1
|
Souidi A, Nakamori M, Zmojdzian M, Jagla T, Renaud Y, Jagla K. Deregulations of miR-1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1. EMBO Rep 2023; 24:e56616. [PMID: 36852954 PMCID: PMC10074075 DOI: 10.15252/embr.202256616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by the excessive expansion of noncoding CTG repeats, which when transcribed affects the functions of RNA-binding factors with adverse effects on alternative splicing, processing, and stability of a large set of muscular and cardiac transcripts. Among these effects, inefficient processing and down-regulation of muscle- and heart-specific miRNA, miR-1, have been reported in DM1 patients, but the impact of reduced miR-1 on DM1 pathogenesis has been unknown. Here, we use Drosophila DM1 models to explore the role of miR-1 in cardiac dysfunction in DM1. We show that miR-1 down-regulation in the heart leads to dilated cardiomyopathy (DCM), a DM1-associated phenotype. We combined in silico screening for miR-1 targets with transcriptional profiling of DM1 cardiac cells to identify miR-1 target genes with potential roles in DCM. We identify Multiplexin (Mp) as a new cardiac miR-1 target involved in DM1. Mp encodes a collagen protein involved in cardiac tube formation in Drosophila. Mp and its human ortholog Col15A1 are both highly enriched in cardiac cells of DCM-developing DM1 flies and in heart samples from DM1 patients with DCM, respectively. When overexpressed in the heart, Mp induces DCM, whereas its attenuation rescues the DCM phenotype of aged DM1 flies. Reduced levels of miR-1 and consecutive up-regulation of its target Mp/Col15A1 might be critical in DM1-associated DCM.
Collapse
Affiliation(s)
- Anissa Souidi
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Monika Zmojdzian
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Teresa Jagla
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Yoan Renaud
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| | - Krzysztof Jagla
- iGReD Genetics Reproduction and Development Institute, Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
2
|
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Int J Mol Sci 2022; 23:ijms23094622. [PMID: 35563013 PMCID: PMC9101876 DOI: 10.3390/ijms23094622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.
Collapse
|
3
|
Drosophila Heart as a Model for Cardiac Development and Diseases. Cells 2021; 10:cells10113078. [PMID: 34831301 PMCID: PMC8623483 DOI: 10.3390/cells10113078] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/26/2023] Open
Abstract
The Drosophila heart, also referred to as the dorsal vessel, pumps the insect blood, the hemolymph. The bilateral heart primordia develop from the most dorsally located mesodermal cells, migrate coordinately, and fuse to form the cardiac tube. Though much simpler, the fruit fly heart displays several developmental and functional similarities to the vertebrate heart and, as we discuss here, represents an attractive model system for dissecting mechanisms of cardiac aging and heart failure and identifying genes causing congenital heart diseases. Fast imaging technologies allow for the characterization of heartbeat parameters in the adult fly and there is growing evidence that cardiac dysfunction in human diseases could be reproduced and analyzed in Drosophila, as discussed here for heart defects associated with the myotonic dystrophy type 1. Overall, the power of genetics and unsuspected conservation of genes and pathways puts Drosophila at the heart of fundamental and applied cardiac research.
Collapse
|
4
|
Weston RM, Schmitt RE, Grotewiel M, Miles MF. Transcriptome analysis of chloride intracellular channel knockdown in Drosophila identifies oxidation-reduction function as possible mechanism of altered sensitivity to ethanol sedation. PLoS One 2021; 16:e0246224. [PMID: 34228751 PMCID: PMC8259981 DOI: 10.1371/journal.pone.0246224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Chloride intracellular channels (CLICs) are a unique family of evolutionarily conserved metamorphic proteins, switching between stable conformations based on redox conditions. CLICs have been implicated in a wide variety biological processes including ion channel activity, apoptosis, membrane trafficking, and enzymatic oxidoreductase activity. Understanding the molecular mechanisms by which CLICs engage in these activities is an area of active research. Here, the sole Drosophila melanogaster ortholog, Clic, was targeted for RNAi knockdown to identify genes and biological processes associated with Clic expression. Clic knockdown had a substantial impact on global transcription, altering expression of over 7% of transcribed Drosophila genes. Overrepresentation analysis of differentially expressed genes identified enrichment of Gene Ontology terms including Cytoplasmic Translation, Oxidation-Reduction Process, Heme Binding, Membrane, Cell Junction, and Nucleolus. The top term, Cytoplasmic Translation, was enriched almost exclusively with downregulated genes. Drosophila Clic and vertebrate ortholog Clic4 have previously been tied to ethanol sensitivity and ethanol-regulated expression. Clic knockdown-responsive genes from the present study were found to overlap significantly with gene sets from 4 independently published studies related to ethanol exposure and sensitivity in Drosophila. Bioinformatic analysis of genes shared between these studies revealed an enrichment of genes related to amino acid metabolism, protein processing, oxidation-reduction processes, and lipid particles among others. To determine whether the modulation of ethanol sensitivity by Clic may be related to co-regulated oxidation-reduction processes, we evaluated the effect of hyperoxia on ethanol sedation in Clic knockdown flies. Consistent with previous findings, Clic knockdown reduced acute ethanol sedation sensitivity in flies housed under normoxia. However, this effect was reversed by exposure to hyperoxia, suggesting a common set of molecular-genetic mechanism may modulate each of these processes. This study suggests that Drosophila Clic has a major influence on regulation of oxidative stress signaling and that this function overlaps with the molecular mechanisms of acute ethanol sensitivity in the fly.
