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada Department of OncologyMcGill University, Montreal, Canada
| |
Collapse
|
42
|
Nielsen FC, van Overeem Hansen T, Sørensen CS. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 2016; 16:599-612. [PMID: 27515922 DOI: 10.1038/nrc.2016.72] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among affected families without BRCA1 or BRCA2 mutations. The new pathogenic variants are rare, posing challenges to estimation of risk attribution through patient cohorts. In this Review article, we examine HBOC genes, focusing on their role in genome maintenance, the possibilities for functional testing of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making.
Collapse
Affiliation(s)
- Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
43
|
Martinez JS, Baldeyron C, Carreira A. Molding BRCA2 function through its interacting partners. Cell Cycle 2016; 14:3389-95. [PMID: 26566862 DOI: 10.1080/15384101.2015.1093702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of the tumor suppressor BRCA2 has been shaped over 2 decades thanks to the discovery of its protein and nucleic acid partners, biochemical and structural studies of the protein, and the functional evaluation of germline variants identified in breast cancer patients. Yet, the pathogenic and functional effect of many germline mutations in BRCA2 remains undetermined, and the heterogeneity of BRCA2-associated tumors challenges the identification of causative variants that drive tumorigenesis. In this review, we propose an overview of the established and emerging interacting partners and functional pathways attributed to BRCA2, and we speculate on how variants altering these functions may contribute to cancer susceptibility.
Collapse
Affiliation(s)
- Juan S Martinez
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| | - Céline Baldeyron
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| | - Aura Carreira
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| |
Collapse
|
44
|
Hartford SA, Chittela R, Ding X, Vyas A, Martin B, Burkett S, Haines DC, Southon E, Tessarollo L, Sharan SK. Interaction with PALB2 Is Essential for Maintenance of Genomic Integrity by BRCA2. PLoS Genet 2016; 12:e1006236. [PMID: 27490902 PMCID: PMC4973925 DOI: 10.1371/journal.pgen.1006236] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 07/11/2016] [Indexed: 11/30/2022] Open
Abstract
Human breast cancer susceptibility gene, BRCA2, encodes a 3418-amino acid protein that is essential for maintaining genomic integrity. Among the proteins that physically interact with BRCA2, Partner and Localizer of BRCA2 (PALB2), which binds to the N-terminal region of BRCA2, is vital for its function by facilitating its subnuclear localization. A functional redundancy has been reported between this N-terminal PALB2-binding domain and the C-terminal DNA-binding domain of BRCA2, which undermines the relevance of the interaction between these two proteins. Here, we describe a genetic approach to examine the functional significance of the interaction between BRCA2 and PALB2 by generating a knock-in mouse model of Brca2 carrying a single amino acid change (Gly25Arg, Brca2G25R) that disrupts this interaction. In addition, we have combined Brca2G25R homozygosity as well as hemizygosity with Palb2 and Trp53 heterozygosity to generate an array of genotypically and phenotypically distinct mouse models. Our findings reveal defects in body size, fertility, meiotic progression, and genome stability, as well as increased tumor susceptibility in these mice. The severity of the phenotype increased with a decrease in the interaction between BRCA2 and PALB2, highlighting the significance of this interaction. In addition, our findings also demonstrate that hypomorphic mutations such as Brca2G25R have the potential to be more detrimental than the functionally null alleles by increasing genomic instability to a level that induces tumorigenesis, rather than apoptosis.
Collapse
Affiliation(s)
- Suzanne A. Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Rajanikant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Xia Ding
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Aradhana Vyas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Betty Martin
- Leidos Biomedical Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Diana C. Haines
- Leidos Biomedical Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
- Leidos Biomedical Inc., National Cancer Institute, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shyam K. Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| |
Collapse
|
45
|
Palmero EI, Alemar B, Schüler-Faccini L, Hainaut P, Moreira-Filho CA, Ewald IP, dos Santos PK, Ribeiro PLI, de Oliveira CB, Kelm FLC, Tavtigian S, Cossio SL, Giugliani R, Caleffi M, Ashton-Prolla P. Screening for germline BRCA1, BRCA2, TP53 and CHEK2 mutations in families at-risk for hereditary breast cancer identified in a population-based study from Southern Brazil. Genet Mol Biol 2016; 39:210-22. [PMID: 27223485 PMCID: PMC4910552 DOI: 10.1590/1678-4685-gmb-2014-0363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/24/2015] [Indexed: 01/22/2023] Open
Abstract
In Brazil, breast cancer is a public health care problem due to its high incidence and mortality rates. In this study, we investigated the prevalence of hereditary breast cancer syndromes (HBCS) in a population-based cohort in Brazils southernmost capital, Porto Alegre. All participants answered a questionnaire about family history (FH) of breast, ovarian and colorectal cancer and those with a positive FH were invited for genetic cancer risk assessment (GCRA). If pedigree analysis was suggestive of HBCS, genetic testing of the BRCA1, BRCA2, TP53, and CHEK2 genes was offered. Of 902 women submitted to GCRA, 214 had pedigrees suggestive of HBCS. Fifty of them underwent genetic testing: 18 and 40 for BRCA1/BRCA2 and TP53 mutation screening, respectively, and 7 for CHEK2 1100delC testing. A deleterious BRCA2 mutation was identified in one of the HBOC probands and the CHEK2 1100delC mutation occurred in one of the HBCC families. No deleterious germline alterations were identified in BRCA1 or TP53. Although strict inclusion criteria and a comprehensive testing approach were used, the suspected genetic risk in these families remains unexplained. Further studies in a larger cohort are necessary to better understand the genetic component of hereditary breast cancer in Southern Brazil.
