1
|
Nagai H, Saito M, Iwata H. Direct conversion of urine-derived cells into functional motor neuron-like cells by defined transcription factors. Sci Rep 2024; 14:27011. [PMID: 39505927 PMCID: PMC11541886 DOI: 10.1038/s41598-024-73759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Direct cell-type conversion of somatic cells into cell types of interest has garnered great attention because it circumvents rejuvenation and preserves the hallmarks of cellular aging (unlike induced pluripotent stem cells [iPSCs]) and is more suitable for modeling diseases with strong age-related and epigenetic contributions. Fibroblasts are commonly used for direct conversion; however, obtaining these cells requires highly invasive skin biopsies. Urine-derived cells (UDCs) are an alternative cell source and can be obtained via noninvasive procedures. Herein, induced motor neuron-like cells (iMNs) were generated from UDCs by transducing transcription factors involved in motor neuron (MN) differentiation. iMNs exhibited neuronal morphology, upregulation of pan-neuron and MN markers, and MN functionality, including spontaneous calcium oscillation and bungarotoxin-positive neuromuscular junction formation, when co-cultured with myotubes. Altogether, the findings of this study indicated that UDCs can be converted to functional MNs. This technology may allow us to understand disease pathogenesis and progression and discover biomarkers and drugs for MN-related diseases at the population level.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.
| | - Masayo Saito
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan
| | - Hidehisa Iwata
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.
| |
Collapse
|
2
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
3
|
Gaber A, Ahmed OM, Khadrawy YA, Zoheir KMA, Abo-ELeneen RE, Alblihed MA, Elbakry AM. Mesenchymal Stem Cells and Begacestat Mitigate Amyloid-β 25-35-Induced Cognitive Decline in Rat Dams and Hippocampal Deteriorations in Offspring. BIOLOGY 2023; 12:905. [PMID: 37508337 PMCID: PMC10376406 DOI: 10.3390/biology12070905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of age-related neurodegeneration and cognitive decline. AD more commonly occurs in females than in males, so it is necessary to consider new treatments specifically targeting this population. The present study investigated the protective effects of Begacestat (γ-secretase inhibitor-953, GSI-953) and bone marrow-derived mesenchymal stem cells (BM-MSCs) during pregnancy on cognitive impairment in rat dams and neurodegeneration in offspring caused by the intracerebroventricular injection of Aβ 25-35 before pregnancy. The performances of dams injected with amyloid-β 25-35 (Aβ 25-35) during behavioral tests were significantly impaired. The offspring of Aβ 25-35-injected dams treated with BM-MSCs or GSI-953 showed a dramatically reduced number and size of activated microglial cells, enhancement in the processes length, and a decrease in the proinflammatory cytokine levels. Additionally, BM-MSC or GSI-953 therapy reduced Aβ 25-35-induced increases in tau phosphorylation and amyloid precursor protein levels in the neonates' hippocampus and elevated the lower levels of glycogen synthase kinase-3 and brain-derived neurotrophic factor; moreover, reversed Aβ 25-35-induced alterations in gene expression in the neonatal hippocampus. Finally, the treatments with BM-MSC or GSI-953 are globally beneficial against Aβ 25-35-induced brain alterations, particularly by suppressing neural inflammation, inhibiting microglial cell activation, restoring developmental plasticity, and increasing neurotrophic signaling.
Collapse
Affiliation(s)
- Asmaa Gaber
- Comparative Anatomy and Embryology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza P.O. Box 12622, Egypt
| | - Khairy M A Zoheir
- Cell Biology Department, National Research Center, Giza P.O. Box 12622, Egypt
| | - Rasha E Abo-ELeneen
- Comparative Anatomy and Embryology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Mohamed A Alblihed
- Department of Medical Microbiology, college of medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahlam M Elbakry
- Comparative Anatomy and Embryology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| |
Collapse
|
4
|
Gaber A, Elbakry AM, Aljarari RM, Jaber FA, Khadrawy YA, Sabry D, Abo-ELeneen RE, Ahmed OM. Bone Marrow-Derived Mesenchymal Stem Cells and γ-Secretase Inhibitor Treatments Suppress Amyloid- β25-35-Induced Cognitive Impairment in Rat Dams and Cortical Degeneration in Offspring. Stem Cells Int 2023; 2023:2690949. [PMID: 37274020 PMCID: PMC10234728 DOI: 10.1155/2023/2690949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of age-related neurodegeneration and ensuing cognitive impairment. Progressive deposition of extracellular amyloid beta (Aβ) aggregates (plaques) and intracellular hyperphosphorylated Tau protein (p-Tau) are the core pathological markers of AD but may precede clinical symptoms by many years, presenting a therapeutic window of opportunity. Females are more frequently afflicted by AD than males, necessitating evaluation of novel treatments for the female population. The current study examined the protective efficacies of intravenous bone marrow-derived mesenchymal stem cells (BM-MSCs) and oral gamma-secretase inhibitor-953 (GSI-953) during pregnancy on cognitive impairment in rat dams and neurodegeneration in offspring induced by intracerebroventricular injection of Aβ25-35 prior to pregnancy. The Aβ25-35 (AD) group exhibited significant (P < 0.001) impairments in the Y-maze and novel object recognition test performance prior to conception. Histological analysis of the offspring cortex revealed substantial dendritic shrinkage and activation of microglial cells, while neurochemical analysis demonstrated significant increases in the proinflammatory cytokine interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In contrast, BM-MSC or GSI-953 treatment of dams following Aβ25-35 injection significantly (P < 0.001) reduced the number and size of activated microglial cells, markedly increased dendrite length, and reversed proinflammatory cytokine elevations in offspring. Moreover, BM-MSC or GSI-953 treatment reversed the Aβ25-35-induced amyloid precursor protein and p-Tau elevations in the offspring brain; these changes were accompanied by upregulation of the brain-derived neurotrophic factor and downregulation of glycogen synthase kinase-3β in the serum and brain. Treatment with BM-MSCs or GSI-953 also reversed Aβ25-35-induced elevations in different gene expressions in the neonatal cortex. Finally, treatment of dams with BM-MSCs or GSI-953 prevented the Aβ25-35-induced disruption of newborn brain development. Thus, BM-MSC and GSI-953 treatments have broad-spectrum effects against Aβ25-35-induced brain pathology, including the suppression of neural inflammation, restoration of developmental plasticity, and promotion of neurotrophic signaling.
