1
|
Kumar G, Agarwala PK, Srivatsav AT, Ravula A, Ashmitha G, Balakrishnan S, Kapoor S, Narayan R. Identification and Benchmarking of Myokinasib-II as a Selective and Potent Chemical Probe for Exploring MLCK1 Inhibition. ACS Chem Biol 2024; 19:2165-2175. [PMID: 39302825 DOI: 10.1021/acschembio.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Deciphering the functional relevance of every protein is crucial to developing a better (patho)physiological understanding of human biology. The discovery and use of quality chemical probes propel exciting developments for developing drugs in therapeutic areas with unmet clinical needs. Myosin light-chain kinase (MLCK) serves as a possible therapeutic target in a plethora of diseases, including inflammatory diseases, cancer, etc. Recent years have seen a substantial increase in interest in exploring MLCK biology. However, there is only one widely used MLCK modulator, namely, ML-7, that too with a narrow working concentration window and high toxicity profile leading to limited insights. Herein, we report the identification of a potent and highly selective chemical probe, Myokinasib-II, from the synthesis and structure-activity relationship studies of a focused indotropane-based compound collection. Notably, it is structurally distinct from ML-7 and hence meets the need for an alternative inhibitor to study MLCK biology as per the recommended best practices. Moreover, our extensive benchmarking studies demonstrate that Myokinasib-II displays better potency, better selectivity profile, and no nonspecific interference in relevant assays as compared to other known MLCK inhibitors.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Prema Kumari Agarwala
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Aswin T Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ashok Ravula
- School of Mechanical Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - G Ashmitha
- School of Mechanical Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Sreenath Balakrishnan
- School of Mechanical Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Rishikesh Narayan
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| |
Collapse
|
2
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Dagar S, Sharma M, Tsaprailis G, Tapia CS, Crynen G, Joshi PS, Shahani N, Subramaniam S. Ribosome Profiling and Mass Spectrometry Reveal Widespread Mitochondrial Translation Defects in a Striatal Cell Model of Huntington Disease. Mol Cell Proteomics 2024; 23:100746. [PMID: 38447791 PMCID: PMC11040134 DOI: 10.1016/j.mcpro.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
Huntington disease (HD) is caused by an expanded polyglutamine mutation in huntingtin (mHTT) that promotes prominent atrophy in the striatum and subsequent psychiatric, cognitive deficits, and choreiform movements. Multiple lines of evidence point to an association between HD and aberrant striatal mitochondrial functions; however, the present knowledge about whether (or how) mitochondrial mRNA translation is differentially regulated in HD remains unclear. We found that protein synthesis is diminished in HD mitochondria compared to healthy control striatal cell models. We utilized ribosome profiling (Ribo-Seq) to analyze detailed snapshots of ribosome occupancy of the mitochondrial mRNA transcripts in control and HD striatal cell models. The Ribo-Seq data revealed almost unaltered ribosome occupancy on the nuclear-encoded mitochondrial transcripts involved in oxidative phosphorylation (SDHA, Ndufv1, Timm23, Tomm5, Mrps22) in HD cells. By contrast, ribosome occupancy was dramatically increased for mitochondrially encoded oxidative phosphorylation mRNAs (mt-Nd1, mt-Nd2, mt-Nd4, mt-Nd4l, mt-Nd5, mt-Nd6, mt-Co1, mt-Cytb, and mt-ATP8). We also applied tandem mass tag-based mass spectrometry identification of mitochondrial proteins to derive correlations between ribosome occupancy and actual mature mitochondrial protein products. We found many mitochondrial transcripts with comparable or higher ribosome occupancy, but diminished mitochondrial protein products, in HD. Thus, our study provides the first evidence of a widespread dichotomous effect on ribosome occupancy and protein abundance of mitochondria-related genes in HD.
