1
|
Moroncini G, Svegliati S, Grieco A, Cuccioloni M, Mozzicafreddo M, Paolini C, Agarbati S, Spadoni T, Amoresano A, Pinto G, Chen Q, Benfaremo D, Tonnini C, Senzacqua M, Alizzi S, Nieto K, Finke D, Viola N, Amico D, Galgani M, Gasparini S, Zuccatosta L, Menzo S, Müller M, Kleinschmidt J, Funaro A, Giordano A, La Cava A, Dorfmüller P, Amoroso A, Pucci P, Pezone A, Avvedimento EV, Gabrielli A. Adeno-Associated Virus Type 5 Infection via PDGFRα Is Associated With Interstitial Lung Disease in Systemic Sclerosis and Generates Composite Peptides and Epitopes Recognized by the Agonistic Immunoglobulins Present in Patients With Systemic Sclerosis. Arthritis Rheumatol 2024; 76:620-630. [PMID: 37975161 DOI: 10.1002/art.42746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Gianluca Moroncini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | - Qingxin Chen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Devis Benfaremo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Silvia Alizzi
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | - Karen Nieto
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doreen Finke
- Università Politecnica delle Marche, Ancona, Italy
| | - Nadia Viola
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Stefano Gasparini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Lina Zuccatosta
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Menzo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Martin Müller
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Antonio La Cava
- Federico II University, Napoli, Italy
- University of California, Los Angeles, CA
| | | | - Antonio Amoroso
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | | | | | | | - Armando Gabrielli
- Università Politecnica delle Marche, Ancona, Italy, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy, and Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Wen YP, Yu ZG. Identifying shared genetic loci and common risk genes of rheumatoid arthritis associated with three autoimmune diseases based on large-scale cross-trait genome-wide association studies. Front Immunol 2023; 14:1160397. [PMID: 37377963 PMCID: PMC10291128 DOI: 10.3389/fimmu.2023.1160397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Substantial links between autoimmune diseases have been shown by an increasing number of studies, and one hypothesis for this comorbidity is that there is a common genetic cause. Methods In this paper, a large-scale cross-trait Genome-wide Association Studies (GWAS) was conducted to investigate the genetic overlap among rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes. Results and discussion Through the local genetic correlation analysis, 2 regions with locally significant genetic associations between rheumatoid arthritis and multiple sclerosis, and 4 regions with locally significant genetic associations between rheumatoid arthritis and type 1 diabetes were discovered. By cross-trait meta-analysis, 58 independent loci associated with rheumatoid arthritis and multiple sclerosis, 86 independent loci associated with rheumatoid arthritis and inflammatory bowel disease, and 107 independent loci associated with rheumatoid arthritis and type 1 diabetes were identified with genome-wide significance. In addition, 82 common risk genes were found through genetic identification. Based on gene set enrichment analysis, it was found that shared genes are enriched in exposed dermal system, calf, musculoskeletal, subcutaneous fat, thyroid and other tissues, and are also significantly enriched in 35 biological pathways. To verify the association between diseases, Mendelian randomized analysis was performed, which shows possible causal associations between rheumatoid arthritis and multiple sclerosis, and between rheumatoid arthritis and type 1 diabetes. The common genetic structure of rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes was explored by these studies, and it is believed that this important discovery will lead to new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ya-Ping Wen
- National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| | - Zu-Guo Yu
- National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| |
Collapse
|
3
|
Molecular Mechanisms of Neutrophil Extracellular Trap (NETs) Degradation. Int J Mol Sci 2023; 24:ijms24054896. [PMID: 36902325 PMCID: PMC10002918 DOI: 10.3390/ijms24054896] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Although many studies have been exploring the mechanisms driving NETs formation, much less attention has been paid to the degradation and elimination of these structures. The NETs clearance and the effective removal of extracellular DNA, enzymatic proteins (neutrophil elastase, proteinase 3, myeloperoxidase) or histones are necessary to maintain tissue homeostasis, to prevent inflammation and to avoid the presentation of self-antigens. The persistence and overabundance of DNA fibers in the circulation and tissues may have dramatic consequences for a host leading to the development of various systemic and local damage. NETs are cleaved by a concerted action of extracellular and secreted deoxyribonucleases (DNases) followed by intracellular degradation by macrophages. NETs accumulation depends on the ability of DNase I and DNAse II to hydrolyze DNA. Furthermore, the macrophages actively engulf NETs and this event is facilitated by the preprocessing of NETs by DNase I. The purpose of this review is to present and discuss the current knowledge about the mechanisms of NETs degradation and its role in the pathogenesis of thrombosis, autoimmune diseases, cancer and severe infections, as well as to discuss the possibilities for potential therapeutic interventions. Several anti-NETs approaches had therapeutic effects in animal models of cancer and autoimmune diseases; nevertheless, the development of new drugs for patients needs further study for an effective development of clinical compounds that are able to target NETs.
Collapse
|
4
|
Hassan M, Yasir M, Shahzadi S, Kloczkowski A. Exploration of Potential Ewing Sarcoma Drugs from FDA-Approved Pharmaceuticals through Computational Drug Repositioning, Pharmacogenomics, Molecular Docking, and MD Simulation Studies. ACS OMEGA 2022; 7:19243-19260. [PMID: 35721972 PMCID: PMC9202290 DOI: 10.1021/acsomega.2c00518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
Novel drug development is a time-consuming process with relatively high debilitating costs. To overcome this problem, computational drug repositioning approaches are being used to predict the possible therapeutic scaffolds against different diseases. In the current study, computational drug repositioning approaches were employed to fetch the promising drugs from the pool of FDA-approved drugs against Ewing sarcoma. The binding interaction patterns and conformational behaviors of screened drugs within the active region of Ewing sarcoma protein (EWS) were confirmed through molecular docking profiles. Furthermore, pharmacogenomics analysis was employed to check the possible associations of selected drugs with Ewing sarcoma genes. Moreover, the stability behavior of selected docked complexes (drugs-EWS) was checked by molecular dynamics simulations. Taken together, astemizole, sulfinpyrazone, and pranlukast exhibited a result comparable to pazopanib and can be used as a possible therapeutic agent in the treatment of Ewing sarcoma.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- ,
| | - Muhammad Yasir
- Institute
of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore 54590, Pakistan
| | - Saba Shahzadi
- Institute
of Molecular Sciences and Bioinformatics (IMSB), Nisbet Road, Lahore 52254, Pakistan
| | - Andrzej Kloczkowski
- The
Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
- Department
of Pediatrics, The Ohio State University, Columbus, Ohio 43205, United States
| |
Collapse
|
5
|
Das P, Minz RW, Saikia B, Sharma A, Anand S, Singh H, Singh S. Association of Human Leucocyte Antigen Class II, with viral load and immune response to Epstein-Barr virus in adult and pediatric Systemic lupus erythematosus patients. Lupus 2022; 31:1054-1066. [PMID: 35607991 DOI: 10.1177/09612033221100156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease, which is known to be associated with HLA-DRB1 and Epstein-Barr virus (EBV) infection. In the Indian subcontinent where there is high seroendemicity of EBV, we postulated that the association of this virus in adult SLE (aSLE) and pediatric SLE (pSLE) patients would be different and differentially associate with the HLA-DRB1 susceptibility and protective genes. METHODS A total of 109 aSLE, 52 pSLE, 215 adult healthy and 63 pediatric healthy controls were recruited. HLA-DRB1 genotyping by PCR-SSP, EBV load estimation by real-time PCR and antibody profiling (IgG & IgM) to EBV antigens by line blot assay were performed. RESULTS DRB1*15 was found predominant in pSLE patients and DRB1*03 in aSLE patients. DRB1*15/X heterozygous was predominant in overall SLE patients, although disease severity, like hypocomplementemia, higher autoantibody levels and more organ involvement was observed in *15/*15 homozygous state. EBV strongly associated with pSLE patients showing higher percent of EA-D IgG (p < 0.0001) and p22 IgG (p = 0.035) along with higher viral load (p = 0.001) as compared to healthy controls. In addition, the higher EBV DNA load significantly associated with anti-EA-D IgG (p = 0.013) and DRB1*15/*15 (p = 0.007) in pSLE patients as compared to aSLE patients. CONCLUSIONS This study therefore indicates that different HLA-DRB1 allotypes confer susceptibility to SLE in children and adults and disease may be triggered by increased EBV reactivation.