Collapse
Affiliation(s)
- Asmaa Gaber
- Comparative Anatomy and Embryology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Ahlam M. Elbakry
- Comparative Anatomy and Embryology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Rabab M. Aljarari
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Fatima A. Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Yasser A. Khadrawy
- Medical Physiology Department, Medical Branch Department, National Research Center, Giza, Egypt
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Cairo 11829, Egypt
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Rasha E. Abo-ELeneen
- Comparative Anatomy and Embryology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni Suef, Egypt
| |
Collapse
|
5
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
6
|
Akbor MM, Kurosawa N, Nakayama H, Nakatani A, Tomobe K, Chiba Y, Ueno M, Tanaka M, Nomura Y, Isobe M. Polymorphic SERPINA3 prolongs oligomeric state of amyloid beta. PLoS One 2021; 16:e0248027. [PMID: 33662018 PMCID: PMC7932536 DOI: 10.1371/journal.pone.0248027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular chaperon SERPINA3 colocalizes with accumulated amyloid peptide in Alzheimer’s disease (AD) patient’s brain. From the QTL analysis, we narrowed down Serpina3 with two SNPs in senescence-accelerated mouse prone (SAMP) 8 strain. Our study showed SAMP8 type Serpina3 prolonged retention of oligomeric Aβ 42 for longer duration (72 hr) while observing under transmission electron microscope (TEM). From Western blot results, we confirmed presence of Aβ 42 oligomeric forms (trimers, tetramers) were maintained for longer duration only in the presences of SAMP8 type Serpina3. Using SH-SY5Y neuroblastoma cell line, we observed until 36 hr preincubated Aβ 42 with SAMP8 type Serpina3 caused neuronal cell death compared to 12 hr preincubated Aβ 42 with SAMR1 or JF1 type Serpina3 proteins. Similar results were found by extending this study to analyze the effect of polymorphism of SERPINA3 gene of the Japanese SNP database for geriatric research (JG-SNP). We observed that polymorphic SERPINA3 I308T (rs142398813) prolonged toxic oligomeric Aβ 42 forms till 48 hr in comparison to the presence wild type SERPINA3 protein, resulting neuronal cell death. From this study, we first clarified pathogenic regulatory role of polymorphic SERPINA3 in neurodegeneration.
Collapse
Affiliation(s)
- Maruf Mohammad Akbor
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Nobuyuki Kurosawa
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hiroki Nakayama
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Ayumi Nakatani
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Koji Tomobe
- Department of Pathophysiology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku, Tokyo, Japan
| | - Yasuyuki Nomura
- Department of Pharmacology, School of Medicine, Kurume University, Kurume, Fukuoka, Japan
| | - Masaharu Isobe
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, University of Toyama, Toyama, Japan
- * E-mail:
| |
Collapse
|
7
|
Bae M, Yi HG, Jang J, Cho DW. Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. MICROMACHINES 2020; 11:E855. [PMID: 32947879 PMCID: PMC7570039 DOI: 10.3390/mi11090855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agricultural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
8
|
The cellular machinery of post-endocytic APP trafficking in Alzheimer's disease: A future target for therapeutic intervention? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:109-122. [PMID: 33453937 DOI: 10.1016/bs.pmbts.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent data establish multiple defects in endocytic functions as early events initiating various neurodegenerative disorders, including Alzheimer's disease (AD). The genetic landscape resulting from genome-wide association studies (GWAS) reveals changes in post-endocytic trafficking of amyloid precursor protein (APP) in neurons leading to an increase in amyloidogenic processing, deficits in amyloid beta (Aβ) clearance, increases in intracellular Aβ, and other endosomal pathogenic phenotypes. Multiple genetic factors regulate each segment of endosomal and post-endosomal trafficking. Intriguingly, several studies indicate endosomal dysfunctions preceding Aβ pathology and tau phosphorylation. In this chapter we highlight the role of various GWAS-identified endosomal and post-endosomal gene products in initiating AD pathologies. We also summarize the functions of various genetic modifiers of post-endocytic trafficking of APP that may work as targets for therapeutic intervention in AD.
Collapse
|
9
|
Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The Microbiome and the Gut-Liver-Brain Axis for Central Nervous System Clinical Pharmacology: Challenges in Specifying and Integrating In Vitro and In Silico Models. Clin Pharmacol Ther 2020; 108:929-948. [PMID: 32347548 PMCID: PMC7572575 DOI: 10.1002/cpt.1870] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The complexity of integrating microbiota into clinical pharmacology, environmental toxicology, and opioid studies arises from bidirectional and multiscale interactions between humans and their many microbiota, notably those of the gut. Hosts and each microbiota are governed by distinct central dogmas, with genetics influencing transcriptomics, proteomics, and metabolomics. Each microbiota's metabolome differentially modulates its own and the host's multi‐omics. Exogenous compounds (e.g., drugs and toxins), often affect host multi‐omics differently than microbiota multi‐omics, shifting the balance between drug efficacy and toxicity. The complexity of the host‐microbiota connection has been informed by current methods of in vitro bacterial cultures and in vivo mouse models, but they fail to elucidate mechanistic details. Together, in vitro organ‐on‐chip microphysiological models, multi‐omics, and in silico computational models have the potential to supplement the established methods to help clinical pharmacologists and environmental toxicologists unravel the myriad of connections between the gut microbiota and host health and disease.
Collapse
Affiliation(s)
- Kyle G Hawkins
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Caleb Casolaro
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Edwards
- Department of Anesthesiology and Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Ubina T, Magallanes M, Srivastava S, Warden CD, Yee JK, Salvaterra PM. A Human Embryonic Stem Cell Model of Aβ-Dependent Chronic Progressive Neurodegeneration. Front Neurosci 2019; 13:1007. [PMID: 31616241 PMCID: PMC6763609 DOI: 10.3389/fnins.2019.01007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
We describe the construction and phenotypic analysis of a human embryonic stem cell model of progressive Aβ-dependent neurodegeneration (ND) with potential relevance to Alzheimer’s disease (AD). We modified one allele of the normal APP locus to directly express a secretory form of Aβ40 or Aβ42, enabling expression from this edited allele to bypass the normal amyloidogenic APP processing pathway. Following neuronal differentiation, edited cell lines specifically accumulate intracellular aggregated/oligomeric Aβ, exhibit a synaptic deficit, and have an abnormal accumulation of endolysosomal vesicles. Edited cultures progress to a stage of overt ND. All phenotypes appear at earlier culture times for Aβ42 relative to Aβ40. Whole transcriptome RNA-Seq analysis identified 23 up and 70 down regulated genes (differentially expressed genes) with similar directional fold change but larger absolute values in the Aβ42 samples suggesting common underlying pathogenic mechanisms. Pathway/annotation analysis suggested that down regulation of extracellular matrix and cilia functions is significantly overrepresented. This cellular model could be useful for uncovering mechanisms directly linking Aβ to neuronal death and as a tool to screen for new therapeutic agents that slow or prevent human ND.