Collapse
Affiliation(s)
- Sunayana Dagar
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Manish Sharma
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - George Tsaprailis
- Proteomics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | | | - Gogce Crynen
- Bioinformatics and Statistics Core, The Wertheim UF Scripps Institute, Jupiter, Florida, USA
| | - Preksha Sandipkumar Joshi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Neelam Shahani
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, California, USA; Norman Fixel Institute for Neurological Diseases, Gainesville, Florida, USA.
| |
Collapse
|
4
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling? Molecules 2023; 28:7909. [PMID: 37894616 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Lipid membrane nanodomains or lipid rafts are 10-200 nm diameter size cholesterol- and sphingolipid-enriched domains of the plasma membrane, gathering many proteins with different roles. Isolation and characterization of plasma membrane proteins by differential centrifugation and proteomic studies have revealed a remarkable diversity of proteins in these domains. The limited size of the lipid membrane nanodomain challenges the simple possibility that all of them can coexist within the same lipid membrane domain. As caveolin-1, flotillin isoforms and gangliosides are currently used as neuronal lipid membrane nanodomain markers, we first analyzed the structural features of these components forming nanodomains at the plasma membrane since they are relevant for building supramolecular complexes constituted by these molecular signatures. Among the proteins associated with neuronal lipid membrane nanodomains, there are a large number of proteins that play major roles in calcium signaling, such as ionotropic and metabotropic receptors for neurotransmitters, calcium channels, and calcium pumps. This review highlights a large variation between the calcium signaling proteins that have been reported to be associated with isolated caveolin-1 and flotillin-lipid membrane nanodomains. Since these calcium signaling proteins are scattered in different locations of the neuronal plasma membrane, i.e., in presynapses, postsynapses, axonal or dendritic trees, or in the neuronal soma, our analysis suggests that different lipid membrane-domain subtypes should exist in neurons. Furthermore, we conclude that classification of lipid membrane domains by their content in calcium signaling proteins sheds light on the roles of these domains for neuronal activities that are dependent upon the intracellular calcium concentration. Some examples described in this review include the synaptic and metabolic activity, secretion of neurotransmitters and neuromodulators, neuronal excitability (long-term potentiation and long-term depression), axonal and dendritic growth but also neuronal cell survival and death.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
5
|
Morales-Paytuví F, Fajardo A, Ruiz-Mirapeix C, Rae J, Tebar F, Bosch M, Enrich C, Collins BM, Parton RG, Pol A. Early proteostasis of caveolins synchronizes trafficking, degradation, and oligomerization to prevent toxic aggregation. J Cell Biol 2023; 222:e202204020. [PMID: 37526691 PMCID: PMC10394380 DOI: 10.1083/jcb.202204020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/05/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.
Collapse
Affiliation(s)
- Frederic Morales-Paytuví
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alba Fajardo
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Ruiz-Mirapeix
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - James Rae
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Francesc Tebar
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Brett M Collins
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ) , Brisbane, Australia
- Centre for Microscopy and Microanalysis (CMM), The University of Queensland (UQ), Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona, Spain
| |
Collapse
|
6
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
7
|
Lovergne L, Ghosh D, Schuck R, Polyzos AA, Chen AD, Martin MC, Barnard ES, Brown JB, McMurray CT. An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms. Sci Rep 2021; 11:15598. [PMID: 34341363 PMCID: PMC8329289 DOI: 10.1038/s41598-021-93686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Although some neurodegenerative diseases can be identified by behavioral characteristics relatively late in disease progression, we currently lack methods to predict who has developed disease before the onset of symptoms, when onset will occur, or the outcome of therapeutics. New biomarkers are needed. Here we describe spectral phenotyping, a new kind of biomarker that makes disease predictions based on chemical rather than biological endpoints in cells. Spectral phenotyping uses Fourier Transform Infrared (FTIR) spectromicroscopy to produce an absorbance signature as a rapid physiological indicator of disease state. FTIR spectromicroscopy has over the past been used in differential diagnoses of manifest disease. Here, we report that the unique FTIR chemical signature accurately predicts disease class in mouse with high probability in the absence of brain pathology. In human cells, the FTIR biomarker accurately predicts neurodegenerative disease class using fibroblasts as surrogate cells.