Collapse
Affiliation(s)
- Prabir Das
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashi Anand
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Heera Singh
- Department of Immunopathology, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Advanced Pediatric Centre, 29751Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Neys SFH, Verstappen GM, Bootsma H, Kroese FGM, Hendriks RW, Corneth OBJ. Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren's Syndrome Patients at Diagnosis. Int J Mol Sci 2022; 23:ijms23095101. [PMID: 35563492 PMCID: PMC9103204 DOI: 10.3390/ijms23095101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Animal models of autoimmunity and human genetic association studies indicate that the dysregulation of B-cell receptor (BCR) signaling is an important driver of autoimmunity. We previously showed that in circulating B cells from primary Sjögren’s syndrome (pSS) patients with high systemic disease activity, protein expression of the BCR signaling molecule Bruton’s tyrosine kinase (BTK) was increased and correlated with T-cell infiltration in the target organ. We hypothesized that these alterations could be driven by increased B-cell activating factor (BAFF) levels in pSS. Here, we investigated whether altered BCR signaling was already present at diagnosis and distinguished pSS from non-SS sicca patients. Using (phospho-)flow cytometry, we quantified the phosphorylation of BCR signaling molecules, and investigated BTK and BAFF receptor (BAFFR) expression in circulating B cell subsets in an inception cohort of non-SS sicca and pSS patients, as well as healthy controls (HCs). We found that both BTK protein levels and BCR signaling activity were comparable among groups. Interestingly, BAFFR expression was significantly downregulated in pSS, but not in non-SS sicca patients, compared with HCs, and correlated with pSS-associated alterations in B cell subsets. These data indicate reduced BAFFR expression as a possible sign of early B cell involvement and a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Stefan F. H. Neys
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Gwenny M. Verstappen
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Frans G. M. Kroese
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (G.M.V.); (H.B.); (F.G.M.K.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| | - Odilia B. J. Corneth
- Department of Pulmonary Medicine, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence: (R.W.H.); (O.B.J.C.)
| |
Collapse
|
7
|
Genome-Wide Association Study of Fluorescent Oxidation Products Accounting for Tobacco Smoking Status in Adults from the French EGEA Study. Antioxidants (Basel) 2022; 11:antiox11050802. [PMID: 35624665 PMCID: PMC9137810 DOI: 10.3390/antiox11050802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) is the main pathophysiological mechanism involved in several chronic diseases, including asthma. Fluorescent oxidation products (FlOPs), a global biomarker of damage due to OS, is of growing interest in epidemiological studies. We conducted a genome-wide association study (GWAS) of the FlOPs level in 1216 adults from the case-control and family-based EGEA study (mean age 43 years old, 51% women, and 23% current smokers) to identify genetic variants associated with FlOPs. The GWAS was first conducted in the whole sample and then stratified according to smoking status, the main exogenous source of reactive oxygen species. Among the top genetic variants identified by the three GWAS, those located in BMP6 (p = 3 × 10−6), near BMPER (p = 9 × 10−6), in GABRG3 (p = 4 × 10−7), and near ATG5 (p = 2 × 10−9) are the most relevant because of both their link to biological pathways related to OS and their association with several chronic diseases for which the role of OS in their pathophysiology has been pointed out. BMP6 and BMPER are of particular interest due to their involvement in the same biological pathways related to OS and their functional interaction. To conclude, this study, which is the first GWAS of FlOPs, provides new insights into the pathophysiology of chronic OS-related diseases.
Collapse
|
8
|
Talotta R, Bahrami S, Laska MJ. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166291. [PMID: 34662705 PMCID: PMC8518135 DOI: 10.1016/j.bbadis.2021.166291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Objectives To investigate in silico the presence of nucleotide sequence complementarity between the RNA genome of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and human non-coding (nc)RNA genes. Methods The FASTA sequence (NC_045512.2) of each of the 11 SARS-CoV-2 isolate Wuhan-Hu-1 genes was retrieved from NCBI.nlm.nih.gov/gene and the Ensembl.org library interrogated for any base-pair match with human ncRNA genes. SARS-CoV-2 gene-matched human ncRNAs were screened for functional activity using bioinformatic analysis. Finally, associations between identified ncRNAs and human diseases were searched in GWAS databases. Results A total of 252 matches were found between the nucleotide sequence of SARS-CoV-2 genes and human ncRNAs. With the exception of two small nuclear RNAs, all of them were long non-coding (lnc)RNAs expressed mainly in testis and central nervous system under physiological conditions. The percentage of alignment ranged from 91.30% to 100% with a mean nucleotide alignment length of 17.5 ± 2.4. Thirty-three (13.09%) of them contained predicted R-loop forming sequences, but none of these intersected the complementary sequences of SARS-CoV-2. However, in 31 cases matches fell on ncRNA regulatory sites, whose adjacent coding genes are mostly involved in cancer, immunological and neurological pathways. Similarly, several polymorphic variants of detected non-coding genes have been associated with neuropsychiatric and proliferative disorders. Conclusion This pivotal in silico study shows that SARS-CoV-2 genes have Watson-Crick nucleotide complementarity to human ncRNA sequences, potentially disrupting ncRNA epigenetic control of target genes. It remains to be elucidated whether this could result in the development of human disease in the long term.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| | - Shervin Bahrami
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
9
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Pu W, Zhang R, Ma Y, Liu Q, Jiang S, Liu J, Zhao Y, Tu W, Guo G, Zuo X, Wang Q, Chen Y, Wu W, Zhou X, Distler JHW, Reveille JD, Zou H, Jin L, Mayes MD, Wang J. Genetic associations of non-MHC susceptibility loci with systemic sclerosis in a Han Chinese population. J Invest Dermatol 2021; 142:2039-2042.e7. [PMID: 34919939 DOI: 10.1016/j.jid.2021.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/16/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Weilin Pu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Research Unit of dissecting the population genetics and developing new technologies for treatment and prevention of skin phenotypes and dermatological diseases (2019RU058), Chinese Academy of Medical Sciences
| | - Rui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Institute for Six-sector Economy, Fudan University, Shanghai, 200433, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, 200433, China; Research Unit of dissecting the population genetics and developing new technologies for treatment and prevention of skin phenotypes and dermatological diseases (2019RU058), Chinese Academy of Medical Sciences
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai TCM-integrated Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-integrated Hospital, Shanghai, China
| | - Gang Guo
- Department of Rheumatology, Yiling Hospital, Shijiazhuang, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University
| | - Qingwen Wang
- Rheumatology and Immunology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanyuan Chen
- Division of Rheumatology, Shanghai TCM-integrated Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaodong Zhou
- Division of Rheumatology and Clinical Immunogenetics, the University of Texas-McGovern Medical School, Houston, TX, USA
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - John D Reveille
- Division of Rheumatology and Clinical Immunogenetics, the University of Texas-McGovern Medical School, Houston, TX, USA
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Research Unit of dissecting the population genetics and developing new technologies for treatment and prevention of skin phenotypes and dermatological diseases (2019RU058), Chinese Academy of Medical Sciences; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Maureen D Mayes
- Division of Rheumatology and Clinical Immunogenetics, the University of Texas-McGovern Medical School, Houston, TX, USA
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; Research Unit of dissecting the population genetics and developing new technologies for treatment and prevention of skin phenotypes and dermatological diseases (2019RU058), Chinese Academy of Medical Sciences; Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
12
|
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2021; 44:29-46. [PMID: 34731289 DOI: 10.1007/s00281-021-00900-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type-specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea. .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea. .,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Angeletti A, Volpi S, Bruschi M, Lugani F, Vaglio A, Prunotto M, Gattorno M, Schena F, Verrina E, Ravelli A, Ghiggeri GM. Neutrophil Extracellular Traps-DNase Balance and Autoimmunity. Cells 2021; 10:cells10102667. [PMID: 34685647 PMCID: PMC8534732 DOI: 10.3390/cells10102667] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are macromolecular structures programmed to trap circulating bacteria and viruses. The accumulation of NETs in the circulation correlates with the formation of anti-double-stranded (ds) DNA antibodies and is considered a causative factor for systemic lupus erythematosus (SLE). The digestion of DNA by DNase1 and DNases1L3 is the rate- limiting factor for NET accumulation. Mutations occurring in one of these two DNase genes determine anti-DNA formation and are associated with severe Lupus-like syndromes and lupus nephritis (LN). A second mechanism that may lead to DNase functional impairment is the presence of circulating DNase inhibitors in patients with low DNase activity, or the generation of anti-DNase antibodies. This phenomenon has been described in a relevant number of patients with SLE and may represent an important mechanism determining autoimmunity flares. On the basis of the reviewed studies, it is tempting to suppose that the blockade or selective depletion of anti-DNase autoantibodies could represent a potential novel therapeutic approach to prevent or halt SLE and LN. In general, strategies aimed at reducing NET formation might have a similar impact on the progression of SLE and LN.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno Infantili, University of Genoa, 16132 Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, 50121 Firenze, Italy;
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland;
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Clinics of Pediatrics and Rheumatology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Francesca Schena
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Angelo Ravelli
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
- Correspondence:
| |
Collapse
|
14
|
Neys SFH, Rip J, Hendriks RW, Corneth OBJ. Bruton's Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021; 81:1605-1626. [PMID: 34609725 PMCID: PMC8491186 DOI: 10.1007/s40265-021-01592-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Systemic autoimmune disorders are complex heterogeneous chronic diseases involving many different immune cells. A significant proportion of patients respond poorly to therapy. In addition, the high burden of adverse effects caused by "classical" anti-rheumatic or immune modulatory drugs provides a need to develop more specific therapies that are better tolerated. Bruton's tyrosine kinase (BTK) is a crucial signaling protein that directly links B-cell receptor (BCR) signals to B-cell activation, proliferation, and survival. BTK is not only expressed in B cells but also in myeloid cells, and is involved in many different signaling pathways that drive autoimmunity. This makes BTK an interesting therapeutic target in the treatment of autoimmune diseases. The past decade has seen the emergence of first-line BTK small-molecule inhibitors with great efficacy in the treatment of B-cell malignancies, but with unfavorable safety profiles for use in autoimmunity due to off-target effects. The development of second-generation BTK inhibitors with superior BTK specificity has facilitated the investigation of their efficacy in clinical trials with autoimmune patients. In this review, we discuss the role of BTK in key signaling pathways involved in autoimmunity and provide an overview of the different inhibitors that are currently being investigated in clinical trials of systemic autoimmune diseases, including rheumatoid arthritis and systemic lupus erythematosus, as well as available results from completed trials.