Collapse
Affiliation(s)
- Teresa Ubina
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States.,Department of Biology, California State University, San Bernardino, San Bernardino, CA, United States
| | - Martha Magallanes
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Saumya Srivastava
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Charles D Warden
- Integrative Genomics Core, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Jiing-Kuan Yee
- Department of Diabetes, Beckman Research Institute - City of Hope, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute - City of Hope, Duarte, CA, United States
| | - Paul M Salvaterra
- Department of Developmental and Stem Cell Biology, Beckman Research Institute - City of Hope, Duarte, CA, United States.,Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute - City of Hope, Duarte, CA, United States
| |
Collapse
|
11
|
Liu S, Sun YP, Gao XL, Sui Y. Knowledge domain and emerging trends in Alzheimer's disease: a scientometric review based on CiteSpace analysis. Neural Regen Res 2019; 14:1643-1650. [PMID: 31089065 PMCID: PMC6557102 DOI: 10.4103/1673-5374.255995] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/04/2019] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia. It is an increasingly serious global health problem and has a significant impact on individuals and society. However, the precise cause of Alzheimer's disease is still unknown. In this study, 11,748 Web-of-Science-indexed manuscripts regarding Alzheimer's disease, all published from 2015 to 2019, and their 693,938 references were analyzed. A document co-citation network map was drawn using CiteSpace software. Research frontiers and development trends were determined by retrieving subject headings with apparent changing word frequency trends, which can be used to forecast future research developments in Alzheimer's disease.
Collapse
Affiliation(s)
- Shuo Liu
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Ya-Ping Sun
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Xu-Ling Gao
- The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| | - Yi Sui
- The First People's Hospital of Shenyang, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Katt ME, Mayo LN, Ellis SE, Mahairaki V, Rothstein JD, Cheng L, Searson PC. The role of mutations associated with familial neurodegenerative disorders on blood-brain barrier function in an iPSC model. Fluids Barriers CNS 2019; 16:20. [PMID: 31303172 PMCID: PMC6628493 DOI: 10.1186/s12987-019-0139-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/27/2019] [Indexed: 01/23/2023] Open
Abstract
Background Blood–brain barrier dysfunction is associated with many late-stage neurodegenerative diseases. An emerging question is whether the mutations associated with neurodegenerative diseases can independently lead to blood–brain barrier (BBB) dysfunction. Studies from patient-derived induced pluripotent stem cells suggest that mutations associated with neurodegenerative disease are non-cell autonomous, resulting in gain of toxic function in derived neurons and astrocytes. Here we assess whether selected mutations associated with neurodegenerative diseases can contribute to impairment of the blood–brain barrier. Methods We assessed barrier function of confluent monolayers of human brain microvascular endothelial cells (hBMECs) derived from induced pluripotent stem cells (iPSC) from three healthy individuals and eight individuals with neurodegenerative disease. We systematically assessed protein and gene expression of BBB biomarkers, transendothelial resistance (TEER), permeability of Lucifer yellow, permeability of d-glucose, permeability of rhodamine 123, the efflux ratio of rhodamine 123, and P-gp inhibition using Tariquidar for confluent monolayers of human brain microvascular endothelial cell (hBMECs). Results We provide evidence supporting the hypothesis that mutations associated with neurodegenerative disease can independently cause BBB dysfunction. These functional changes are not catastrophic since barrier breakdown would result in BBB impairment during development. Synergistic interactions between non-cell autonomous cerebrovascular dysfunction and the effects of gain-of-toxic function in neurons (e.g. toxic oligomers) are likely to increase disease burden through a positive feedback mechanism. Conclusions These results suggest that the accumulation of defects in brain microvascular endothelial cells may ultimately lead to impairment of the BBB. Small changes in barrier function over time could lead to accumulated defects that result in positive feedback to unrelated central nervous system diseases. Electronic supplementary material The online version of this article (10.1186/s12987-019-0139-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moriah E Katt
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lakyn N Mayo
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shannon E Ellis
- Department of Biostatistics, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linzhao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, 100 Croft Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Chakari-Khiavi F, Dolati S, Chakari-Khiavi A, Abbaszadeh H, Aghebati-Maleki L, Pourlak T, Mehdizadeh A, Yousefi M. Prospects for the application of mesenchymal stem cells in Alzheimer's disease treatment. Life Sci 2019; 231:116564. [PMID: 31202840 DOI: 10.1016/j.lfs.2019.116564] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) as a dementia and neurodegenerative disease, is mostly prevalent among people more than 65 years. AD is mostly manifested in the form of degraded mental function, such as losing memory and impaired cognitive function. Due to inefficiency of traditional pharmacological therapeutic approaches with no long-term cure, cell therapy can be considered as a capable approach in AD management. Therapies based on mesenchymal stem cells (MSCs) have provided hopeful results in experimental models regarding several disorders. MSCs enhance the levels of functional recoveries in pathologic experimental models of central nervous system (CNS) and are being investigated in clinical trials in neurological disorders. However, there is limited knowledge on the protective capabilities of MSCs in AD management. Almost, several experiments have suggested positive effects of MSCs and helped to better understand of AD-related dementia mechanism. MSCs have the potential to be used in AD treatment through amyloid-β peptide (AB), Tau protein and cholinergic system. This review aimed to clarify the promising perspective of MSCs in the context of AD.
Collapse
Affiliation(s)
- Forough Chakari-Khiavi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Aref Chakari-Khiavi
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Hossein Abbaszadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tannaz Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran..
| |
Collapse
|
14
|
Majolo F, Marinowic DR, Machado DC, Da Costa JC. Important advances in Alzheimer's disease from the use of induced pluripotent stem cells. J Biomed Sci 2019; 26:15. [PMID: 30728025 PMCID: PMC6366077 DOI: 10.1186/s12929-019-0501-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Among the various types of dementia, Alzheimer’s disease (AD) is the most prevalent and is clinically defined as the appearance of progressive deficits in cognition and memory. Considering that AD is a central nervous system disease, getting tissue from the patient to study the disease before death is challenging. The discovery of the technique called induced pluripotent stem cells (iPSCs) allows to reprogram the patient’s somatic cells to a pluripotent state by the forced expression of a defined set of transcription factors. Many studies have shown promising results and made important conclusions beyond AD using iPSCs approach. Due to the accumulating knowledge related to this topic and the important advances obtained until now, we review, using PubMed, and present an update of all publications related to AD from the use of iPSCs. The first iPSCs generated for AD were carried out in 2011 by Yahata et al. (PLoS One 6:e25788, 2011) and Yaqi et al. (Hum Mol Genet 20:4530–9, 2011). Like other authors, both authors used iPSCs as a pre-clinical tool for screening therapeutic compounds. This approach is also essential to model AD, testing early toxicity and efficacy, and developing a platform for drug development. Considering that the iPSCs technique is relatively recent, we can consider that the AD field received valuable contributions from iPSCs models, contributing to our understanding and the treatment of this devastating disorder.