Collapse
Affiliation(s)
- Rory M. Weston
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rebecca E. Schmitt
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mike Grotewiel
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael F. Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
5
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
6
|
Auxerre-Plantié E, Nakamori M, Renaud Y, Huguet A, Choquet C, Dondi C, Miquerol L, Takahashi MP, Gourdon G, Junion G, Jagla T, Zmojdzian M, Jagla K. Straightjacket/α2δ3 deregulation is associated with cardiac conduction defects in myotonic dystrophy type 1. eLife 2019; 8:51114. [PMID: 31829940 PMCID: PMC6908436 DOI: 10.7554/elife.51114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac conduction defects decrease life expectancy in myotonic dystrophy type 1 (DM1), a CTG repeat disorder involving misbalance between two RNA binding factors, MBNL1 and CELF1. However, how DM1 condition translates into conduction disorders remains poorly understood. Here we simulated MBNL1 and CELF1 misbalance in the Drosophila heart and performed TU-tagging-based RNAseq of cardiac cells. We detected deregulations of several genes controlling cellular calcium levels, including increased expression of straightjacket/α2δ3, which encodes a regulatory subunit of a voltage-gated calcium channel. Straightjacket overexpression in the fly heart leads to asynchronous heartbeat, a hallmark of abnormal conduction, whereas cardiac straightjacket knockdown improves these symptoms in DM1 fly models. We also show that ventricular α2δ3 expression is low in healthy mice and humans, but significantly elevated in ventricular muscles from DM1 patients with conduction defects. These findings suggest that reducing ventricular straightjacket/α2δ3 levels could offer a strategy to prevent conduction defects in DM1.
Collapse
Affiliation(s)
- Emilie Auxerre-Plantié
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoan Renaud
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Aline Huguet
- Imagine Institute, Inserm UMR1163, Paris, France.,Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universités, Institut de Myologie, Paris, France
| | | | - Cristiana Dondi
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | | | - Masanori P Takahashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Geneviève Gourdon
- Imagine Institute, Inserm UMR1163, Paris, France.,Centre de Recherche en Myologie, Inserm UMRS974, Sorbonne Universités, Institut de Myologie, Paris, France
| | - Guillaume Junion
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Teresa Jagla
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Monika Zmojdzian
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD, CNRS UMR6293, INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
7
|
Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proc Natl Acad Sci U S A 2019; 116:25203-25213. [PMID: 31754023 DOI: 10.1073/pnas.1820297116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.
Collapse
|
8
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
9
|
Souidi A, Zmojdzian M, Jagla K. Dissecting Pathogenetic Mechanisms and Therapeutic Strategies in Drosophila Models of Myotonic Dystrophy Type 1. Int J Mol Sci 2018; 19:E4104. [PMID: 30567354 PMCID: PMC6321436 DOI: 10.3390/ijms19124104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common cause of adult-onset muscular dystrophy, is autosomal dominant, multisystemic disease with characteristic symptoms including myotonia, heart defects, cataracts and testicular atrophy. DM1 disease is being successfully modelled in Drosophila allowing to identify and validate new pathogenic mechanisms and potential therapeutic strategies. Here we provide an overview of insights gained from fruit fly DM1 models, either: (i) fundamental with particular focus on newly identified gene deregulations and their link with DM1 symptoms; or (ii) applied via genetic modifiers and drug screens to identify promising therapeutic targets.