Collapse
Affiliation(s)
- Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Ota Y, Kuwana M. Updates on genetics in systemic sclerosis. Inflamm Regen 2021; 41:17. [PMID: 34130729 PMCID: PMC8204536 DOI: 10.1186/s41232-021-00167-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease, in which an interaction of genetic and environmental factors plays an important role in its development and pathogenesis. A number of genetic studies, including candidate gene analysis and genome-wide association study, have found that the associated genetic variants are mainly localized in noncoding regions in the expression quantitative trait locus and influence corresponding gene expression. The gene variants identified as a risk for SSc susceptibility include those associated with innate immunity, adaptive immune response, and cell death, while there are only few SSc-associated genes involved in the fibrotic process or vascular homeostasis. Human leukocyte antigen class II genes are associated with SSc-related autoantibodies rather than SSc itself. Since the pathways between the associated genotype and phenotype are still poorly understood, further investigations using multi-omics technologies are necessary to characterize the complex molecular architecture of SSc, identify biomarkers useful to predict future outcomes and treatment responses, and discover effective drug targets.
Collapse
Affiliation(s)
- Yuko Ota
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan.
| |
Collapse
|
16
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
17
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
González-Serna D, Villanueva-Martin G, Acosta-Herrera M, Márquez A, Martín J. Approaching Shared Pathophysiology in Immune-Mediated Diseases through Functional Genomics. Genes (Basel) 2020; 11:E1482. [PMID: 33317201 PMCID: PMC7762979 DOI: 10.3390/genes11121482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Immune-mediated diseases (IMDs) are complex pathologies that are strongly influenced by environmental and genetic factors. Associations between genetic loci and susceptibility to these diseases have been widely studied, and hundreds of risk variants have emerged during the last two decades, with researchers observing a shared genetic pattern among them. Nevertheless, the pathological mechanism behind these associations remains a challenge that has just started to be understood thanks to functional genomic approaches. Transcriptomics, regulatory elements, chromatin interactome, as well as the experimental characterization of genomic findings, constitute key elements in the emerging understandings of how genetics affects the etiopathogenesis of IMDs. In this review, we will focus on the latest advances in the field of functional genomics, centering our attention on systemic rheumatic IMDs.
Collapse
Affiliation(s)
- David González-Serna
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| | - Gonzalo Villanueva-Martin
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| | - Marialbert Acosta-Herrera
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, 18016 Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), 18016 Granada, Spain; (D.G.-S.); (G.V.-M.); (M.A.-H.); (A.M.)
| |
Collapse
|
19
|
Tamargo-Gómez I, Fernández ÁF, Mariño G. Pathogenic Single Nucleotide Polymorphisms on Autophagy-Related Genes. Int J Mol Sci 2020; 21:ijms21218196. [PMID: 33147747 PMCID: PMC7672651 DOI: 10.3390/ijms21218196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the study of single nucleotide polymorphisms (SNPs) has gained increasing importance in biomedical research, as they can either be at the molecular origin of a determined disorder or directly affect the efficiency of a given treatment. In this regard, sequence variations in genes involved in pro-survival cellular pathways are commonly associated with pathologies, as the alteration of these routes compromises cellular homeostasis. This is the case of autophagy, an evolutionarily conserved pathway that counteracts extracellular and intracellular stressors by mediating the turnover of cytosolic components through lysosomal degradation. Accordingly, autophagy dysregulation has been extensively described in a wide range of human pathologies, including cancer, neurodegeneration, or inflammatory alterations. Thus, it is not surprising that pathogenic gene variants in genes encoding crucial effectors of the autophagosome/lysosome axis are increasingly being identified. In this review, we present a comprehensive list of clinically relevant SNPs in autophagy-related genes, highlighting the scope and relevance of autophagy alterations in human disease.
Collapse
Affiliation(s)
- Isaac Tamargo-Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Álvaro F. Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| | - Guillermo Mariño
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain;
- Departamento de Biología Funcional, Universidad de Oviedo, 33011 Oviedo, Spain
- Correspondence: (Á.F.F.); (G.M.); Tel.: +34-985652416 (G.M.)
| |
Collapse
|
20
|
Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. J Allergy Clin Immunol 2020; 147:894-909. [PMID: 32795586 DOI: 10.1016/j.jaci.2020.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Chr17q12-21.2 region is the strongest and most consistently associated region with asthma susceptibility. The functional genes or single nucleotide polymorphisms (SNPs) are not obvious due to linkage disequilibrium. OBJECTIVES We sought to comprehensively investigate whole-genome sequence and RNA sequence from human bronchial epithelial cells to dissect functional genes/SNPs for asthma severity in the Severe Asthma Research Program. METHODS Expression quantitative trait loci analysis (n = 114), correlation analysis (n = 156) of gene expression and asthma phenotypes, and pathway analysis were performed in bronchial epithelial cells and replicated. Genetic association for asthma severity (426 severe vs 531 nonsevere asthma) and longitudinal asthma exacerbations (n = 273) was performed. RESULTS Multiple SNPs in gasdermin B (GSDMB) associated with asthma severity (odds ratio, >1.25) and longitudinal asthma exacerbations (P < .05). Expression quantitative trait loci analyses identified multiple SNPs associated with expression levels of post-GPI attachment to proteins 3, GSDMB, or gasdermin A (3.1 × 10-9 <P < 1.8 × 10-4). Higher expression levels of GSDMB correlated with asthma and greater number of exacerbations (P < .05). Expression levels of GSDMB correlated with genes involved in IFN signaling, MHC class I antigen presentation, and immune system pathways (false-discovery rate-adjusted P < .05). rs1031458 and rs3902920 in GSDMB colocalized with IFN regulatory factor binding sites and associated with GSDMB expression, asthma severity, and asthma exacerbations (P < .05). CONCLUSIONS By using a unique set of gene expression data from lung cells obtained using bronchoscopy from comprehensively characterized subjects with asthma, we show that SNPs in GSDMB associated with asthma severity, exacerbations, and GSDMB expression levels. Furthermore, its expression levels correlated with asthma exacerbations and antiviral pathways. Thus, GSDMB is a functional gene for both asthma susceptibility and severity.
Collapse
|
21
|
Abstract
Over the last several years, next-generation sequencing and its recent push toward single-cell resolution have transformed the landscape of immunology research by revealing novel complexities about all components of the immune system. With the vast amounts of diverse data currently being generated, and with the methods of analyzing and combining diverse data improving as well, integrative systems approaches are becoming more powerful. Previous integrative approaches have combined multiple data types and revealed ways that the immune system, both as a whole and as individual parts, is affected by genetics, the microbiome, and other factors. In this review, we explore the data types that are available for studying immunology with an integrative systems approach, as well as the current strategies and challenges for conducting such analyses.
Collapse
Affiliation(s)
- Silvia Pineda
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94158, USA
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Daniel G. Bunis
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94158, USA
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94158, USA
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, California 94158, USA
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| |
Collapse
|
22
|
Ponticelli C, Doria A, Moroni G. Renal disorders in rheumatologic diseases: the spectrum is changing (Part 1: connective tissue diseases). J Nephrol 2020; 34:1069-1080. [PMID: 32529559 DOI: 10.1007/s40620-020-00772-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/03/2020] [Indexed: 01/15/2023]
Abstract
The kidney is frequently involved by autoimmune rheumatic diseases. The renal manifestations may be variable, ranging from asymptomatic proteinuria and microscopic haematuria to nephrotic syndrome and rapidly progressive glomerulonephritis or vasculitis. In a number of cases the kidney involvement is related to the treatment of the original disease and may represent a major cause of morbidity and mortality. Thus, it is important for nephrologists and rheumatologists to remember that dysfunction of the kidney may be part of the primary systemic disorder or consequence of its pharmacotherapy. In the first part of this review we will analyse the kidney involvement in four autoimmune connective tissue diseases: systemic lupus erythematosus, Sjögren syndrome, polymyositis/dermatomyositis, and systemic sclerosis. Renal disease is common in lupus and is a main cause of morbidity and mortality. About 10% of patients with Sjögren syndrome may present interstitial nephritis or, more rarely, glomerulonephritis. Myoglobinuria and acute kidney injury is a frequent complication of polymyositis. Renal disease is one of the most serious complications of systemic sclerosis and may present with a dramatic renal crisis, characterized by malignant hypertension, oligo-anuria, and microangiopathic thrombocytopenic anaemia.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, IRCCS Ospedale Maggiore Milano, Via Ampere 126, 20131, Milano, Italy.
| | - Andrea Doria
- Division of Rheumatology, Department of Medicine, DIMED, University of Padua, Padua, Italy
| | - Gabriella Moroni
- Division of Nephrology, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico Milano, Milano, Italy
| |
Collapse
|
23
|
A cross-disease meta-GWAS identifies four new susceptibility loci shared between systemic sclerosis and Crohn's disease. Sci Rep 2020; 10:1862. [PMID: 32024964 PMCID: PMC7002703 DOI: 10.1038/s41598-020-58741-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified a number of genetic risk loci associated with systemic sclerosis (SSc) and Crohn’s disease (CD), some of which confer susceptibility to both diseases. In order to identify new risk loci shared between these two immune-mediated disorders, we performed a cross-disease meta-analysis including GWAS data from 5,734 SSc patients, 4,588 CD patients and 14,568 controls of European origin. We identified 4 new loci shared between SSc and CD, IL12RB2, IRF1/SLC22A5, STAT3 and an intergenic locus at 6p21.31. Pleiotropic variants within these loci showed opposite allelic effects in the two analysed diseases and all of them showed a significant effect on gene expression. In addition, an enrichment in the IL-12 family and type I interferon signaling pathways was observed among the set of SSc-CD common genetic risk loci. In conclusion, through the first cross-disease meta-analysis of SSc and CD, we identified genetic variants with pleiotropic effects on two clinically distinct immune-mediated disorders. The fact that all these pleiotropic SNPs have opposite allelic effects in SSc and CD reveals the complexity of the molecular mechanisms by which polymorphisms affect diseases.