Collapse
Affiliation(s)
- Lila Lovergne
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Renaud Schuck
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew D Chen
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Michael C Martin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James B Brown
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Di Cristo F, Calarco A, Digilio FA, Sinicropi MS, Rosano C, Galderisi U, Melone MAB, Saturnino C, Peluso G. The Discovery of Highly Potent THP Derivatives as OCTN2 Inhibitors: From Structure-Based Virtual Screening to In Vivo Biological Activity. Int J Mol Sci 2020; 21:E7431. [PMID: 33050117 PMCID: PMC7583931 DOI: 10.3390/ijms21197431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
A mismatch between β-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy;
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Vico Luigi De Crecchio 1, 80138 Naples, Italy;
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania “Luigi Vanvitelli”, via Sergio Pansini 5, 80131 Naples, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)-CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (A.C.); (F.A.D.)
| |
Collapse
|
9
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Hamilton J, Brustovetsky T, Brustovetsky N. Mutant huntingtin fails to directly impair brain mitochondria. J Neurochem 2019; 151:716-731. [PMID: 31418857 PMCID: PMC6917837 DOI: 10.1111/jnc.14852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Although the mechanisms by which mutant huntingtin (mHtt) results in Huntington's disease (HD) remain unclear, mHtt-induced mitochondrial defects were implicated in HD pathogenesis. The effect of mHtt could be mediated by transcriptional alterations, by direct interaction with mitochondria, or by both. In the present study, we tested a hypothesis that mHtt directly damages mitochondria. To test this hypothesis, we applied brain cytosolic fraction from YAC128 mice, containing mHtt, to brain non-synaptic and synaptic mitochondria from wild-type mice and assessed mitochondrial respiration with a Clark-type oxygen electrode, membrane potential and Ca2+ uptake capacity with tetraphenylphosphonium (TPP+ )- and Ca2+ -sensitive electrodes, respectively, and, reactive oxygen species production with Amplex Red assay. The amount of mHtt bound to mitochondria following incubation with mHtt-containing cytosolic fraction was greater than the amount of mHtt bound to brain mitochondria isolated from YAC128 mice. Despite mHtt binding to wild-type mitochondria, no abnormalities in mitochondrial functions were detected. This is consistent with our previous results demonstrating the lack of defects in brain mitochondria isolated from R6/2 and YAC128 mice. This, however, could be because of partial loss of mitochondrially bound mHtt during the isolation procedure. Consequently, we increased the amount of mitochondrially bound mHtt by incubating brain non-synaptic and synaptic mitochondria isolated from YAC128 mice with mHtt-containing cytosolic fraction. Despite the enrichment of YAC128 brain mitochondria with mHtt, mitochondrial functions (respiration, membrane potential, reactive oxygen species production, Ca2+ uptake capacity) remained unchanged. Overall, our results suggest that mHtt does not directly impair mitochondrial functions, arguing against the involvement of this mechanism in HD pathogenesis. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- James Hamilton
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
11
|
Wehrle A, Witkos TM, Schneider JC, Hoppmann A, Behringer S, Köttgen A, Elting M, Spranger J, Lowe M, Lausch E. A common pathomechanism in GMAP-210- and LBR-related diseases. JCI Insight 2018; 3:121150. [PMID: 30518689 PMCID: PMC6328090 DOI: 10.1172/jci.insight.121150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Biallelic loss-of-function mutations in TRIP11, encoding the golgin GMAP-210, cause the lethal human chondrodysplasia achondrogenesis 1A (ACG1A). We now find that a homozygous splice-site mutation of the lamin B receptor (LBR) gene results in the same phenotype. Intrigued by the genetic heterogeneity, we compared GMAP-210- and LBR-deficient primary cells to unravel how particular mutations in LBR cause a phenocopy of ACG1A. We could exclude a regulatory interaction between LBR and GMAP-210 in patients' cells. However, we discovered a common disruption of Golgi apparatus architecture that was accompanied by decreased secretory trafficking in both cases. Deficiency of Golgi-dependent glycan processing indicated a similar downstream effect of the disease-causing mutations upon Golgi function. Unexpectedly, our results thus point to a common pathogenic mechanism in GMAP-210- and LBR-related diseases attributable to defective secretory trafficking at the Golgi apparatus.