Collapse
Affiliation(s)
- Anissa Souidi
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Monika Zmojdzian
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD, INSERM U1103, CNRS, UMR6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
10
|
Braz SO, Acquaire J, Gourdon G, Gomes-Pereira M. Of Mice and Men: Advances in the Understanding of Neuromuscular Aspects of Myotonic Dystrophy. Front Neurol 2018; 9:519. [PMID: 30050493 PMCID: PMC6050950 DOI: 10.3389/fneur.2018.00519] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
Intensive effort has been directed toward the modeling of myotonic dystrophy (DM) in mice, in order to reproduce human disease and to provide useful tools to investigate molecular and cellular pathogenesis and test efficient therapies. Mouse models have contributed to dissect the multifaceted impact of the DM mutation in various tissues, cell types and in a pleiotropy of pathways, through the expression of toxic RNA transcripts. Changes in alternative splicing, transcription, translation, intracellular RNA localization, polyadenylation, miRNA metabolism and phosphorylation of disease intermediates have been described in different tissues. Some of these events have been directly associated with specific disease symptoms in the skeletal muscle and heart of mice, offering the molecular explanation for individual disease phenotypes. In the central nervous system (CNS), however, the situation is more complex. We still do not know how the molecular abnormalities described translate into CNS dysfunction, nor do we know if the correction of individual molecular events will provide significant therapeutic benefits. The variability in model design and phenotypes described so far requires a thorough and critical analysis. In this review we discuss the recent contributions of mouse models to the understanding of neuromuscular aspects of disease, therapy development, and we provide a reflective assessment of our current limitations and pressing questions that remain unanswered.
Collapse
Affiliation(s)
- Sandra O Braz
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Julien Acquaire
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Geneviève Gourdon
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Mário Gomes-Pereira
- Laboratory CTGDM, INSERM UMR1163, Paris, France.,Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
11
|
Picchio L, Legagneux V, Deschamps S, Renaud Y, Chauveau S, Paillard L, Jagla K. Bruno-3 regulates sarcomere component expression and contributes to muscle phenotypes of myotonic dystrophy type 1. Dis Model Mech 2018; 11:dmm.031849. [PMID: 29716962 PMCID: PMC5992612 DOI: 10.1242/dmm.031849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
Steinert disease, or myotonic dystrophy type 1 (DM1), is a multisystemic disorder caused by toxic noncoding CUG repeat transcripts, leading to altered levels of two RNA binding factors, MBNL1 and CELF1. The contribution of CELF1 to DM1 phenotypes is controversial. Here, we show that the Drosophila CELF1 family member, Bru-3, contributes to pathogenic muscle defects observed in a Drosophila model of DM1. Bru-3 displays predominantly cytoplasmic expression in muscles and its muscle-specific overexpression causes a range of phenotypes also observed in the fly DM1 model, including affected motility, fiber splitting, reduced myofiber length and altered myoblast fusion. Interestingly, comparative genome-wide transcriptomic analyses revealed that Bru-3 negatively regulates levels of mRNAs encoding a set of sarcomere components, including Actn transcripts. Conversely, it acts as a positive regulator of Actn translation. As CELF1 displays predominantly cytoplasmic expression in differentiating C2C12 myotubes and binds to Actn mRNA, we hypothesize that it might exert analogous functions in vertebrate muscles. Altogether, we propose that cytoplasmic Bru-3 contributes to DM1 pathogenesis in a Drosophila model by regulating sarcomeric transcripts and protein levels.