Collapse
Affiliation(s)
- Edenir Inêz Palmero
- Programa de Pós Graduação em Genética e Biologia Molecular,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Medicina Genômica, Hospital de Clinicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Cluster of Molecular Carcinogenesis, International Agency for
Research on Cancer, Lyon, France
- Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de
Barretos, Barretos, SP, Brazil
- Faculdade de Ciências da Saúde Dr. Paulo Prata, São Paulo, SP,
Brazil
| | - Bárbara Alemar
- Programa de Pós Graduação em Genética e Biologia Molecular,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Medicina Genômica, Hospital de Clinicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | - Lavínia Schüler-Faccini
- Programa de Pós Graduação em Genética e Biologia Molecular,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre,
Porto Alegre, RS, Brazil
- Departmento de Genética, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Pierre Hainaut
- Cluster of Molecular Carcinogenesis, International Agency for
Research on Cancer, Lyon, France
| | - Carlos Alberto Moreira-Filho
- Centro de Pesquisa Experimental, Instituto de Educação e Pesquisa
Albert Einstein, São Paulo, SP, Brazil
- Departmento de Imunologia, Instituto de Ciências Biomédicas,
Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ingrid Petroni Ewald
- Laboratório de Medicina Genômica, Hospital de Clinicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | - Patricia Koehler dos Santos
- Programa de Pós Graduação em Genética e Biologia Molecular,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Medicina Genômica, Hospital de Clinicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | | | | | - Florence Le Calvez Kelm
- Cluster of Molecular Carcinogenesis, International Agency for
Research on Cancer, Lyon, France
| | - Sean Tavtigian
- Cluster of Molecular Carcinogenesis, International Agency for
Research on Cancer, Lyon, France
| | - Silvia Liliana Cossio
- Laboratório de Medicina Genômica, Hospital de Clinicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Programa de Pós Graduação em Gastroenterologia, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós Graduação em Genética e Biologia Molecular,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre,
Porto Alegre, RS, Brazil
- Departmento de Genética, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| | - Maira Caleffi
- Nucleo Mama Porto Alegre e Associação Hospitalar Moinhos de Vento,
Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Programa de Pós Graduação em Genética e Biologia Molecular,
Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Laboratório de Medicina Genômica, Hospital de Clinicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre,
Porto Alegre, RS, Brazil
- Departmento de Genética, Universidade Federal do Rio Grande do Sul,
Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
BRCA2 regulates DMC1-mediated recombination through the BRC repeats. Proc Natl Acad Sci U S A 2016; 113:3515-20. [PMID: 26976601 DOI: 10.1073/pnas.1601691113] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In somatic cells, BRCA2 is needed for RAD51-mediated homologous recombination. The meiosis-specific DNA strand exchange protein, DMC1, promotes the formation of DNA strand invasion products (joint molecules) between homologous molecules in a fashion similar to RAD51. BRCA2 interacts directly with both human RAD51 and DMC1; in the case of RAD51, this interaction results in stimulation of RAD51-promoted DNA strand exchange. However, for DMC1, little is known regarding the basis and functional consequences of its interaction with BRCA2. Here we report that human DMC1 interacts directly with each of the BRC repeats of BRCA2, albeit most tightly with repeats 1-3 and 6-8. However, BRC1-3 bind with higher affinity to RAD51 than to DMC1, whereas BRC6-8 bind with higher affinity to DMC1, providing potential spatial organization to nascent filament formation. With the exception of BRC4, each BRC repeat stimulates joint molecule formation by DMC1. The basis for this stimulation is an enhancement of DMC1-ssDNA complex formation by the stimulatory BRC repeats. Lastly, we demonstrate that full-length BRCA2 protein stimulates DMC1-mediated DNA strand exchange between RPA-ssDNA complexes and duplex DNA, thus identifying BRCA2 as a mediator of DMC1 recombination function. Collectively, our results suggest unique and specialized functions for the BRC motifs of BRCA2 in promoting homologous recombination in meiotic and mitotic cells.