Collapse
|
24
|
Qiu CC, Caricchio R, Gallucci S. Triggers of Autoimmunity: The Role of Bacterial Infections in the Extracellular Exposure of Lupus Nuclear Autoantigens. Front Immunol 2019; 10:2608. [PMID: 31781110 PMCID: PMC6857005 DOI: 10.3389/fimmu.2019.02608] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Infections are considered important environmental triggers of autoimmunity and can contribute to autoimmune disease onset and severity. Nucleic acids and the complexes that they form with proteins—including chromatin and ribonucleoproteins—are the main autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How these nuclear molecules become available to the immune system for recognition, presentation, and targeting is an area of research where complexities remain to be disentangled. In this review, we discuss how bacterial infections participate in the exposure of nuclear autoantigens to the immune system in SLE. Infections can instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce extracellular release of host nuclear autoantigens, and promote their recognition in an immunogenic context by activating the innate and adaptive immune systems. Moreover, bacterial infections can release bacterial DNA associated with other bacterial molecules, complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition receptors and activating autoreactive B cells through molecular mimicry. Recent studies have highlighted SLE disease activity-associated alterations of the gut commensals and the expansion of pathobionts that can contribute to chronic exposure to extracellular nuclear autoantigens. A novel field in the study of autoimmunity is the contribution of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular communities of bacteria that promote colonization during chronic infections. We review the very recent literature highlighting a role for bacterial biofilms, and their major components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies and their ability to stimulate the autoreactive immune response. The best studied bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular mimickers, and microbial chaperones of nucleic acids.
Collapse
Affiliation(s)
- Connie C Qiu
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
López-Isac E, Acosta-Herrera M, Kerick M, Assassi S, Satpathy AT, Granja J, Mumbach MR, Beretta L, Simeón CP, Carreira P, Ortego-Centeno N, Castellvi I, Bossini-Castillo L, Carmona FD, Orozco G, Hunzelmann N, Distler JHW, Franke A, Lunardi C, Moroncini G, Gabrielli A, de Vries-Bouwstra J, Wijmenga C, Koeleman BPC, Nordin A, Padyukov L, Hoffmann-Vold AM, Lie B, Proudman S, Stevens W, Nikpour M, Vyse T, Herrick AL, Worthington J, Denton CP, Allanore Y, Brown MA, Radstake TRDJ, Fonseca C, Chang HY, Mayes MD, Martin J. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat Commun 2019; 10:4955. [PMID: 31672989 PMCID: PMC6823490 DOI: 10.1038/s41467-019-12760-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.
Collapse
Affiliation(s)
- Elena López-Isac
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain.
| | | | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Shervin Assassi
- The University of Texas Health Science Center-Houston, Houston, USA
| | - Ansuman T Satpathy
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jeffrey Granja
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maxwell R Mumbach
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Carmen P Simeón
- Department of Internal Medicine, Valle de Hebrón Hospital, Barcelona, Spain
| | - Patricia Carreira
- Department of Rheumatology, 12 de Octubre University Hospital, Madrid, Spain
| | | | - Ivan Castellvi
- Department of Rheumatology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | | | - F David Carmona
- Department of Genetics and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | | | - Jörg H W Distler
- Department of Internal Medicine 3, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Claudio Lunardi
- Department of Medicine, Università degli Studi di Verona, Verona, Italy
| | - Gianluca Moroncini
- Clinica Medica, Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | - Armando Gabrielli
- Clinica Medica, Department of Clinical and Molecular Science, Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | | | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Annika Nordin
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | | | - Benedicte Lie
- Department of Medical Genetics, and the Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Susanna Proudman
- Royal Adelaide Hospital and University of Adelaide, Adelaide, SA, Australia
| | | | - Mandana Nikpour
- The University of Melbourne at St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, UK
| | - Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom
| | - Yannick Allanore
- Department of Rheumatology A, Cochin Hospital, INSERM U1016, Paris Descartes University, Paris, France
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, Laboratory of Translational Immunology, department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carmen Fonseca
- Centre for Rheumatology, Royal Free and University College Medical School, London, United Kingdom
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Maureen D Mayes
- The University of Texas Health Science Center-Houston, Houston, USA
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain.
| |
Collapse
|
26
|
TNFAIP3 Gene Polymorphisms in Three Common Autoimmune Diseases: Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Primary Sjogren Syndrome-Association with Disease Susceptibility and Clinical Phenotypes in Italian Patients. J Immunol Res 2019; 2019:6728694. [PMID: 31534975 PMCID: PMC6732636 DOI: 10.1155/2019/6728694] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases (AIDs) are complex diseases characterized by persistent or recurrent inflammation, alteration of immune response, and production of specific autoantibodies. It is known that different AIDs share several susceptibility genetic loci. Tumor necrosis factor alpha inducible protein 3 (TNFAIP3) encodes the ubiquitin-modifying enzyme A20, which downregulates inflammation by restricting NF-κB, a transcription factor that regulates expression of various proinflammatory genes. Variants in TNFAIP3 gene have been described as associated with susceptibility to several AIDs. Here, we analyzed two TNFAIP3 polymorphisms in Italian patients with systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and primary Sjogren's syndrome (pSS), to verify if the genetic variability of TNFAIP3 gene is involved in genetic predisposition to AIDs also in the Italian population. We recruited 313 SLE patients, 256 RA patients, 195 pSS patients, and 236 healthy controls. Genotyping of rs2230926 and rs6920220 in TNFAIP3 gene was performed by an allelic discrimination assay. We carried out a case/control association study and a genotype/phenotype correlation analysis. A higher risk to develop SLE was observed for rs2230926 (P = 0.02, OR = 1.92). No association was observed between this SNP and the susceptibility to pSS or RA. However, the rs2230926 variant allele seems to confer a higher risk to develop lymphoma in pSS patients, while in RA patients, the presence of RF resulted significantly associated with the variant allele. Regarding the rs6920220 SNP, we observed a significant association of the variant allele with SLE (P = 0.03, OR = 1.53), pSS (P = 0.016, OR = 1.69), and RA (P = 0.0001, OR = 2.35) susceptibility. Furthermore, SLE patients carrying the variant allele showed a higher risk to develop pericarditis, pleurisy, and kidney complications. Our results support the importance of the TNFAIP3 gene variant role in the development of different autoimmune diseases in the Italian population and furtherly confirm a sharing of genetic predisposing factors among these three pathologies.
Collapse
|
27
|
Abstract
Autoimmune rheumatic diseases pose many problems that have, in general, already been solved in the field of cancer. The heterogeneity of each disease, the clinical similarities and differences between different autoimmune rheumatic diseases and the large number of patients that remain without a diagnosis underline the need to reclassify these diseases via new approaches. Knowledge about the molecular basis of systemic autoimmune diseases, along with the availability of bioinformatics tools capable of handling and integrating large volumes of various types of molecular data at once, offer the possibility of reclassifying these diseases. A new taxonomy could lead to the discovery of new biomarkers for patient stratification and prognosis. Most importantly, this taxonomy might enable important changes in clinical trial design to reach the expected outcomes or the design of molecularly targeted therapies. In this Review, we discuss the basis for a new molecular taxonomy for autoimmune rheumatic diseases. We highlight the evidence surrounding the idea that these diseases share molecular features related to their pathogenesis and development and discuss previous attempts to classify these diseases. We evaluate the tools available to analyse and combine different types of molecular data. Finally, we introduce PRECISESADS, a project aimed at reclassifying the systemic autoimmune diseases.
Collapse
|
28
|
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.
Collapse
|
29
|
Thynn HN, Chen XF, Hu WX, Duan YY, Zhu DL, Chen H, Wang NN, Chen HH, Rong Y, Lu BJ, Yang M, Jiang F, Dong SS, Guo Y, Yang TL. An Allele-Specific Functional SNP Associated with Two Systemic Autoimmune Diseases Modulates IRF5 Expression by Long-Range Chromatin Loop Formation. J Invest Dermatol 2019; 140:348-360.e11. [PMID: 31421124 DOI: 10.1016/j.jid.2019.06.147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
Both systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) are autoimmune diseases sharing similar genetic backgrounds. Genome-wide association studies have constantly disclosed numerous genetic variants conferring to both disease risks at 7q32.1, but the functional mechanisms underlying them are still largely unknown. Through a series of bioinformatics and functional analyses, we prioritized a potential independent functional single-nucleotide polymorphism (rs13239597) within TNPO3 promoter region, residing in a putative enhancer element and validated that IRF5 is the distal target gene (∼118 kb) of rs13239597, which is a key regulator involved in pathogenic autoantibody dysregulation, increasing risk of both SLE and SSc. We experimentally validated the long-range chromatin interactions between rs13239597 and IRF5 using chromosome conformation capture assay. We further demonstrated that rs13239597-A acted as an allele-specific enhancer regulating IRF5 expression, independently of TNPO3 by using dual-luciferase reporter assays and CRISPR-Cas9. Particularly, the transcription factor EVI1 could preferentially bind to rs13239597-A allele and increase the enhancer activity to regulate IRF5 expression. Taken together, our results uncovered a mechanistic insight of a noncoding functional variant acting as an allele-specific distal enhancer to directly modulate IRF5 expression, which might obligate in understanding of complex genetic architectures of SLE and SSc pathogenesis.