Collapse
Affiliation(s)
- Lucie Picchio
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Vincent Legagneux
- IGDR (Institut de Génétique et Développement de Rennes), UMR 6290 CNRS, Université de Rennes, 2 Avenue Léon Bernard, 35000 Rennes, France.,Inserm UMR1085 IRSET, Université de Rennes 1, 35000 Rennes, France.,CNRS-Université de Rennes1-INRIA, UMR6074 IRISA, 35000 Rennes, France
| | - Stephane Deschamps
- IGDR (Institut de Génétique et Développement de Rennes), UMR 6290 CNRS, Université de Rennes, 2 Avenue Léon Bernard, 35000 Rennes, France
| | - Yoan Renaud
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Sabine Chauveau
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Luc Paillard
- IGDR (Institut de Génétique et Développement de Rennes), UMR 6290 CNRS, Université de Rennes, 2 Avenue Léon Bernard, 35000 Rennes, France
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Potikanond S, Nimlamool W, Noordermeer J, Fradkin LG. Muscular Dystrophy Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:147-172. [PMID: 29951819 DOI: 10.1007/978-981-13-0529-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscular dystrophy (MD) is a group of muscle weakness disease involving in inherited genetic conditions. MD is caused by mutations or alteration in the genes responsible for the structure and functioning of muscles. There are many different types of MD which have a wide range from mild symptoms to severe disability. Some types involve the muscles used for breathing which eventually affect life expectancy. This chapter provides an overview of the MD types, its gene mutations, and the Drosophila MD models. Specifically, the Duchenne muscular dystrophy (DMD), the most common form of MD, will be thoroughly discussed including Dystrophin genes, their isoforms, possible mechanisms, and signaling pathways of pathogenesis.
Collapse
Affiliation(s)
- Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jasprien Noordermeer
- Department of Molecular Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Lee G Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
13
|
Expanded CCUG repeat RNA expression in Drosophila heart and muscle trigger Myotonic Dystrophy type 1-like phenotypes and activate autophagocytosis genes. Sci Rep 2017; 7:2843. [PMID: 28588248 PMCID: PMC5460254 DOI: 10.1038/s41598-017-02829-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies (DM1–2) are neuromuscular genetic disorders caused by the pathological expansion of untranslated microsatellites. DM1 and DM2, are caused by expanded CTG repeats in the 3′UTR of the DMPK gene and CCTG repeats in the first intron of the CNBP gene, respectively. Mutant RNAs containing expanded repeats are retained in the cell nucleus, where they sequester nuclear factors and cause alterations in RNA metabolism. However, for unknown reasons, DM1 is more severe than DM2. To study the differences and similarities in the pathogenesis of DM1 and DM2, we generated model flies by expressing pure expanded CUG ([250]×) or CCUG ([1100]×) repeats, respectively, and compared them with control flies expressing either 20 repeat units or GFP. We observed surprisingly severe muscle reduction and cardiac dysfunction in CCUG-expressing model flies. The muscle and cardiac tissue of both DM1 and DM2 model flies showed DM1-like phenotypes including overexpression of autophagy-related genes, RNA mis-splicing and repeat RNA aggregation in ribonuclear foci along with the Muscleblind protein. These data reveal, for the first time, that expanded non-coding CCUG repeat-RNA has similar in vivo toxicity potential as expanded CUG RNA in muscle and heart tissues and suggests that specific, as yet unknown factors, quench CCUG-repeat toxicity in DM2 patients.
Collapse
|
14
|
Jagla K, Kalman B, Boudou T, Hénon S, Batonnet-Pichon S. Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Semin Cell Dev Biol 2017; 64:171-180. [DOI: 10.1016/j.semcdb.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 01/23/2023]
|
15
|
Koon AC, Chan HYE. Drosophila melanogaster As a Model Organism to Study RNA Toxicity of Repeat Expansion-Associated Neurodegenerative and Neuromuscular Diseases. Front Cell Neurosci 2017; 11:70. [PMID: 28377694 PMCID: PMC5359753 DOI: 10.3389/fncel.2017.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
For nearly a century, the fruit fly, Drosophila melanogaster, has proven to be a valuable tool in our understanding of fundamental biological processes, and has empowered our discoveries, particularly in the field of neuroscience. In recent years, Drosophila has emerged as a model organism for human neurodegenerative and neuromuscular disorders. In this review, we highlight a number of recent studies that utilized the Drosophila model to study repeat-expansion associated diseases (READs), such as polyglutamine diseases, fragile X-associated tremor/ataxia syndrome (FXTAS), myotonic dystrophy type 1 (DM1) and type 2 (DM2), and C9ORF72-associated amyotrophic lateral sclerosis/frontotemporal dementia (C9-ALS/FTD). Discoveries regarding the possible mechanisms of RNA toxicity will be focused here. These studies demonstrate Drosophila as an excellent in vivo model system that can reveal novel mechanistic insights into human disorders, providing the foundation for translational research and therapeutic development.