Collapse
|
47
|
Recurrent mutations of BRCA1, BRCA2 and PALB2 in the population of breast and ovarian cancer patients in Southern Poland. Hered Cancer Clin Pract 2016; 14:5. [PMID: 26843898 PMCID: PMC4739084 DOI: 10.1186/s13053-016-0046-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/28/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mutations in the BRCA1, BRCA2 and PALB2 genes are well-established risk factors for the development of breast and/or ovarian cancer. The frequency and spectrum of mutations in these genes has not yet been examined in the population of Southern Poland. METHODS We examined the entire coding sequences of the BRCA1 and BRCA2 genes and genotyped a recurrent mutation of the PALB2 gene (c.509_510delGA) in 121 women with familial and/or early-onset breast or ovarian cancer from Southern Poland. RESULTS A BRCA1 mutation was identified in 11 of 121 patients (9.1 %) and a BRCA2 mutation was identified in 10 of 121 patients (8.3 %). Two founder mutations of BRCA1 accounted for 91 % of all BRCA1 mutation carriers (c.5266dupC was identified in six patients and c.181 T > G was identified in four patients). Three of the seven different BRCA2 mutations were detected in two patients each (c.9371A > T, c.9403delC and c.1310_1313delAAGA). Three mutations have not been previously reported in the Polish population (BRCA1 c.3531delT, BRCA2 c.1310_1313delAAGA and BRCA2 c.9027delT). The recurrent PALB2 mutation c.509_510delGA was identified in two patients (1.7 %). CONCLUSIONS The standard panel of BRCA1 founder mutations is sufficiently sensitive for the identification of BRCA1 mutation carriers in Southern Poland. The BRCA2 mutations c.9371A > T and c.9403delC as well as the PALB2 mutation c.509_510delGA should be included in the testing panel for this population.
Collapse
|
48
|
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7:a016600. [PMID: 25833843 DOI: 10.1101/cshperspect.a016600] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
49
|
Rosenthal E, Bowles K, Pruss D, van Kan A, Vail P, McElroy H, Wenstrup R. Exceptions to the rule: Case studies in the prediction of pathogenicity for genetic variants in hereditary cancer genes. Clin Genet 2015; 88:533-41. [DOI: 10.1111/cge.12560] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | - K.R. Bowles
- Myriad Genetic Laboratories, Inc. Salt Lake City UT USA
| | - D. Pruss
- Myriad Genetic Laboratories, Inc. Salt Lake City UT USA
| | - A. van Kan
- Myriad Genetic Laboratories, Inc. Salt Lake City UT USA
| | - P.J. Vail
- Myriad Genetic Laboratories, Inc. Salt Lake City UT USA
| | - H. McElroy
- Myriad Genetic Laboratories, Inc. Salt Lake City UT USA
| | - R.J. Wenstrup
- Myriad Genetic Laboratories, Inc. Salt Lake City UT USA
| |
Collapse
|
50
|
Development and validation of a new algorithm for the reclassification of genetic variants identified in the BRCA1 and BRCA2 genes. Breast Cancer Res Treat 2014; 147:119-32. [PMID: 25085752 DOI: 10.1007/s10549-014-3065-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023]
Abstract
BRCA1 and BRCA2 sequencing analysis detects variants of uncertain clinical significance in approximately 2 % of patients undergoing clinical diagnostic testing in our laboratory. The reclassification of these variants into either a pathogenic or benign clinical interpretation is critical for improved patient management. We developed a statistical variant reclassification tool based on the premise that probands with disease-causing mutations are expected to have more severe personal and family histories than those having benign variants. The algorithm was validated using simulated variants based on approximately 145,000 probands, as well as 286 BRCA1 and 303 BRCA2 true variants. Positive and negative predictive values of ≥99 % were obtained for each gene. Although the history weighting algorithm was not designed to detect alleles of lower penetrance, analysis of the hypomorphic mutations c.5096G>A (p.Arg1699Gln; BRCA1) and c.7878G>C (p.Trp2626Cys; BRCA2) indicated that the history weighting algorithm is able to identify some lower penetrance alleles. The history weighting algorithm is a powerful tool that accurately assigns actionable clinical classifications to variants of uncertain clinical significance. While being developed for reclassification of BRCA1 and BRCA2 variants, the history weighting algorithm is expected to be applicable to other cancer- and non-cancer-related genes.
Collapse
|