Collapse
Affiliation(s)
- Hlaing Nwe Thynn
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wei-Xin Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Nai-Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huan-Huan Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Bing-Jie Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Man Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
30
|
Towards a Better Classification and Novel Therapies Based on the Genetics of Systemic Sclerosis. Curr Rheumatol Rep 2019; 21:44. [PMID: 31304568 DOI: 10.1007/s11926-019-0845-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Nowadays, important advances have occurred in our understanding of the pathogenesis of systemic sclerosis (SSc), which is a rare immune-mediated inflammatory disease (IMID) characterized by vascular damage, immune imbalance, and fibrosis. Its etiology remains unknown; nevertheless, both environmental and genetic factors play a major role in the disease. This review will focus on the main advances made in the field of genetics of SSc. RECENT FINDINGS The assessment of how interindividual genetic variability affects disease onset and progression has enhanced our knowledge of disease biology, and this will eventually translate in the development of new diagnostic and therapeutic tools, which is the final goal of personalized medicine. We will provide an overview of the most relevant achievements in the genetics of SSc, its shared genetics among IMIDs with special attention on drug repurposing, current challenges for the functional characterization of risk variants, and future directions.
Collapse
|
31
|
Gorji AE, Roudbari Z, Alizadeh A, Sadeghi B. Investigation of systemic lupus erythematosus (SLE) with integrating transcriptomics and genome wide association information. Gene 2019; 706:181-187. [PMID: 31082500 DOI: 10.1016/j.gene.2019.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/10/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematous (SEL) is a heterogeneous, systemic autoimmune disorder which is defined by its autoantibody pattern. Transcriptomic data analysis has shown pathways and immune system responses associated with SLE. Eight up-regulated genes (SOCE, MMP9, CXCL8, JUN, IL1B, NFKBIA, TNF and FOS) have been examined with four interactions among different pathways. These genes are associated with SNPs which have been identified through two datasets from SLE genome-wide association studies (GWAS). In this investigation, the GWAS results were integrated with pathway analysis of transcriptomes and several genes were detected with known SLE-related variations (TYK2, C5, SH2B, IRF5, IL2RA, STAT4, FCGR2A, IL7R, LYN, HLA-DRB and TNFAIP3). Pathway-based analysis on the Wikipathway Human Collection allowed the identification of prioritized variants in the relevant pathways, such as thymic stromal lymphopoietin (TSLP) signaling pathway linked to LYN, IL7R, STAT4 and rs7574865. Analysis of existing transcriptomes and GWAS data identified eight up-regulated candidate genes with more than four relationships among the different pathways associated with SNPs to pinpoint the relevant loci linked to SLE. The results of this investigation have expanded the number of candidate genes related to SLE and have highlighted possible pathways and GWAS-based methods for gene detection. Identification of the fundamental genes would assist in revealing the mechanisms responsible for SLE.
Collapse
Affiliation(s)
- Abdolvahab Ebrahimpour Gorji
- Department of Fisheries, Faculty of Animal Sciences and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
| | - Zahra Roudbari
- Department of Animal Science, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Balal Sadeghi
- Food Hygiene and Public Health Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
32
|
Identification of SAMD9L as a susceptibility locus for intravenous immunoglobulin resistance in Kawasaki disease by genome-wide association analysis. THE PHARMACOGENOMICS JOURNAL 2019; 20:80-86. [PMID: 30971808 DOI: 10.1038/s41397-019-0085-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
Abstract
Kawasaki disease (KD) is a systemic vasculitis affecting infants and children; it manifests as fever and signs of mucocutaneous inflammation. Intravenous immunoglobulin (IVIG) treatment effectively attenuates the fever and systemic inflammation. However, 10-20% patients are unresponsive to IVIG. To identify genetic variants influencing IVIG non-response in KD, a genome-wide association study (GWAS) and a replication study were performed using a total of 148 IVIG non-responders and 845 IVIG-responders in a Korean population. rs28662 in the sterile alpha motif domain-containing protein 9-like (SAMD9L) locus showed the most significant result in the joint analysis of GWAS and replication samples (odds ratio (OR) = 3.47, P = 1.39 × 10-5). The same SNP in the SAMD9L locus was tested in the Japanese population, and it revealed a more significant association in a meta-analysis with Japanese data (OR = 4.30, P = 5.30 × 10-6). These results provide new insights into the mechanism of IVIG response in KD.
Collapse
|
33
|
Martínez-Bueno M, Alarcón-Riquelme ME. Exploring Impact of Rare Variation in Systemic Lupus Erythematosus by a Genome Wide Imputation Approach. Front Immunol 2019; 10:258. [PMID: 30863397 PMCID: PMC6399402 DOI: 10.3389/fimmu.2019.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/29/2019] [Indexed: 01/31/2023] Open
Abstract
The importance of low frequency and rare variation in complex disease genetics is difficult to estimate in patient populations. Genome-wide association studies are therefore, underpowered to detect rare variation. We have used a combined approach of genome-wide-based imputation with a highly stringent sequence kernel association (SKAT) test and a case-control burden test. We identified 98 candidate genes containing rare variation that in aggregate show association with SLE many of which have recognized immunological function, but also function and expression related to relevant tissues such as the joints, skin, blood or central nervous system. In addition we also find that there is a significant enrichment of genes annotated for disease-causing mutations in the OMIM database, suggesting that in complex diseases such as SLE, such mutations may be involved in subtle or combined phenotypes or could accelerate specific organ abnormalities found in the disease. We here provide an important resource of candidate genes for SLE.
Collapse
Affiliation(s)
- Manuel Martínez-Bueno
- Department of Medical Genomics, GENYO, Center for Genomics and Oncological Research Pfizer, University of Granada, Granada, Spain
| | - Marta E Alarcón-Riquelme
- Unit of Chronic Inflammation, Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
34
|
Fike AJ, Elcheva I, Rahman ZSM. The Post-GWAS Era: How to Validate the Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 2019; 21:3. [DOI: 10.1007/s11926-019-0801-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Acosta-Herrera M, Kerick M, González-Serna D, Wijmenga C, Franke A, Gregersen PK, Padyukov L, Worthington J, Vyse TJ, Alarcón-Riquelme ME, Mayes MD, Martin J. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann Rheum Dis 2018; 78:311-319. [PMID: 30573655 DOI: 10.1136/annrheumdis-2018-214127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs.
Collapse
Affiliation(s)
| | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS Granada, Granada, Spain
| | - David González-Serna
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS Granada, Granada, Spain
| | | | | | - Cisca Wijmenga
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Peter K Gregersen
- Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jane Worthington
- Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Timothy James Vyse
- Division of Genetics and Molecular Medicine, King's College London, London, UK.,Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Marta Eugenia Alarcón-Riquelme
- Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Maureen D Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS Granada, Granada, Spain
| |
Collapse
|
36
|
Bradbury C, Köttgen A, Staubach F. Off-target phenotypes in forensic DNA phenotyping and biogeographic ancestry inference: A resource. Forensic Sci Int Genet 2018; 38:93-104. [PMID: 30391626 DOI: 10.1016/j.fsigen.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
With recent advances in DNA sequencing technologies it has become feasible and cost effective to genotype larger marker sets for forensic purposes. Two technologies that make use of the larger marker sets have come into focus in forensic research and applications; inference of biogeographic ancestry (BGA) and forensic DNA phenotyping (FDP). These methods hold the promise to reveal information about a yet unknown perpetrator from a DNA sample. In contrast, DNA-profiling, that is a standard practice in case work, relies on matching DNA-profiles between crime scene material and suspects on a database of DNA-profiles. Markers for DNA-profiling were developed under the premise to reveal as little additional information about the human source of the profile as possible, the rationale being that personal privacy rights have to be balanced against the public interest in solving a crime. The same argument holds for markers used in BGA and FDP; these markers might also reveal information on off-target phenotypes (OTPs), that go beyond BGA and the phenotypes targeted in FDP. In particular, health related OTPs might shift the balance between privacy protection and public interest. However, to our knowledge, there is currently no convenient resource available to incorporate knowledge on OTPs in BGA and FDP assay design and application. In order to provide such a resource, we performed a systematic search for OTPs associated with a comprehensive set of markers (1766 SNPs) used or suggested to be used for BGA inference and FDP. In this set, we identified a relatively small number of 27 SNPs (1.53%) that convey information on diverse health related OTPs such as cancer risk, induced asthma, or risk of alcoholism. Some of these SNPs are commonly used for FDP and BGA across different marker sets. We conclude that the effects of SNP markers used in FDP and BGA on OTPs are currently limited, with few exceptions that should be considered in a balanced decision on assay design and application.
Collapse
Affiliation(s)
- Cedric Bradbury
- University College Freiburg, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Dept. of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Fabian Staubach
- Institute of Biology I, Dept. of Evolutionary Biology and Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|
37
|
Genetic variants at the 16p13 locus confer risk for eosinophilic esophagitis. Genes Immun 2018; 20:281-292. [PMID: 29904099 PMCID: PMC6286696 DOI: 10.1038/s41435-018-0034-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 02/08/2023]
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disease of the esophagus triggered by immune hypersensitivity to food. Herein, we tested whether genetic risk factors for known, non-allergic, immune-mediated diseases, particularly those involving autoimmunity, were associated with EoE risk. We used the high-density Immunochip platform, encoding 200,000 genetic variants for major auto-immune disease. Accordingly, 1214 subjects with EoE of European ancestry and 3734 population controls were genotyped and assessed using data directly generated or imputed from the previously published GWAS. We found lack of association of EoE with the genetic variants in the major histocompatibility complex (MHC) class I, II, and III genes and nearly all other loci using a highly powered study design with dense genotyping throughout the locus. Importantly, we identified an EoE risk locus at 16p13 with genome-wide significance (Pcombined=2.05 × 10−9, odds ratio = 0.76−0.81). This region is known to encode for the genes CLEC16A, DEXI, and CIITI, which are expressed in immune cells and esophageal epithelial cells. Suggestive EoE risk were also seen 5q23 (intergenic) and 7p15 (JAZF1). Overall, we have identified an additional EoE risk locus at 16p13 and highlight a shared and unique genetic etiology of EoE with a spectrum of immune-associated diseases.