Collapse
Affiliation(s)
- Alex C Koon
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong
| | - Ho Yin Edwin Chan
- Laboratory of Drosophila ResearchHong Kong, Hong Kong; Biochemistry ProgramHong Kong, Hong Kong; Cell and Molecular Biology ProgramHong Kong, Hong Kong; Molecular Biotechnology Program, Faculty of Science, School of Life SciencesHong Kong, Hong Kong; School of Life Sciences, Gerald Choa Neuroscience Centre, The Chinese University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
16
|
Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila. Sci Rep 2016; 6:36230. [PMID: 27805016 PMCID: PMC5090246 DOI: 10.1038/srep36230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3′ untranslated region (3′ UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-coding CUG trinucleotide repeats throughout the musculature. Enhanced muscleblind expression resulted in significant rescue of pathological phenotypes, including reversal of several mis-splicing events and reduced muscle atrophy in DM1 adult flies. Rescued flies had improved muscle function in climbing and flight assays, and had longer lifespan compared to disease controls. These studies provide proof of concept for a similar potentially therapeutic approach to DM1 in humans.
Collapse
|
17
|
Luu LM, Nguyen L, Peng S, Lee J, Lee HY, Wong CH, Hergenrother PJ, Chan HYE, Zimmerman SC. A Potent Inhibitor of Protein Sequestration by Expanded Triplet (CUG) Repeats that Shows Phenotypic Improvements in a Drosophila Model of Myotonic Dystrophy. ChemMedChem 2016; 11:1428-35. [PMID: 27245480 DOI: 10.1002/cmdc.201600081] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/29/2016] [Indexed: 11/09/2022]
Abstract
Myotonic dystrophy is the most common form of adult-onset muscular dystrophy, originating in a CTG repeat expansion in the DMPK gene. The expanded CUG transcript sequesters MBNL1, a key regulator of alternative splicing, leading to the misregulation of numerous pre-mRNAs. We report an RNA-targeted agent as a possible lead compound for the treatment of myotonic dystrophy type 1 (DM1) that reveals both the promise and challenges for this type of small-molecule approach. The agent is a potent inhibitor of the MBNL1-rCUG complex with an inhibition constant (Ki ) of 25±8 nm, and is also relatively nontoxic to HeLa cells, able to dissolve nuclear foci, and correct the insulin receptor splicing defect in DM1 model cells. Moreover, treatment with this compound improves two separate disease phenotypes in a Drosophila model of DM1: adult external eye degeneration and larval crawling defect. However, the compound has a relatively low maximum tolerated dose in mice, and its cell uptake may be limited, providing insight into directions for future development.
Collapse
Affiliation(s)
- Long M Luu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Lien Nguyen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Shaohong Peng
- Laboratory of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Chun-Ho Wong
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA
| | - H Y Edwin Chan
- Laboratory of Drosophila Research and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China.
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Jones TI, Parilla M, Jones PL. Transgenic Drosophila for Investigating DUX4 and FRG1, Two Genes Associated with Facioscapulohumeral Muscular Dystrophy (FSHD). PLoS One 2016; 11:e0150938. [PMID: 26942723 PMCID: PMC4778869 DOI: 10.1371/journal.pone.0150938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is typically an adult onset dominant myopathy. Epigenetic changes in the chromosome 4q35 region linked to both forms of FSHD lead to a relaxation of repression and increased somatic expression of DUX4-fl (DUX4-full length), the pathogenic alternative splicing isoform of the DUX4 gene. DUX4-fl encodes a transcription factor expressed in healthy testis and pluripotent stem cells; however, in FSHD, increased levels of DUX4-fl in myogenic cells lead to aberrant regulation of target genes. DUX4-fl has proven difficult to study in vivo; thus, little is known about its normal and pathogenic roles. The endogenous expression of DUX4-fl in FSHD-derived human muscle and myogenic cells is extremely low, exogenous expression of DUX4-fl in somatic cells rapidly induces cytotoxicity, and, due in part to the lack of conservation beyond primate lineages, viable animal models based on DUX4-fl have been difficult to generate. By contrast, the FRG1 (FSHD region gene 1), which is linked to FSHD, is evolutionarily conserved from invertebrates to humans, and has been studied in several model organisms. FRG1 expression is critical for the development of musculature and vasculature, and overexpression of FRG1 produces a myopathic phenotype, yet the normal and pathological functions of FRG1 are not well understood. Interestingly, DUX4 and FRG1 were recently linked when the latter was identified as a direct transcriptional target of DUX4-FL. To better understand the pathways affected in FSHD by DUX4-fl and FRG1, we generated transgenic lines of Drosophila expressing either gene under control of the UAS/GAL4 binary system. Utilizing these lines, we generated screenable phenotypes recapitulating certain known consequences of DUX4-fl or FRG1 overexpression. These transgenic Drosophila lines provide resources to dissect the pathways affected by DUX4-fl or FRG1 in a genetically tractable organism and may provide insight into both muscle development and pathogenic mechanisms in FSHD.