Collapse
Affiliation(s)
- Anika Wehrle
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tomasz M. Witkos
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Judith C. Schneider
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anselm Hoppmann
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Genetic Epidemiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sidney Behringer
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mariet Elting
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, Netherlands
| | - Jürgen Spranger
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Polyzos AA, Wood NI, Williams P, Wipf P, Morton AJ, McMurray CT. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington's disease is age- and sex- dependent. PLoS One 2018; 13:e0194580. [PMID: 29630611 PMCID: PMC5890981 DOI: 10.1371/journal.pone.0194580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
We have reported that the radical scavenger XJB-5-131 attenuates or reverses progression of the disease phenotype in the HdhQ(150/150) mouse, a slow onset model of HD. Here, we tested whether XJB-5-131 has beneficial effects in R6/2 mice, a severe early onset model of HD. We found that XJB-5-131 has beneficial effects in R6/2 mice, by delaying features of the motor and histological phenotype. The impact was sex-dependent, with a stronger effect in male mice. XJB-5-131 treatment improved some locomotor deficits in female R6/2 mice, but the effects were, in general, greater in male mice. Chronic treatment of male R6/2 mice with XJB-5-1-131 reduced weight loss, and improved the motor and temperature regulation deficits, especially in male mice. Treatment with XJB-5-131 had no effect on the lifespan of R6/2 mice. Nevertheless, it significantly slowed somatic expansion at 90 days, and reduced the density of inclusions. Our data show that while treatment with XJB-5-131 had complex effects on the phenotype of R6/2 mice, it produced a number of significant improvements in this severe model of HD.
Collapse
Affiliation(s)
- Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Nigel I. Wood
- Department of Physiology, Development, and Neuroscience, Anatomy Building, University of Cambridge, Cambridge, United Kingdom
| | - Paul Williams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - A. Jennifer Morton
- Department of Physiology, Development, and Neuroscience, Anatomy Building, University of Cambridge, Cambridge, United Kingdom
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sameni S, Malacrida L, Tan Z, Digman MA. Alteration in Fluidity of Cell Plasma Membrane in Huntington Disease Revealed by Spectral Phasor Analysis. Sci Rep 2018; 8:734. [PMID: 29335600 PMCID: PMC5768877 DOI: 10.1038/s41598-018-19160-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022] Open
Abstract
Huntington disease (HD) is a late-onset genetic neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide in the exon 1 of the gene encoding the polyglutamine (polyQ). It has been shown that protein degradation and lipid metabolism is altered in HD. In many neurodegenerative disorders, impaired lipid homeostasis is one of the early events in the disease onset. Yet, little is known about how mutant huntingtin may affect phospholipids membrane fluidity. Here, we investigated how membrane fluidity in the living cells (differentiated PC12 and HEK293 cell lines) are affected using a hyperspectral imaging of widely used probes, LAURDAN. Using phasor approach, we characterized the fluorescence of LAURDAN that is sensitive to the polarity of the immediate environment. LAURDAN is affected by the physical order of phospholipids (lipid order) and reports the membrane fluidity. We also validated our results using a different fluorescent membrane probe, Nile Red (NR). The plasma membrane in the cells expressing expanded polyQ shows a shift toward increased membrane fluidity revealed by both LAURDAN and NR spectral phasors. This finding brings a new perspective in the understanding of the early stages of HD that can be used as a target for drug screening.