Collapse
|
38
|
Sharma A, Liu X, Hadley D, Hagopian W, Chen WM, Onengut-Gumuscu S, Törn C, Steck AK, Frohnert BI, Rewers M, Ziegler AG, Lernmark Å, Toppari J, Krischer JP, Akolkar B, Rich SS, She JX. Identification of non-HLA genes associated with development of islet autoimmunity and type 1 diabetes in the prospective TEDDY cohort. J Autoimmun 2018; 89:90-100. [PMID: 29310926 PMCID: PMC5902429 DOI: 10.1016/j.jaut.2017.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/28/2022]
Abstract
Traditional linkage analysis and genome-wide association studies have identified HLA and a number of non-HLA genes as genetic factors for islet autoimmunity (IA) and type 1 diabetes (T1D). However, the relative risk associated with previously identified non-HLA genes is usually very small as measured in cases/controls from mixed populations. Genetic associations for IA and T1D may be more accurately assessed in prospective cohorts. In this study, 5806 subjects from the TEDDY (The Environmental Determinants of Diabetes in the Young) study, an international prospective cohort study, were genotyped for 176,586 SNPs on the ImmunoChip. Cox proportional hazards analyses were performed to discover the SNPs associated with the risk for IA, T1D, or both. Three regions were associated with the risk of developing any persistent confirmed islet autoantibody: one known region near SH2B3 (HR = 1.35, p = 3.58 × 10-7) with Bonferroni-corrected significance and another known region near PTPN22 (HR = 1.46, p = 2.17 × 10-6) and one novel region near PPIL2 (HR = 2.47, p = 9.64 × 10-7) with suggestive evidence (p < 10-5). Two known regions (PTPN22: p = 2.25 × 10-6, INS; p = 1.32 × 10-7) and one novel region (PXK/PDHB: p = 8.99 × 10-6) were associated with the risk for multiple islet autoantibodies. First appearing islet autoantibodies differ with respect to association. Two regions (INS: p = 5.67 × 10-6 and TTC34/PRDM16: 6.45 × 10-6) were associated if the fist appearing autoantibody was IAA and one region (RBFOX1: p = 8.02 × 10-6) was associated if the first appearing autoantibody was GADA. The analysis of T1D identified one region already known to be associated with T1D (INS: p = 3.13 × 10-7) and three novel regions (RNASET2, PLEKHA1, and PPIL2; 5.42 × 10-6 > p > 2.31 × 10-6). These results suggest that a number of low frequency variants influence the risk of developing IA and/or T1D and these variants can be identified by large prospective cohort studies using a survival analysis approach.
Collapse
Affiliation(s)
- Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - David Hadley
- Division of Population Health Sciences and Education, St George's University of London, London, United Kingdom
| | | | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Carina Törn
- Department of Clinical Sciences, Lund University/CRC, Malmö, Sweden
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Aurora, CO, USA
| | - Brigitte I Frohnert
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, Aurora, CO, USA
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich-Neuherberg, Germany; Klinikum rechts der Isar, Technische Universität München, Munich-Neuherberg, Germany; Forschergruppe Diabetes e.V., Munich-Neuherberg, Germany
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Malmö, Sweden
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Beena Akolkar
- National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
39
|
Dritsoula A, Papaioannou I, Guerra SG, Fonseca C, Martin J, Herrick AL, Abraham DJ, Denton CP, Ponticos M. Molecular Basis for Dysregulated Activation of NKX2-5 in the Vascular Remodeling of Systemic Sclerosis. Arthritis Rheumatol 2018; 70:920-931. [PMID: 29342503 PMCID: PMC6001790 DOI: 10.1002/art.40419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 11/12/2022]
Abstract
OBJECTIVE NKX2-5 is a homeobox transcription factor that is required for the formation of the heart and vessels during development, with significant postnatal down-regulation and reactivation in disease states, characterized by vascular remodeling. The purpose of this study was to investigate mechanisms that activate NKX2-5 expression in diseased vessels, such as systemic sclerosis (scleroderma; SSc)-associated pulmonary hypertension (PH), and to identify genetic variability that potentially underlies susceptibility to specific vascular complications. METHODS We explored NKX2-5 expression in biopsy samples from patients with SSc-associated PH and in pulmonary artery smooth muscle cells (PASMCs) from patients with scleroderma. Disease-associated putative functional single-nucleotide polymorphisms (SNPs) at the NKX2-5 locus were cloned and studied in reporter gene assays. SNP function was further examined through protein-DNA binding assays, chromatin immunoprecipitation assays, and RNA silencing analyses. RESULTS Increased NKX2-5 expression in biopsy samples from patients with SSc-associated PH was localized to remodeled vessels and PASMCs. Meta-analysis of 2 independent scleroderma cohorts revealed an association of rs3131917 with scleroderma (P = 0.029). We demonstrated that disease-associated SNPs are located in a novel functional enhancer, which increases NKX2-5 transcriptional activity through the binding of GATA-6, c-Jun, and myocyte-specific enhancer factor 2C. We also characterized an activator/coactivator transcription-enhancer factor domain 1 (TEAD1)/Yes-associated protein 1 (YAP1) complex, which was bound at rs3095870, another functional SNP, with TEAD1 binding the risk allele and activating the transcription of NKX2-5. CONCLUSION NKX2-5 is genetically associated with scleroderma, pulmonary hypertension, and fibrosis. Functional evidence revealed a regulatory mechanism that results in NKX2-5 transcriptional activation in PASMCs through the interaction of an upstream promoter and a novel downstream enhancer. This mechanism can act as a model for NKX2-5 activation in cardiovascular disease characterized by vascular remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Javier Martin
- Instituto de Parasitología y Biomédicina López-Neyra , Granada, Spain
| | - Ariane L Herrick
- University of Manchester, Salford Royal NHS Foundation Trust and Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | | | | |
Collapse
|
40
|
Ingegnoli F, Ughi N, Mihai C. Update on the epidemiology, risk factors, and disease outcomes of systemic sclerosis. Best Pract Res Clin Rheumatol 2018; 32:223-240. [DOI: 10.1016/j.berh.2018.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
|
41
|
Wiemels JL, Walsh KM, de Smith AJ, Metayer C, Gonseth S, Hansen HM, Francis SS, Ojha J, Smirnov I, Barcellos L, Xiao X, Morimoto L, McKean-Cowdin R, Wang R, Yu H, Hoh J, DeWan AT, Ma X. GWAS in childhood acute lymphoblastic leukemia reveals novel genetic associations at chromosomes 17q12 and 8q24.21. Nat Commun 2018; 9:286. [PMID: 29348612 PMCID: PMC5773513 DOI: 10.1038/s41467-017-02596-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) (age 0-14 years) is 20% more common in Latino Americans than non-Latino whites. We conduct a genome-wide association study in a large sample of 3263 Californian children with ALL (including 1949 of Latino heritage) and 3506 controls matched on month and year of birth, sex, and ethnicity, and an additional 12,471 controls from the Kaiser Resource for Genetic Epidemiology Research on Aging Cohort. Replication of the strongest genetic associations is performed in two independent datasets from the Children's Oncology Group and the California Childhood Leukemia Study. Here we identify new risk loci on 17q12 near IKZF3/ZPBP2/GSDMB/ORMDL3, a locus encompassing a transcription factor important for lymphocyte development (IKZF3), and at an 8q24 region known for structural contacts with the MYC oncogene. These new risk loci may impact gene expression via local (four 17q12 genes) or long-range (8q24) interactions, affecting function of well-characterized hematopoietic and growth-regulation pathways.
Collapse
Affiliation(s)
- Joseph L Wiemels
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA.
- Department of Preventative Medicine, University of Southern California, SSB 318D 2001 N. Soto Street, Los Angeles, CA, 90033, USA.
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Adam J de Smith
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Semira Gonseth
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Preventative Medicine, University of Southern California, SSB 318D 2001 N. Soto Street, Los Angeles, CA, 90033, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Stephen S Francis
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
- Department of Epidemiology, School of Community Health Sciences, University of Nevada Reno, 1664 N. Virginia Street, Reno, NV, 89557, USA
| | - Juhi Ojha
- Department of Epidemiology and Biostatistics, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Ivan Smirnov
- Department of Neurological Surgery, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Lisa Barcellos
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Xiaorong Xiao
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Libby Morimoto
- School of Public Health, University of California Berkeley, 1950 University Avenue, Suite 460, Berkeley, CA, 94720, USA
| | - Roberta McKean-Cowdin
- Department of Preventative Medicine, University of Southern California, SSB 318D 2001 N. Soto Street, Los Angeles, CA, 90033, USA
| | - Rong Wang
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Herbert Yu
- University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Josephine Hoh
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Andrew T DeWan
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Xiaomei Ma
- Department of Chronic Diseases Epidemiology, School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520, USA.