Collapse
Affiliation(s)
- Takako I. Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
- The Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Megan Parilla
- The Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Peter L. Jones
- The Department of Cell and Developmental Biology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
- The Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
19
|
Stroehlein AJ, Young ND, Jex AR, Sternberg PW, Tan P, Boag PR, Hofmann A, Gasser RB. Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets. Sci Rep 2015; 5:17759. [PMID: 26635209 PMCID: PMC4669435 DOI: 10.1038/srep17759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 01/13/2023] Open
Abstract
The blood fluke Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease (NTD) that affects more than 110 million people. Treating this disease by targeted or mass administration with a single chemical, praziquantel, carries the risk that drug resistance will develop in this pathogen. Therefore, there is an imperative to search for new drug targets in S. haematobium and other schistosomes. In this regard, protein kinases have potential, given their essential roles in biological processes and as targets for drugs already approved by the US Food and Drug Administration (FDA) for use in humans. In this context, we defined here the kinome of S. haematobium using a refined bioinformatic pipeline. We classified, curated and annotated predicted kinases, and assessed the developmental transcription profiles of kinase genes. Then, we prioritised a panel of kinases as potential drug targets and inferred chemicals that bind to them using an integrated bioinformatic pipeline. Most kinases of S. haematobium are very similar to those of its congener, S. mansoni, offering the prospect of designing chemicals that kill both species. Overall, this study provides a global insight into the kinome of S. haematobium and should assist the repurposing or discovery of drugs against schistosomiasis.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W. Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Patrick Tan
- Genome Institute of Singapore, Republic of Singapore
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Republic of Singapore
| | - Peter R. Boag
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Abstract
The rise in the prevalence of neurodegenerative diseases parallels the rapid increase in human lifespan. Despite intensive research, the molecular and cellular mechanisms underlying the onset and progression of these devastating diseases with age are still poorly understood. Many aspects of these diseases have been modelled successfully in experimental animals such as the mouse, the zebrafish Brachydanio rero, the nematode worm Caenorhaditis elegans and the fruit fly Drosophila melanogaster. This review will focus on the advantages offered by the genetic tools available in Drosophila for combining powerful strategies in order to tackle the causative factors of these complex pathologies and help to elaborate efficient drugs to treat them.
Collapse
Affiliation(s)
- Jean-Antoine Lepesant
- Institut Jacques-Monod, CNRS UMR 7592, Université Paris-Diderot, 15, rue Hélène-Brion, 75205 Paris cedex 13, France.
| |
Collapse
|
21
|
Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K. Model organisms in the fight against muscular dystrophy: lessons from drosophila and Zebrafish. Molecules 2015; 20:6237-53. [PMID: 25859781 PMCID: PMC6272363 DOI: 10.3390/molecules20046237] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MD) are a heterogeneous group of genetic disorders that cause muscle weakness, abnormal contractions and muscle wasting, often leading to premature death. More than 30 types of MD have been described so far; those most thoroughly studied are Duchenne muscular dystrophy (DMD), myotonic dystrophy type 1 (DM1) and congenital MDs. Structurally, physiologically and biochemically, MDs affect different types of muscles and cause individual symptoms such that genetic and molecular pathways underlying their pathogenesis thus remain poorly understood. To improve our knowledge of how MD-caused muscle defects arise and to find efficacious therapeutic treatments, different animal models have been generated and applied. Among these, simple non-mammalian Drosophila and zebrafish models have proved most useful. This review discusses how zebrafish and Drosophila MD have helped to identify genetic determinants of MDs and design innovative therapeutic strategies with a special focus on DMD, DM1 and congenital MDs.
Collapse
Affiliation(s)
- Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland; E-Mails: (M.M.-P.); (M.D.)