Collapse
Affiliation(s)
- Fernanda Majolo
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil.
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil
| |
Collapse
|
15
|
Haupt A, Grancharova T, Arakaki J, Fuqua MA, Roberts B, Gunawardane RN. Endogenous Protein Tagging in Human Induced Pluripotent Stem Cells Using CRISPR/Cas9. J Vis Exp 2018:58130. [PMID: 30199041 PMCID: PMC6231893 DOI: 10.3791/58130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A protocol is presented for generating human induced pluripotent stem cells (hiPSCs) that express endogenous proteins fused to in-frame N- or C-terminal fluorescent tags. The prokaryotic CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeats/CRISPR-associated 9) may be used to introduce large exogenous sequences into genomic loci via homology directed repair (HDR). To achieve the desired knock-in, this protocol employs the ribonucleoprotein (RNP)-based approach where wild type Streptococcus pyogenes Cas9 protein, synthetic 2-part guide RNA (gRNA), and a donor template plasmid are delivered to the cells via electroporation. Putatively edited cells expressing the fluorescently tagged proteins are enriched by fluorescence activated cell sorting (FACS). Clonal lines are then generated and can be analyzed for precise editing outcomes. By introducing the fluorescent tag at the genomic locus of the gene of interest, the resulting subcellular localization and dynamics of the fusion protein can be studied under endogenous regulatory control, a key improvement over conventional overexpression systems. The use of hiPSCs as a model system for gene tagging provides the opportunity to study the tagged proteins in diploid, nontransformed cells. Since hiPSCs can be differentiated into multiple cell types, this approach provides the opportunity to create and study tagged proteins in a variety of isogenic cellular contexts.
Collapse
|
16
|
Ferreccio A, Mathieu J, Detraux D, Somasundaram L, Cavanaugh C, Sopher B, Fischer K, Bello T, M Hussein A, Levy S, Cook S, Sidhu SB, Artoni F, Palpant NJ, Reinecke H, Wang Y, Paddison P, Murry C, Jayadev S, Ware C, Ruohola-Baker H. Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. Cell Cycle 2018; 17:535-549. [PMID: 29466914 DOI: 10.1080/15384101.2018.1442621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To easily edit the genome of naïve human embryonic stem cells (hESC), we introduced a dual cassette encoding an inducible Cas9 into the AAVS1 site of naïve hESC (iCas9). The iCas9 line retained karyotypic stability, expression of pluripotency markers, differentiation potential, and stability in 5iLA and EPS pluripotency conditions. The iCas9 line induced efficient homology-directed repair (HDR) and non-homologous end joining (NHEJ) based mutations through CRISPR-Cas9 system. We utilized the iCas9 line to study the epigenetic regulator, PRC2 in early human pluripotency. The PRC2 requirement distinguishes between early pluripotency stages, however, what regulates PRC2 activity in these stages is not understood. We show reduced H3K27me3 and pluripotency markers in JARID2 2iL-I-F hESC mutants, indicating JARID2 requirement in maintenance of hESC 2iL-I-F state. These data suggest that JARID2 regulates PRC2 in 2iL-I-F state and the lack of PRC2 function in 5iLA state may be due to lack of sufficient JARID2 protein.
Collapse
Affiliation(s)
- Amy Ferreccio
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Julie Mathieu
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Damien Detraux
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Logeshwaran Somasundaram
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Christopher Cavanaugh
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Bryce Sopher
- d Department of Neurobiology , University of Washington , Seattle , WA 98109 , USA
| | - Karin Fischer
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Thomas Bello
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,e Department of Molecular and Cellular Biology , University of Washington , Seattle , WA , 98109 , USA
| | - Abdiasis M Hussein
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Shiri Levy
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Savannah Cook
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Sonia B Sidhu
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Filippo Artoni
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA
| | - Nathan J Palpant
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,f Department of Pathology , University of Washington , Seattle , WA 98109 , USA
| | - Hans Reinecke
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,f Department of Pathology , University of Washington , Seattle , WA 98109 , USA
| | - Yuliang Wang
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,g Paul G. Allen School of Computer Science & Engineering
| | - Patrick Paddison
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,h Human Biology Division , Fred Hutchinson Cancer Research Center , Seattle , WA 98109 , USA
| | - Charles Murry
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,f Department of Pathology , University of Washington , Seattle , WA 98109 , USA.,i Center for Cardiovascular Biology , University of Washington School of Medicine , Seattle , Washington , 98109 , USA.,j Department of Bioengineering , University of Washington , Seattle , WA 98195 , USA.,k Department of Medicine/Cardiology , University of Washington , Seattle , WA 98195 , USA
| | - Suman Jayadev
- d Department of Neurobiology , University of Washington , Seattle , WA 98109 , USA
| | - Carol Ware
- b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,c Department of Comparative Medicine , University of Washington , Seattle , Washington 98195 , USA
| | - Hannele Ruohola-Baker
- a Department of Biochemistry , University of Washington , Seattle , Washington 98195 , USA.,b Institute for Stem Cell and Regenerative Medicine , University of Washington , Seattle , Washington 98109 , USA.,e Department of Molecular and Cellular Biology , University of Washington , Seattle , WA , 98109 , USA.,j Department of Bioengineering , University of Washington , Seattle , WA 98195 , USA
| |
Collapse
|
17
|
Human Neurospheroid Arrays for In Vitro Studies of Alzheimer's Disease. Sci Rep 2018; 8:2450. [PMID: 29402979 PMCID: PMC5799361 DOI: 10.1038/s41598-018-20436-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/17/2018] [Indexed: 01/11/2023] Open
Abstract
Neurospheroids are commonly used for in vitro disease modeling and drug screening. However, the heterogeneity in size of the neurospheroids mixtures available through current methods limits their utility when employed for basic mechanistic studies of neurodegenerative diseases or screening for new interventions. Here, we generate neurospheroids from immortalized neural progenitor cells and human induced pluripotent stem cells that are uniform in size, into large-scale arrays. In proof of concept experiments, we validate the neurospheroids array as a sensitive and robust tool for screening compounds over extended time. We show that when suspended in three-dimensional extracellular matrix up to several weeks, the stem cell-derived neurospheroids display extensive neurite outgrowth and extend thick bundles of dendrites outward. We also cultivate genetically-engineered stem cell-derived neurospheroids with familial Alzheimer's disease mutations for eight weeks in our microarray system. Interestingly, we observed robust accumulation of amyloid-β and phosphorylated tau, key hallmarks of Alzheimer's disease. Overall, our in vitro model for engineering neurospheroid arrays is a valuable tool for studying complex neurodegenerative diseases and accelerating drug discovery.