| |
Collapse
|
42
|
Moreno-Moral A, Bagnati M, Koturan S, Ko JH, Fonseca C, Harmston N, Game L, Martin J, Ong V, Abraham DJ, Denton CP, Behmoaras J, Petretto E. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann Rheum Dis 2018; 77:596-601. [PMID: 29348297 PMCID: PMC5890626 DOI: 10.1136/annrheumdis-2017-212454] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Several common and rare risk variants have been reported for systemic sclerosis (SSc), but the effector cell(s) mediating the function of these genetic variants remains to be elucidated. While innate immune cells have been proposed as the critical targets to interfere with the disease process underlying SSc, no studies have comprehensively established their effector role. Here we investigated the contribution of monocyte-derived macrophages (MDMs) in mediating genetic susceptibility to SSc. METHODS We carried out RNA sequencing and genome-wide genotyping in MDMs from 57 patients with SSc and 15 controls. Our differential expression and expression quantitative trait locus (eQTL) analysis in SSc was further integrated with epigenetic, expression and eQTL data from skin, monocytes, neutrophils and lymphocytes. RESULTS We identified 602 genes upregulated and downregulated in SSc macrophages that were significantly enriched for genes previously implicated in SSc susceptibility (P=5×10-4), and 270 cis-regulated genes in MDMs. Among these, GSDMA was reported to carry an SSc risk variant (rs3894194) regulating expression of neighbouring genes in blood. We show that GSDMA is upregulated in SSc MDMs (P=8.4×10-4) but not in the skin, and is a significant eQTL in SSc macrophages and lipopolysaccharide/interferon gamma (IFNγ)-stimulated monocytes. Furthermore, we identify an SSc macrophage transcriptome signature characterised by upregulation of glycolysis, hypoxia and mTOR signalling and a downregulation of IFNγ response pathways. CONCLUSIONS Our data further establish the link between macrophages and SSc, and suggest that the contribution of the rs3894194 risk variant to SSc susceptibility can be mediated by GSDMA expression in macrophages.
Collapse
Affiliation(s)
- Aida Moreno-Moral
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Marta Bagnati
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Surya Koturan
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Carmen Fonseca
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - Nathan Harmston
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Laurence Game
- Genomics Laboratory, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López Neyra, Consejo Superior de Investigaciones Cientıficas, Granada, Spain
| | - Voon Ong
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - David J Abraham
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, Royal Free and University College Medical School, University College London, London, UK
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research, Hammersmith Hospital, Imperial College London, London, UK
| | - Enrico Petretto
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore.,Faculty of Medicine, Medical Research Council (MRC) London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
43
|
Gorlova OY, Li Y, Gorlov I, Ying J, Chen WV, Assassi S, Reveille JD, Arnett FC, Zhou X, Bossini-Castillo L, Lopez-Isac E, Acosta-Herrera M, Gregersen PK, Lee AT, Steen VD, Fessler BJ, Khanna D, Schiopu E, Silver RM, Molitor JA, Furst DE, Kafaja S, Simms RW, Lafyatis RA, Carreira P, Simeon CP, Castellvi I, Beltran E, Ortego N, Amos CI, Martin J, Mayes MD. Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations. PLoS One 2018; 13:e0189498. [PMID: 29293537 PMCID: PMC5749683 DOI: 10.1371/journal.pone.0189498] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Gene-level analysis of ImmunoChip or genome-wide association studies (GWAS) data has not been previously reported for systemic sclerosis (SSc, scleroderma). The objective of this study was to analyze genetic susceptibility loci in SSc at the gene level and to determine if the detected associations were shared in African-American and White populations, using data from ImmunoChip and GWAS genotyping studies. The White sample included 1833 cases and 3466 controls (956 cases and 2741 controls from the US and 877 cases and 725 controls from Spain) and the African American sample, 291 cases and 260 controls. In both Whites and African Americans, we performed a gene-level analysis that integrates association statistics in a gene possibly harboring multiple SNPs with weak effect on disease risk, using Versatile Gene-based Association Study (VEGAS) software. The SNP-level analysis was performed using PLINK v.1.07. We identified 4 novel candidate genes (STAT1, FCGR2C, NIPSNAP3B, and SCT) significantly associated and 4 genes (SERBP1, PINX1, TMEM175 and EXOC2) suggestively associated with SSc in the gene level analysis in White patients. As an exploratory analysis we compared the results on Whites with those from African Americans. Of previously established susceptibility genes identified in Whites, only TNFAIP3 was significant at the nominal level (p = 6.13x10-3) in African Americans in the gene-level analysis of the ImmunoChip data. Among the top suggestive novel genes identified in Whites based on the ImmunoChip data, FCGR2C and PINX1 were only nominally significant in African Americans (p = 0.016 and p = 0.028, respectively), while among the top novel genes identified in the gene-level analysis in African Americans, UNC5C (p = 5.57x10-4) and CLEC16A (p = 0.0463) were also nominally significant in Whites. We also present the gene-level analysis of SSc clinical and autoantibody phenotypes among Whites. Our findings need to be validated by independent studies, particularly due to the limited sample size of African Americans.
Collapse
Affiliation(s)
- Olga Y. Gorlova
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Yafang Li
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Ivan Gorlov
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Jun Ying
- Department of Internal Medicine, Division of Rheumatology, University of Texas McGovern Medical School, Houston, TX, United States of America
| | - Wei V. Chen
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shervin Assassi
- Department of Internal Medicine, Division of Rheumatology, University of Texas McGovern Medical School, Houston, TX, United States of America
| | - John D. Reveille
- Department of Internal Medicine, Division of Rheumatology, University of Texas McGovern Medical School, Houston, TX, United States of America
| | - Frank C. Arnett
- Department of Internal Medicine, Division of Rheumatology, University of Texas McGovern Medical School, Houston, TX, United States of America
| | - Xiaodong Zhou
- Department of Internal Medicine, Division of Rheumatology, University of Texas McGovern Medical School, Houston, TX, United States of America
| | | | - Elena Lopez-Isac
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | | | - Peter K. Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Annette T. Lee
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Virginia D. Steen
- Division of Rheumatology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Barri J. Fessler
- Division of Rheumatology, University of Alabama—Birmingham, Birmingham, AL, United States of America
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, United States of America
| | - Elena Schiopu
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, United States of America
| | - Richard M. Silver
- Division of Rheumatology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Jerry A. Molitor
- Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, MN, United States of America
| | - Daniel E. Furst
- Division of Rheumatology, University of California—Los Angeles, Los Angeles, CA, United States of America
- University of Washington, Seattle, WA, United States of America
- University of Florence, Florence, Italy
| | - Suzanne Kafaja
- Division of Rheumatology, University of California—Los Angeles, Los Angeles, CA, United States of America
| | - Robert W. Simms
- Division of Rheumatology, Boston University, Boston, MA, United States of America
| | | | | | | | | | - Emma Beltran
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Christopher I. Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States of America
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, Granada, Spain
| | - Maureen D. Mayes
- Department of Internal Medicine, Division of Rheumatology, University of Texas McGovern Medical School, Houston, TX, United States of America
| |
Collapse
|
44
|
Barturen G, Alarcón-Riquelme ME. SLE redefined on the basis of molecular pathways. Best Pract Res Clin Rheumatol 2017; 31:291-305. [PMID: 29224672 DOI: 10.1016/j.berh.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
The implementation of precision medicine requires the recruiting of patients in statistically enough numbers, the possibility of obtaining enough materials, and the integration of data from various platforms, which are all real limitations. These types of studies have been performed extensively in cancer but barely on systemic lupus erythematosus (SLE) or other rheumatic diseases. To consider the practical use of the information obtained from such studies, we have to take into account the best biological fluid to use, the ease to perform the analysis in clinical practice, and its relevance to clinical practice. Here we review the most relevant studies that have performed analyses that attempt to classify or stratify SLE. We focus on two types of studies: those that stratify individuals diagnosed with SLE and those that compare SLE with other autoimmune diseases, defining differences and similarities that may be clinically relevant in the future.
Collapse
Affiliation(s)
- Guillermo Barturen
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Av de la Ilustración 114, PTS, 18016, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Av de la Ilustración 114, PTS, 18016, Granada, Spain; Unit of Inflammatory Chronic Diseases, Institute of Environmental Medicine, Karolinska Institutet, Solna, 17777, Sweden.
| |
Collapse
|
45
|
Bhattacharyya S, Midwood KS, Yin H, Varga J. Toll-Like Receptor-4 Signaling Drives Persistent Fibroblast Activation and Prevents Fibrosis Resolution in Scleroderma. Adv Wound Care (New Rochelle) 2017; 6:356-369. [PMID: 29062592 DOI: 10.1089/wound.2017.0732] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 02/06/2023] Open
Abstract
Significance: This review provides current overview of the emerging role of innate immunity in driving fibrosis, and preventing its resolution, in scleroderma (systemic sclerosis, SSc). Understanding the mechanisms of dysregulated innate immunity in fibrosis and SSc will provide opportunities for therapeutic interventions using novel agents and repurposed existing drugs. Recent Advances: New insights from genomic and genetic studies implicate components of innate immune signaling such as pattern recognition receptors (PRRs), downstream signaling intermediates, and endogenous inhibitors, in fibrosis in SSc. Recent studies distinguish innate immune signaling in tissue-resident myofibroblasts and bone marrow-derived immune cells and define their roles in the development and persistence of tissue fibrosis. Critical Issues: Activation of toll-like receptors (TLRs) and other PRR mechanisms occurs in resident nonimmune cells within injured tissue microenvironments. These cells respond to damage-associated molecular patterns (DAMPs), such as tenascin-C that are recognized as danger signals, and elicit matrix production, cytokine secretion, and myofibroblast transformation and survival. When these responses persist due to constitutive TLR activation or impaired termination by endogenous inhibitors, they interfere with fibrosis resolution. The genetic basis and molecular mechanisms of these phenomena in the context of fibrosis are under current investigation. Future Directions: Precise delineation of the pathogenic DAMPs, their interaction with TLRs and other PRRs, the downstream signaling pathways and transcriptional events, and the fibroblast-specific regulation and function of endogenous inhibitors of innate immunity, will form the foundation for innovative targeted therapies to block fibrosis by reestablishing balanced innate immune signaling in fibroblasts.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois
| | - Kim S. Midwood
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hang Yin
- Department of Chemistry and Biochemistry, The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
46
|
Bhattacharyya S, Varga J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunol Lett 2017; 195:9-17. [PMID: 28964818 DOI: 10.1016/j.imlet.2017.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Fibrosis, the hallmark of scleroderma or systemic sclerosis (SSc), is a complex, dynamic and generally irreversible pathophysiological process that leads to tissue disruption, and lacks effective therapy. While early-stage fibrosis resembles normal wound healing, in SSc fibrosis fails to resolve. Innate immune signaling via toll-like receptors (TLRs) has recently emerged as a key driver of persistent fibrotic response in SSc. Recurrent injury in genetically predisposed individual causes generation of "damage-associated molecular patterns" (DAMPs) such as fibronectin-EDA and tenascin-C. Sensing of these danger signals by TLR4 on resident cells elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation, and appears to sensitize fibroblasts to the profibrotic stimulatory effect of TGF-β. Thus, DAMPs induce TLR4-mediated innate immune signaling on resident mesenchymal cells which drives the emergence and persistence of fibrotic cells in tissues, and underlies the switch from a self-limited repair response to non-resolving pathological fibrosis characteristic of SSc. In this review, we present current views of the DAMP-TLR4 axis in driving sustained fibroblasts activation and its pathogenic roles in fibrosis progression in SSc, and potential anti-fibrotic approaches for selective therapeutic targeting of TLR4 signaling.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States.