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France; E-Mail:
| |
Collapse
|
22
|
Bargiela A, Llamusi B, Cerro-Herreros E, Artero R. Two enhancers control transcription of Drosophila muscleblind in the embryonic somatic musculature and in the central nervous system. PLoS One 2014; 9:e93125. [PMID: 24667536 PMCID: PMC3965525 DOI: 10.1371/journal.pone.0093125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
The phylogenetically conserved family of Muscleblind proteins are RNA-binding factors involved in a variety of gene expression processes including alternative splicing regulation, RNA stability and subcellular localization, and miRNA biogenesis, which typically contribute to cell-type specific differentiation. In humans, sequestration of Muscleblind-like proteins MBNL1 and MBNL2 has been implicated in degenerative disorders, particularly expansion diseases such as myotonic dystrophy type 1 and 2. Drosophila muscleblind was previously shown to be expressed in embryonic somatic and visceral muscle subtypes, and in the central nervous system, and to depend on Mef2 for transcriptional activation. Genomic approaches have pointed out candidate gene promoters and tissue-specific enhancers, but experimental confirmation of their regulatory roles was lacking. In our study, luciferase reporter assays in S2 cells confirmed that regions P1 (515 bp) and P2 (573 bp), involving the beginning of exon 1 and exon 2, respectively, were able to initiate RNA transcription. Similarly, transgenic Drosophila embryos carrying enhancer reporter constructs supported the existence of two regulatory regions which control embryonic expression of muscleblind in the central nerve cord (NE, neural enhancer; 830 bp) and somatic (skeletal) musculature (ME, muscle enhancer; 3.3 kb). Both NE and ME were able to boost expression from the Hsp70 heterologous promoter. In S2 cell assays most of the ME enhancer activation could be further narrowed down to a 1200 bp subregion (ME.3), which contains predicted binding sites for the Mef2 transcription factor. The present study constitutes the first characterization of muscleblind enhancers and will contribute to a deeper understanding of the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Ariadna Bargiela
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Estefanía Cerro-Herreros
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Ruben Artero
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
- * E-mail:
| |
Collapse
|
23
|
Moskalev A, Shaposhnikov M, Snezhkina A, Kogan V, Plyusnina E, Peregudova D, Melnikova N, Uroshlev L, Mylnikov S, Dmitriev A, Plusnin S, Fedichev P, Kudryavtseva A. Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation. PLoS One 2014; 9:e86051. [PMID: 24475070 PMCID: PMC3901678 DOI: 10.1371/journal.pone.0086051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022] Open
Abstract
General and specific effects of molecular genetic responses to adverse environmental factors are not well understood. This study examines genome-wide gene expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. We performed RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack. The influence of dioxin up-regulated metabolic genes, such as anachronism, CG16727, and several genes with unknown function. Toluene activated a gene involved in the response to the toxins, Cyp12d1-p; the transcription factor Fer3's gene; the metabolic genes CG2065, CG30427, and CG34447; and the genes Spn28Da and Spn3, which are responsible for reproduction and immunity. All significantly differentially expressed genes, including those shared among the stressors, can be divided into gene groups using Gene Ontology Biological Process identifiers. These gene groups are related to defense response, biological regulation, the cell cycle, metabolic process, and circadian rhythms. KEGG molecular pathway analysis revealed alteration of the Notch signaling pathway, TGF-beta signaling pathway, proteasome, basal transcription factors, nucleotide excision repair, Jak-STAT signaling pathway, circadian rhythm, Hippo signaling pathway, mTOR signaling pathway, ribosome, mismatch repair, RNA polymerase, mRNA surveillance pathway, Hedgehog signaling pathway, and DNA replication genes. Females and, to a lesser extent, males actively metabolize xenobiotics by the action of cytochrome P450 when under the influence of dioxin and toluene. Finally, in this work we obtained gene expression signatures pollutants (dioxin, toluene), low dose of gamma-irradiation and common molecular pathways for different kind of stressors.
Collapse
Affiliation(s)
- Alexey Moskalev
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Anastasia Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Valeria Kogan
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Ekaterina Plyusnina
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Darya Peregudova
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
| | - Nataliya Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Leonid Uroshlev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Moscow, Russia
| | - Sergey Mylnikov
- Department of Genetics, St. Petersburg State University, St. Petersburg, Russia
| | - Alexey Dmitriev
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| | - Sergey Plusnin
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of RAS, Syktyvkar, Russia
- Ecological Department, Syktyvkar State University, Syktyvkar, Russia
| | - Peter Fedichev
- Laboratory of Genetics of Aging and Longevity, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Quantum Pharmaceuticals, Moscow, Russia
| | - Anna Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology of RAS, Moscow, Russia
| |
Collapse
|