Collapse
|
18
|
Stem Cell Technology for (Epi)genetic Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:443-475. [PMID: 28523560 DOI: 10.1007/978-3-319-53889-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).
Collapse
|
19
|
Roberts B, Haupt A, Tucker A, Grancharova T, Arakaki J, Fuqua MA, Nelson A, Hookway C, Ludmann SA, Mueller IA, Yang R, Horwitz R, Rafelski SM, Gunawardane RN. Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization. Mol Biol Cell 2017; 28:2854-2874. [PMID: 28814507 PMCID: PMC5638588 DOI: 10.1091/mbc.e17-03-0209] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
The generation of a collection of human induced pluripotent stem cell (hiPSC) lines expressing endogenously GFP-tagged proteins using CRISPR/Cas9 methods is described. The methods used and the genomic and cell biological data validating the GFP-tagged hiPSC lines are also presented. We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community.
Collapse
Affiliation(s)
| | - Amanda Haupt
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | | - Joy Arakaki
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | | | | | | | | - Ruian Yang
- Allen Institute for Cell Science, Seattle, WA 98109
| | - Rick Horwitz
- Allen Institute for Cell Science, Seattle, WA 98109
| | | | | |
Collapse
|
20
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
21
|
Matthews H, Hanison J, Nirmalan N. "Omics"-Informed Drug and Biomarker Discovery: Opportunities, Challenges and Future Perspectives. Proteomes 2016; 4:E28. [PMID: 28248238 PMCID: PMC5217350 DOI: 10.3390/proteomes4030028] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
The pharmaceutical industry faces unsustainable program failure despite significant increases in investment. Dwindling discovery pipelines, rapidly expanding R&D budgets and increasing regulatory control, predict significant gaps in the future drug markets. The cumulative duration of discovery from concept to commercialisation is unacceptably lengthy, and adds to the deepening crisis. Existing animal models predicting clinical translations are simplistic, highly reductionist and, therefore, not fit for purpose. The catastrophic consequences of ever-increasing attrition rates are most likely to be felt in the developing world, where resistance acquisition by killer diseases like malaria, tuberculosis and HIV have paced far ahead of new drug discovery. The coming of age of Omics-based applications makes available a formidable technological resource to further expand our knowledge of the complexities of human disease. The standardisation, analysis and comprehensive collation of the "data-heavy" outputs of these sciences are indeed challenging. A renewed focus on increasing reproducibility by understanding inherent biological, methodological, technical and analytical variables is crucial if reliable and useful inferences with potential for translation are to be achieved. The individual Omics sciences-genomics, transcriptomics, proteomics and metabolomics-have the singular advantage of being complimentary for cross validation, and together could potentially enable a much-needed systems biology perspective of the perturbations underlying disease processes. If current adverse trends are to be reversed, it is imperative that a shift in the R&D focus from speed to quality is achieved. In this review, we discuss the potential implications of recent Omics-based advances for the drug development process.
Collapse
Affiliation(s)
- Holly Matthews
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK.
| | - James Hanison
- Manchester Royal Infirmary, Oxford Road, Greater Manchester M13 9WL, UK.
| | - Niroshini Nirmalan
- Environment and Life Sciences, University of Salford, Greater Manchester M5 4WT, UK.
| |
Collapse
|
22
|
Pistollato F, Ohayon EL, Lam A, Langley GR, Novak TJ, Pamies D, Perry G, Trushina E, Williams RS, Roher AE, Hartung T, Harnad S, Barnard N, Morris MC, Lai MC, Merkley R, Chandrasekera PC. Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget 2016; 7:38999-39016. [PMID: 27229915 PMCID: PMC5129909 DOI: 10.18632/oncotarget.9175] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Much of Alzheimer disease (AD) research has been traditionally based on the use of animals, which have been extensively applied in an effort to both improve our understanding of the pathophysiological mechanisms of the disease and to test novel therapeutic approaches. However, decades of such research have not effectively translated into substantial therapeutic success for human patients. Here we critically discuss these issues in order to determine how existing human-based methods can be applied to study AD pathology and develop novel therapeutics. These methods, which include patient-derived cells, computational analysis and models, together with large-scale epidemiological studies represent novel and exciting tools to enhance and forward AD research. In particular, these methods are helping advance AD research by contributing multifactorial and multidimensional perspectives, especially considering the crucial role played by lifestyle risk factors in the determination of AD risk. In addition to research techniques, we also consider related pitfalls and flaws in the current research funding system. Conversely, we identify encouraging new trends in research and government policy. In light of these new research directions, we provide recommendations regarding prioritization of research funding. The goal of this document is to stimulate scientific and public discussion on the need to explore new avenues in AD research, considering outcome and ethics as core principles to reliably judge traditional research efforts and eventually undertake new research strategies.
Collapse
Affiliation(s)
| | - Elan L. Ohayon
- Green Neuroscience Laboratory, Neurolinx Research Institute, San Diego, CA, USA
| | - Ann Lam
- Physicians Committee for Responsible Medicine, Washington, DC, USA
- Green Neuroscience Laboratory, Neurolinx Research Institute, San Diego, CA, USA
| | - Gillian R. Langley
- Research and Toxicology Department, Humane Society International, London, UK
| | | | - David Pamies
- CAAT, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Robin S.B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Alex E. Roher
- Division of Clinical Education, Midwestern University, Glendale, AZ, USA
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Thomas Hartung
- CAAT, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stevan Harnad
- Department of Psychology, University of Quebec/Montreal, Montreal, Canada
| | - Neal Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Martha Clare Morris
- Section of Nutrition and Nutritional Epidemiology, Department of Internal Medicine, Rush University, Chicago, IL, USA
| | - Mei-Chun Lai
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Ryan Merkley
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | |
Collapse
|
23
|
Thorne N, Malik N, Shah S, Zhao J, Class B, Aguisanda F, Southall N, Xia M, McKew JC, Rao M, Zheng W. High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress. Stem Cells Transl Med 2016; 5:613-27. [PMID: 27034412 PMCID: PMC4835244 DOI: 10.5966/sctm.2015-0170] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. SIGNIFICANCE Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an optimized astrocyte differentiation protocol, it was possible to screen approximately 4,100 compounds in titration to identify 22 that are cytoprotective of astrocytes. This study is the largest-scale high-throughput screen conducted using human astrocytes, with a total of 17,536 data points collected in the primary screen. The results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development.