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
47
|
López-Isac E, Martín JE, Assassi S, Simeón CP, Carreira P, Ortego-Centeno N, Freire M, Beltrán E, Narváez J, Alegre-Sancho JJ, Fernández-Gutiérrez B, Balsa A, Ortiz AM, González-Gay MA, Beretta L, Santaniello A, Bellocchi C, Lunardi C, Moroncini G, Gabrielli A, Witte T, Hunzelmann N, Distler JHW, Riekemasten G, van der Helm-van Mil AH, de Vries-Bouwstra J, Magro-Checa C, Voskuyl AE, Vonk MC, Molberg Ø, Merriman T, Hesselstrand R, Nordin A, Padyukov L, Herrick A, Eyre S, Koeleman BPC, Denton CP, Fonseca C, Radstake TRDJ, Worthington J, Mayes MD, Martín J. Brief Report: IRF4 Newly Identified as a Common Susceptibility Locus for Systemic Sclerosis and Rheumatoid Arthritis in a Cross-Disease Meta-Analysis of Genome-Wide Association Studies. Arthritis Rheumatol 2017; 68:2338-44. [PMID: 27111665 DOI: 10.1002/art.39730] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) and rheumatoid arthritis (RA) are autoimmune diseases that have similar clinical and immunologic characteristics. To date, several shared SSc-RA genetic loci have been identified independently. The aim of the current study was to systematically search for new common SSc-RA loci through an interdisease meta-genome-wide association (meta-GWAS) strategy. METHODS The study was designed as a meta-analysis combining GWAS data sets of patients with SSc and patients with RA, using a strategy that allowed identification of loci with both same-direction and opposite-direction allelic effects. The top single-nucleotide polymorphisms were followed up in independent SSc and RA case-control cohorts. This allowed an increase in the sample size to a total of 8,830 patients with SSc, 16,870 patients with RA, and 43,393 healthy controls. RESULTS This cross-disease meta-analysis of the GWAS data sets identified several loci with nominal association signals (P < 5 × 10(-6) ) that also showed evidence of association in the disease-specific GWAS scans. These loci included several genomic regions not previously reported as shared loci, as well as several risk factors that were previously found to be associated with both diseases. Follow-up analyses of the putatively new SSc-RA loci identified IRF4 as a shared risk factor for these 2 diseases (Pcombined = 3.29 × 10(-12) ). Analysis of the biologic relevance of the known SSc-RA shared loci identified the type I interferon and interleukin-12 signaling pathways as the main common etiologic factors. CONCLUSION This study identified a novel shared locus, IRF4, for the risk of SSc and RA, and highlighted the usefulness of a cross-disease GWAS meta-analysis strategy in the identification of common risk loci.
Collapse
Affiliation(s)
- Elena López-Isac
- Institute of Parasitology and Biomedicine López-Neyra CSIC, Granada, Spain
| | | | | | | | | | | | - Mayka Freire
- Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Emma Beltrán
- Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | | | | | - Alejandro Balsa
- Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz, Madrid, Spain
| | - Ana M Ortiz
- Hospital Universitario La Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | | | - Lorenzo Beretta
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Alessandro Santaniello
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Chiara Bellocchi
- Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | | | | | - Armando Gabrielli
- Università Politecnica delle Marche and Ospedali Riuniti, Ancona, Italy
| | | | | | | | | | | | | | | | | | - Madelon C Vonk
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Øyvind Molberg
- Oslo University Hospital Rikshospitalet and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Annika Nordin
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Padyukov
- Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ariane Herrick
- University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Steve Eyre
- University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Christopher P Denton
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Carmen Fonseca
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK
| | - Timothy R D J Radstake
- University Medical Center Utrecht, Utrecht, The Netherlands. Members of the Spanish Scleroderma Group are shown in Appendix A
| | - Jane Worthington
- University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra CSIC, Granada, Spain
| |
Collapse
|
48
|
Lu Q, Powles RL, Abdallah S, Ou D, Wang Q, Hu Y, Lu Y, Liu W, Li B, Mukherjee S, Crane PK, Zhao H. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease. PLoS Genet 2017; 13:e1006933. [PMID: 28742084 PMCID: PMC5546707 DOI: 10.1371/journal.pgen.1006933] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/07/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022] Open
Abstract
Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.
Collapse
Affiliation(s)
- Qiongshi Lu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Ryan L. Powles
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Sarah Abdallah
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Derek Ou
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Qian Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Yiming Hu
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Yisi Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Wei Liu
- School of Life Sciences, Peking University, Beijing, China
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Shubhabrata Mukherjee
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Paul K. Crane
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, United States of America
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- VA Cooperative Studies Program Coordinating Center, West Haven, Connecticut, United States of America
| |
Collapse
|
49
|
Tsou PS, Sawalha AH. Unfolding the pathogenesis of scleroderma through genomics and epigenomics. J Autoimmun 2017; 83:73-94. [PMID: 28526340 DOI: 10.1016/j.jaut.2017.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022]
Abstract
With unknown etiology, scleroderma (SSc) is a multifaceted disease characterized by immune activation, vascular complications, and excessive fibrosis in internal organs. Genetic studies, including candidate gene association studies, genome-wide association studies, and whole-exome sequencing have supported the notion that while genetic susceptibility to SSc appears to be modest, SSc patients are genetically predisposed to this disease. The strongest genetic association for SSc lies within the MHC region, with loci in HLA-DRB1, HLA-DQB1, HLA-DPB1, and HLA-DOA1 being the most replicated. The non-HLA genes associated with SSc are involved in various functions, with the most robust associations including genes for B and T cell activation and innate immunity. Other pathways include genes involved in extracellular matrix deposition, cytokines, and autophagy. Among these genes, IRF5, STAT4, and CD247 were replicated most frequently while SNPs rs35677470 in DNASE1L3, rs5029939 in TNFAIP3, and rs7574685 in STAT4 have the strongest associations with SSc. In addition to genetic predisposition, it became clear that environmental factors and epigenetic influences also contribute to the development of SSc. Epigenetics, which refers to studies that focus on heritable phenotypes resulting from changes in chromatin structure without affecting the DNA sequence, is one of the most rapidly expanding fields in biomedical research. Indeed extensive epigenetic changes have been described in SSc. Alteration in enzymes and mediators involved in DNA methylation and histone modification, as well as dysregulated non-coding RNA levels all contribute to fibrosis, immune dysregulation, and impaired angiogenesis in this disease. Genes that are affected by epigenetic dysregulation include ones involved in autoimmunity, T cell function and regulation, TGFβ pathway, Wnt pathway, extracellular matrix, and transcription factors governing fibrosis and angiogenesis. In this review, we provide a comprehensive overview of the current findings of SSc genetic susceptibility, followed by an extensive description and a systematic review of epigenetic research that has been carried out to date in SSc. We also summarize the therapeutic potential of drugs that affect epigenetic mechanisms, and outline the future prospective of genomics and epigenomics research in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
50
|
Functional implications of Neandertal introgression in modern humans. Genome Biol 2017; 18:61. [PMID: 28366169 PMCID: PMC5376702 DOI: 10.1186/s13059-017-1181-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/23/2017] [Indexed: 01/05/2023] Open
Abstract
Background Admixture between early modern humans and Neandertals approximately 50,000–60,000 years ago has resulted in 1.5–4% Neandertal ancestry in the genomes of present-day non-Africans. Evidence is accumulating that some of these archaic alleles are advantageous for modern humans, while others are deleterious; however, the major mechanism by which these archaic alleles act has not been fully explored. Results Here we assess the contributions of introgressed non-synonymous and regulatory variants to modern human protein and gene expression variation. We show that gene expression changes are more often associated with Neandertal ancestry than expected, and that the introgressed non-synonymous variants tend to have less predicted functional effect on modern human proteins than mutations that arose on the human lineage. Conversely, introgressed alleles contribute proportionally more to expression variation than non-introgressed alleles. Conclusions Our results suggest that the major influence of Neandertal introgressed alleles is through their effects on gene regulation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1181-7) contains supplementary material, which is available to authorized users.
Collapse
|