Collapse
Affiliation(s)
- Sara Sameni
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Leonel Malacrida
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Departamento de Fisiopatología, Hospital de Clinicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Zhiqun Tan
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, USA
| | - Michelle A Digman
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
Valenza M, Chen JY, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, Leoni V, Caccia C, Brilli E, Di Donato S, Boido MM, Vercelli A, Vandelli MA, Forni F, Cepeda C, Levine MS, Tosi G, Cattaneo E. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med 2016; 7:1547-64. [PMID: 26589247 PMCID: PMC4693506 DOI: 10.15252/emmm.201505413] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Brain cholesterol biosynthesis and cholesterol levels are reduced in mouse models of Huntington's disease (HD), suggesting that locally synthesized, newly formed cholesterol is less available to neurons. This may be detrimental for neuronal function, especially given that locally synthesized cholesterol is implicated in synapse integrity and remodeling. Here, we used biodegradable and biocompatible polymeric nanoparticles (NPs) modified with glycopeptides (g7) and loaded with cholesterol (g7‐NPs‐Chol), which per se is not blood–brain barrier (BBB) permeable, to obtain high‐rate cholesterol delivery into the brain after intraperitoneal injection in HD mice. We report that g7‐NPs, in contrast to unmodified NPs, efficiently crossed the BBB and localized in glial and neuronal cells in different brain regions. We also found that repeated systemic delivery of g7‐NPs‐Chol rescued synaptic and cognitive dysfunction and partially improved global activity in HD mice. These results demonstrate that cholesterol supplementation to the HD brain reverses functional alterations associated with HD and highlight the potential of this new drug‐administration route to the diseased brain.
Collapse
Affiliation(s)
- Marta Valenza
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | - Jane Y Chen
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience Brain Research Institute David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Eleonora Di Paolo
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | - Barbara Ruozi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Belletti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Costanza Ferrari Bardile
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | - Valerio Leoni
- Neurological Institute C. Besta, Milan, Italy Laboratory of Clinical Chemistry, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | | | - Elisa Brilli
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| | | | - Marina M Boido
- Neuroscience Institute Cavalieri Ottolenghi Neuroscience Institute of Turin, Orbassano Turin, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi Neuroscience Institute of Turin, Orbassano Turin, Italy
| | - Maria A Vandelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Flavio Forni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience Brain Research Institute David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience Brain Research Institute David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, USA
| | - Giovanni Tosi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Cattaneo
- Department of BioSciences, Centre for Stem Cell Research Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
15
|
Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism and Ca2+ handling in isolated brain mitochondria and striatal neurons from R6/2 mice, a model of Huntington's disease. Hum Mol Genet 2016; 25:2762-2775. [PMID: 27131346 DOI: 10.1093/hmg/ddw133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 01/25/2023] Open
Abstract
Alterations in oxidative metabolism and defects in mitochondrial Ca2+ handling have been implicated in the pathology of Huntington's disease (HD), but existing data are contradictory. We investigated the effect of human mHtt fragments on oxidative metabolism and Ca2+ handling in isolated brain mitochondria and cultured striatal neurons from the R6/2 mouse model of HD. Non-synaptic and synaptic mitochondria isolated from the brains of R6/2 mice had similar respiratory rates and Ca2+ uptake capacity compared with mitochondria from wild-type (WT) mice. Respiratory activity of cultured striatal neurons measured with Seahorse XF24 flux analyzer revealed unaltered cellular respiration in neurons derived from R6/2 mice compared with neurons from WT animals. Consistent with the lack of respiratory dysfunction, ATP content of cultured striatal neurons from R6/2 and WT mice was similar. Mitochondrial Ca2+ accumulation was also evaluated in cultured striatal neurons from R6/2 and WT animals. Our data obtained with striatal neurons derived from R6/2 and WT mice show that both glutamate-induced increases in cytosolic Ca2+ and subsequent carbonilcyanide p-triflouromethoxyphenylhydrazone-induced increases in cytosolic Ca2+ were similar between WT and R6/2, suggesting that mitochondria in neurons derived from both types of animals accumulated comparable amounts of Ca2+ Overall, our data argue against respiratory deficiency and impaired Ca2+ handling induced by human mHtt fragments in both isolated brain mitochondria and cultured striatal neurons from transgenic R6/2 mice.