Collapse
Affiliation(s)
- Natasha Thorne
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Nasir Malik
- Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sonia Shah
- Laboratory of Stem Cell Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jean Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradley Class
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Francis Aguisanda
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - John C McKew
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahendra Rao
- NIH Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Watson LM, Wong MMK, Becker EBE. Induced pluripotent stem cell technology for modelling and therapy of cerebellar ataxia. Open Biol 2016; 5:150056. [PMID: 26136256 PMCID: PMC4632502 DOI: 10.1098/rsob.150056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has emerged as an important tool in understanding, and potentially reversing, disease pathology. This is particularly true in the case of neurodegenerative diseases, in which the affected cell types are not readily accessible for study. Since the first descriptions of iPSC-based disease modelling, considerable advances have been made in understanding the aetiology and progression of a diverse array of neurodegenerative conditions, including Parkinson's disease and Alzheimer's disease. To date, however, relatively few studies have succeeded in using iPSCs to model the neurodegeneration observed in cerebellar ataxia. Given the distinct neurodevelopmental phenotypes associated with certain types of ataxia, iPSC-based models are likely to provide significant insights, not only into disease progression, but also to the development of early-intervention therapies. In this review, we describe the existing iPSC-based disease models of this heterogeneous group of conditions and explore the challenges associated with generating cerebellar neurons from iPSCs, which have thus far hindered the expansion of this research.
Collapse
Affiliation(s)
- Lauren M Watson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Maggie M K Wong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Esther B E Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
D'Avanzo C, Aronson J, Kim YH, Choi SH, Tanzi RE, Kim DY. Alzheimer's in 3D culture: challenges and perspectives. Bioessays 2015; 37:1139-48. [PMID: 26252541 PMCID: PMC4674791 DOI: 10.1002/bies.201500063] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and there is currently no cure. The "β-amyloid cascade hypothesis" of AD is the basis of current understanding of AD pathogenesis and drug discovery. However, no AD models have fully validated this hypothesis. We recently developed a human stem cell culture model of AD by cultivating genetically modified human neural stem cells in a three-dimensional (3D) cell culture system. These cells were able to recapitulate key events of AD pathology including β-amyloid plaques and neurofibrillary tangles. In this review, we will discuss the progress and current limitations of AD mouse models and human stem cell models as well as explore the breakthroughs of 3D cell culture systems. We will also share our perspective on the potential of dish models of neurodegenerative diseases for studying pathogenic cascades and therapeutic drug discovery.
Collapse
Affiliation(s)
- Carla D'Avanzo
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju-si, Chungbuk 363-883, Republic of Korea
| | - Se Hoon Choi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
26
|
Gan KJ, Silverman MA. Imaging organelle transport in primary hippocampal neurons treated with amyloid-β oligomers. Methods Cell Biol 2015; 131:425-51. [PMID: 26794527 DOI: 10.1016/bs.mcb.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a strategy for fluorescent imaging of organelle transport in primary hippocampal neurons treated with amyloid-β (Aβ) peptides that cause Alzheimer's disease (AD). This method enables careful, rigorous analyses of axonal transport defects, which are implicated in AD and other neurodegenerative diseases. Moreover, we present and emphasize guidelines for investigating Aβ-induced mechanisms of axonal transport disruption in the absence of nonspecific, irreversible cellular toxicity. This approach should be accessible to most laboratories equipped with cell culture facilities and a standard fluorescent microscope and may be adapted to other cell types.
Collapse
Affiliation(s)
- Kathlyn J Gan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michael A Silverman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Abstract
Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.
Collapse
|
28
|
Liang J, Kulasiri D, Samarasinghe S. Ca2+ dysregulation in the endoplasmic reticulum related to Alzheimer's disease: A review on experimental progress and computational modeling. Biosystems 2015; 134:1-15. [PMID: 25998697 DOI: 10.1016/j.biosystems.2015.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating, incurable neurodegenerative disease affecting millions of people worldwide. Dysregulation of intracellular Ca(2+) signaling has been observed as an early event prior to the presence of clinical symptoms of AD and is believed to be a crucial factor contributing to its pathogenesis. The progressive and sustaining increase in the resting level of cytosolic Ca(2+) will affect downstream activities and neural functions. This review focuses on the issues relating to the increasing Ca(2+) release from the endoplasmic reticulum (ER) observed in AD neurons. Numerous research papers have suggested that the dysregulation of ER Ca(2+) homeostasis is associated with mutations in the presenilin genes and amyloid-β oligomers. These disturbances could happen at many different points in the signaling process, directly affecting ER Ca(2+) channels or interfering with related pathways, which makes it harder to reveal the underlying mechanisms. This review paper also shows that computational modeling is a powerful tool in Ca(2+) signaling studies and discusses the progress in modeling related to Ca(2+) dysregulation in AD research.
Collapse
Affiliation(s)
- Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, New Zealand; Department of Informatics and Enabling Technologies, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
29
|
Nieweg K, Andreyeva A, van Stegen B, Tanriöver G, Gottmann K. Alzheimer's disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Cell Death Dis 2015; 6:e1709. [PMID: 25837485 PMCID: PMC4650541 DOI: 10.1038/cddis.2015.72] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
Abstract
Human induced pluripotent stem cell (iPSC)-derived neurons have been proposed to be a highly valuable cellular model for studying the pathomechanisms of Alzheimer's disease (AD). Studies employing patient-specific human iPSCs as models of familial and sporadic forms of AD described elevated levels of AD-related amyloid-β (Aβ). However, none of the present AD iPSC studies could recapitulate the synaptotoxic actions of Aβ, which are crucial early events in a cascade that eventually leads to vast brain degeneration. Here we established highly reproducible, human iPSC-derived cortical cultures as a cellular model to study the synaptotoxic effects of Aβ. We developed a highly efficient immunopurification procedure yielding immature neurons that express markers of deep layer cortical pyramidal neurons and GABAergic interneurons. Upon long-term cultivation, purified cells differentiated into mature neurons exhibiting the generation of action potentials and excitatory glutamatergic and inhibitory GABAergic synapses. Most interestingly, these iPSC-derived human neurons were strongly susceptible to the synaptotoxic actions of Aβ. Application of Aβ for 8 days led to a reduction in the overall FM4–64 and vGlut1 staining of vesicles in neurites, indicating a loss of vesicle clusters. A selective analysis of presynaptic vesicle clusters on dendrites did not reveal a significant change, thus suggesting that Aβ impaired axonal vesicle clusters. In addition, electrophysiological patch-clamp recordings of AMPA receptor-mediated miniature EPSCs revealed an Aβ-induced reduction in amplitudes, indicating an impairment of postsynaptic AMPA receptors. A loss of postsynaptic AMPA receptor clusters was confirmed by immunocytochemical stainings for GluA1. Incubation with Aβ for 8 days did not result in a significant loss of neurites or cell death. In summary, we describe a highly reproducible cellular AD model based on human iPSC-derived cortical neurons that enables the mechanistic analysis of Aβ-induced synaptic pathomechanisms and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- K Nieweg
- 1] Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany [2] Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - A Andreyeva
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - B van Stegen
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - G Tanriöver
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - K Gottmann
- Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Kim TW. Drug repositioning approaches for the discovery of new therapeutics for Alzheimer's disease. Neurotherapeutics 2015; 12:132-42. [PMID: 25549849 PMCID: PMC4322062 DOI: 10.1007/s13311-014-0325-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and represents one of the highest unmet needs in medicine today. Drug development efforts for AD have been encumbered by largely unsuccessful clinical trials in the last decade. Drug repositioning, a process of discovering a new therapeutic use for existing drugs or drug candidates, is an attractive and timely drug development strategy especially for AD. Compared with traditional de novo drug development, time and cost are reduced as the safety and pharmacokinetic properties of most repositioning candidates have already been determined. A majority of drug repositioning efforts for AD have been based on positive clinical or epidemiological observations or in vivo efficacy found in mouse models of AD. More systematic, multidisciplinary approaches will further facilitate drug repositioning for AD. Some experimental approaches include unbiased phenotypic screening using the library of available drug collections in physiologically relevant model systems (e.g. stem cell-derived neurons or glial cells), computational prediction and selection approaches that leverage the accumulating data resulting from RNA expression profiles, and genome-wide association studies. This review will summarize several notable strategies and representative examples of drug repositioning for AD.
Collapse
Affiliation(s)
- Tae-Wan Kim
- Department of Pathology and Cell Biology, and Taub Institute of Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, 10032, USA,
| |
Collapse
|
31
|
Kim HS, Bernitz JM, Lee DF, Lemischka IR. Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev 2014; 23:2673-86. [PMID: 25075441 PMCID: PMC4216528 DOI: 10.1089/scd.2014.0167] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) are considered a versatile resource in the field of biomedicine. As iPSCs are generated on an individual basis, iPSCs may be the optimal cellular material to use for disease modeling, drug discovery, and the development of patient-specific cellular therapies. Recently, to gain an in-depth understanding of human pathologies, patient-specific iPSCs have been used to model human diseases with some iPSC-derived cells recapitulating pathological phenotypes in vitro. However, complex multigenic diseases generally have not resulted in concise conclusions regarding the underlying mechanisms of disease, in large part due to genetic variations between disease-state and control iPSCs. To circumvent this, the use of genomic editing tools to generate perfect isogenic controls is gaining momentum. To date, DNA binding domain-based zinc finger nucleases and transcription activator-like effector nucleases have been utilized to create genetically defined conditions in patient-specific iPSCs, with some examples leading to the successful identification of novel mechanisms of disease. As the feasibility and utility of genomic editing tools in iPSCs improve, along with the introduction of the clustered regularly interspaced short palindromic repeat system, understanding the features and limitations of genomic editing tools and their applications to iPSC technology is critical to expending the field of human disease modeling.
Collapse
Affiliation(s)
- Huen Suk Kim
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute , Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
32
|
Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Reports 2014; 3:531-8. [PMID: 25358781 PMCID: PMC4223699 DOI: 10.1016/j.stemcr.2014.08.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/26/2022] Open
Abstract
This study investigated human-induced pluripotent stem cell (hiPSC) -derived neurons for their ability to secrete neurotransmitters in an activity-dependent manner, the fundamental property required for chemical neurotransmission. Cultured hiPSC neurons showed KCl stimulation of activity-dependent secretion of catecholamines—dopamine (DA), norepinephrine (NE), and epinephrine (Epi)—and the peptide neurotransmitters dynorphin and enkephlain. hiPSC neurons express the biosynthetic enzymes for catecholamines and neuropeptides. Because altered neurotransmission contributes to schizophrenia (SZ), we compared SZ to control cultures of hiPSC neurons and found that SZ cases showed elevated levels of secreted DA, NE, and Epi. Consistent with increased catecholamines, the SZ neuronal cultures showed a higher percentage of tyrosine hydroxylase (TH)-positive neurons, the first enzymatic step for catecholamine biosynthesis. These findings show that hiPSC neurons possess the fundamental property of activity-dependent neurotransmitter secretion and can be advantageously utilized to examine regulation of neurotransmitter release related to brain disorders. hiPSC neurons show activity-dependent secretion of catecholamines and neuropeptides hiPSC neurons express enzymes for production of catecholamines and neuropeptides SZ hiPSC neurons show changes in catecholamines secreted SZ hiPSC neuronal cultures display increased percentage of TH-positive neurons
Collapse
|
33
|
Chan AWS. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2014; 54:211-23. [PMID: 24174443 DOI: 10.1093/ilar/ilt035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.
Collapse
|
34
|
Ross CA, Akimov SS. Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 2014; 23:R17-26. [PMID: 24824217 DOI: 10.1093/hmg/ddu204] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cell biology of human neurodegenerative diseases has been difficult to study till recently. The development of human induced pluripotent stem cell (iPSC) models has greatly enhanced our ability to model disease in human cells. Methods have recently been improved, including increasing reprogramming efficiency, introducing non-viral and non-integrating methods of cell reprogramming, and using novel gene editing techniques for generating genetically corrected lines from patient-derived iPSCs, or for generating mutations in control cell lines. In this review, we highlight accomplishments made using iPSC models to study neurodegenerative disorders such as Huntington's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis, Fronto-Temporal Dementia, Alzheimer's disease, Spinomuscular Atrophy and other polyglutamine diseases. We review disease-related phenotypes shown in patient-derived iPSCs differentiated to relevant neural subtypes, often with stressors or cell "aging", to enhance disease-specific phenotypes. We also discuss prospects for the future of using of iPSC models of neurodegenerative disorders, including screening and testing of therapeutic compounds, and possibly of cell transplantation in regenerative medicine. The new iPSC models have the potential to greatly enhance our understanding of pathogenesis and to facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Neuroscience and Pharmacology, and Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | | |
Collapse
|
35
|
Doege CA, Abeliovich A. Dementia in a dish. Biol Psychiatry 2014; 75:558-64. [PMID: 24629668 DOI: 10.1016/j.biopsych.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 02/06/2023]
Abstract
Neurodegenerative disorders of aging represent a growing public health concern. In the United States alone, there are now >5 million patients with Alzheimer's disease (AD), the most common form of dementia. No therapeutic approaches are available that alter the relentless course of AD or other dementias of aging. A major hurdle to the development of effective therapeutics has been the lack of predictive model systems in which to develop and validate candidate therapies. Animal model studies based on the analysis of transgenic mice that overexpress rare familial AD-associated mutant genes have been informative about mechanisms of familial disease, but they have not proven predictive for drug development. New approaches to disease modeling are of particular interest. Methods such as epigenetic reprogramming of patient skin fibroblasts to human induced pluripotent stem cells, which can be differentiated into patient-derived neuron subtypes, have generated significant excitement because of their potential to model more accurately aspects of human neurodegeneration. Studies focused on the generation of human neuron models of AD and frontotemporal dementia have pointed to pathologic pathways and potential therapeutic venues. This article discusses the promise and potential pitfalls of modeling of dementia disorders based on somatic cell reprogramming.
Collapse
Affiliation(s)
- Claudia A Doege
- Departments of Pathology, Cell Biology, and Neurology and Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York
| | - Asa Abeliovich
- Departments of Pathology, Cell Biology, and Neurology and Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York.
| |
Collapse
|
36
|
Structure of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser of Aβ-peptide with phospholipase A2 from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution. Int J Mol Sci 2014; 15:4221-36. [PMID: 24619194 PMCID: PMC3975393 DOI: 10.3390/ijms15034221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/20/2014] [Accepted: 03/05/2014] [Indexed: 01/13/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most significant social and health burdens of the present century. Plaques formed by extracellular deposits of amyloid β (Aβ) are the prime player of AD’s neuropathology. Studies have implicated the varied role of phospholipase A2 (PLA2) in brain where it contributes to neuronal growth and inflammatory response. Overall contour and chemical nature of the substrate-binding channel in the low molecular weight PLA2s are similar. This study involves the reductionist fragment-based approach to understand the structure adopted by N-terminal fragment of Alzheimer’s Aβ peptide in its complex with PLA2. In the current communication, we report the structure determined by X-ray crystallography of N-terminal sequence Asp-Ala-Glu-Phe-Arg-His-Asp-Ser (DAEFRHDS) of Aβ-peptide with a Group I PLA2 purified from venom of Andaman Cobra sub-species Naja naja sagittifera at 2.0 Å resolution (Protein Data Bank (PDB) Code: 3JQ5). This is probably the first attempt to structurally establish interaction between amyloid-β peptide fragment and hydrophobic substrate binding site of PLA2 involving H bond and van der Waals interactions. We speculate that higher affinity between Aβ and PLA2 has the therapeutic potential of decreasing the Aβ–Aβ interaction, thereby reducing the amyloid aggregation and plaque formation in AD.
Collapse
|
37
|
Fan X, Sun D, Tang X, Cai Y, Yin ZQ, Xu H. Stem-cell challenges in the treatment of Alzheimer's disease: a long way from bench to bedside. Med Res Rev 2014; 34:957-78. [PMID: 24500883 DOI: 10.1002/med.21309] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia, and its neuropathology is characterized by deposition of insoluble β-amyloid peptides, intracellular neurofibrillary tangles, and the loss of diverse neurons. Current pharmacological treatments for AD relieve symptoms without affecting the major pathological characteristics of the disease. Therefore, it is essential to develop new and effective therapies. Stem-cell types include tissue-specific stem cells, such as neural stem cells and mesenchymal stem cells, embryonic stem cells derived from blastocysts, and induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells. Recent preclinical evidence suggests that stem cells can be used to treat or model AD. The mechanisms of stem cell based therapies for AD include stem cell mediated neuroprotection and trophic actions, antiamyloidogenesis, beneficial immune modulation, and the replacement of the lost neurons. iPSCs have been recently used to model AD, investigate sporadic and familial AD pathogenesis, and screen for anti-AD drugs. Although considerable progress has been achieved, a series of challenges must be overcome before stem cell based cell therapies are used clinically for AD patients. This review highlights the recent experimental and preclinical progress of stem-cell therapies for AD, and discusses the translational challenges of their clinical application.
Collapse
Affiliation(s)
- Xiaotang Fan
- Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | | | | | | | | |
Collapse
|
38
|
Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 2014; 127:151-73. [PMID: 24306942 DOI: 10.1007/s00401-013-1222-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/11/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
The number of patients with neurodegenerative diseases is increasing significantly worldwide. Thus, intense research is being pursued to uncover mechanisms of disease development in an effort to identify molecular targets for therapeutic intervention. Analysis of postmortem tissue from patients has yielded important histological and biochemical markers of disease progression. However, this approach is inherently limited because it is not possible to study patient neurons prior to degeneration. As such, transgenic and knockout models of neurodegenerative diseases are commonly employed. While these animal models have yielded important insights into some molecular mechanisms of disease development, they do not provide the opportunity to study mechanisms of neurodegeneration in human neurons at risk and thus, it is often difficult or even impossible to replicate human pathogenesis with this approach. The generation of patient-specific induced pluripotent stem (iPS) cells offers a unique opportunity to overcome these obstacles. By expanding and differentiating iPS cells, it is possible to generate large numbers of functional neurons in vitro, which can then be used to study the disease of the donating patient. Here, we provide an overview of human stem cell models of neurodegeneration using iPS cells from patients with Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, spinal muscular atrophy and other neurodegenerative diseases. In addition, we describe how further refinements of reprogramming technology resulted in the generation of patient-specific induced neurons, which have also been used to model neurodegenerative changes in vitro.
Collapse
Affiliation(s)
- Gunnar Hargus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany,
| | | | | | | |
Collapse
|
39
|
|
40
|
Romano G, Morales F, Marino IR, Giordano A. A Commentary on iPS Cells: Potential Applications in Autologous Transplantation, Study of Illnesses and Drug Screening. J Cell Physiol 2013; 229:148-52. [DOI: 10.1002/jcp.24437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Romano
- Department of Biology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| | - Fátima Morales
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
| | - Ignazio R. Marino
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Department of Surgery, Division of Transplantation and Hepatobiliary Surgery; Jefferson Medical College, Thomas Jefferson University Hospital; Philadelphia Pennsylvania
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology; College of Science and Technology, Temple University; Philadelphia Pennsylvania
- Department of Medicine, Surgery and Neuroscience; University of Siena; Siena Italy
| |
Collapse
|
41
|
Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG. "Seq-ing" insights into the epigenetics of neuronal gene regulation. Neuron 2013; 77:606-23. [PMID: 23439116 PMCID: PMC3736682 DOI: 10.1016/j.neuron.2013.01.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2013] [Indexed: 01/08/2023]
Abstract
The epigenetic control of neuronal gene expression patterns has emerged as an underlying regulatory mechanism for neuronal function, identity, and plasticity, in which short- to long-lasting adaptation is required to dynamically respond and process external stimuli. To achieve a comprehensive understanding of the physiology and pathology of the brain, it becomes essential to understand the mechanisms that regulate the epigenome and transcriptome in neurons. Here, we review recent advances in the study of regulated neuronal gene expression, which are dramatically expanding as a result of the development of new and powerful contemporary methodologies, based on next-generation sequencing. This flood of new information has already transformed our understanding of many biological processes and is now driving discoveries elucidating the molecular mechanisms of brain function in cognition, behavior, and disease and may also inform the study of neuronal identity, diversity, and neuronal reprogramming.
Collapse
Affiliation(s)
- Francesca Telese
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|