Collapse
Affiliation(s)
| | | | | | - Robert A Harris
- Department of Biochemistry and Molecular Biology.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology .,Stark Neuroscience Research InstituteIndiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Pan R, Xu W, Ding Y, Lu S, Chen P. Uptake Mechanism and Direct Translocation of a New CPP for siRNA Delivery. Mol Pharm 2016; 13:1366-74. [PMID: 26937821 DOI: 10.1021/acs.molpharmaceut.6b00030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since their development, cell-penetrating peptides (CPPs) have been used as delivery vehicles for various genetic or therapeutic agents; however, the uptake mechanisms of CPPs and the delivery details are still unclear. Understanding the mechanisms of cellular internalization of CPPs facilitate their development of CPPs as gene delivery vectors. In the present study, we evaluated the internalization process of a previously designed CPP, STR-KV, complexed with small interference RNA (siRNA) targeting at the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Using heparin treatment and chemical endocytic inhibitors, we elucidated that the electrostatic interaction of STR-KV/siRNA complex with heparin sulfate proteoglycans at the cell membrane surface triggered the energy-independent uptake of the majority of the complexes, which most likely through a direct translocation pathway. The intracellular trafficking and internalization kinetics observed by confocal microscopy also confirmed that the complex was uptaken through a nonendocytic pathway.
Collapse
Affiliation(s)
- Ran Pan
- Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Wen Xu
- Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Yong Ding
- Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Sheng Lu
- Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - P Chen
- Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Boussicault L, Alves S, Lamazière A, Planques A, Heck N, Moumné L, Despres G, Bolte S, Hu A, Pagès C, Galvan L, Piguet F, Aubourg P, Cartier N, Caboche J, Betuing S. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease. Brain 2016; 139:953-70. [PMID: 26912634 PMCID: PMC4766376 DOI: 10.1093/brain/awv384] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/04/2015] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington’s disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington’s disease patients when compared to controls.
Cyp46A1
mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington’s disease mouse model and in ST
hdh
Q111 cell lines.
In vivo
, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington’s disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod.
In vitro
, CYP46A1 restoration protected ST
hdh
Q111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington’s disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol.
In vitro
, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in Huntington’s disease.
Collapse
Affiliation(s)
- Lydie Boussicault
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandro Alves
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Antonin Lamazière
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Anabelle Planques
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 4 Development and Neuropharmacology, Center for Interdisciplinary Research in Biology, INSERM CNRS 7141. Collège de France
| | - Nicolas Heck
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Lara Moumné
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Gaëtan Despres
- 3 Laboratory of Mass Spectrometry, INSERM ERL 1157, CNRS UMR 7203 LBM, Sorbonne Universités- Université Pierre et Marie Curie-Paris 6, CHU Saint-Antoine, 75012 Paris, France
| | - Susanne Bolte
- 5 Cellular Imaging Facility, Institute of Biology Paris-Seine CNRS FR, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, Paris, France
| | - Amélie Hu
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France 6 Laboratory of Experimental Neurology, Université Libre de Bruxelles, Belgium
| | - Christiane Pagès
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Laurie Galvan
- 7 Semel Institute, University California Los Angeles, Los Angeles, USA
| | - Francoise Piguet
- 8 Department of Translational Medicine and Neurogenetics, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), UMR 7104 CNRS/UdS, INSERM U964, BP 10142, 67404 Illkirch Cedex, France
| | - Patrick Aubourg
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Nathalie Cartier
- 2 INSERM U1169, Le Kremlin-Bicêtre, MIRCEN CEA and Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France
| | - Jocelyne Caboche
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| | - Sandrine Betuing
- 1 Neuronal Signaling and Gene Regulation, Neurosciences Paris Seine, Institute of Biology Paris-Seine, Sorbonne Universités, UPMC Université Pierre et Marie Curie-Paris 6, INSERM/UMR-S 1130, CNRS/UMR 8246, 75005 Paris, France
| |
Collapse
|
18
|
Petrov AM, Kasimov MR, Zefirov AL. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction. Acta Naturae 2016; 8:58-73. [PMID: 27099785 PMCID: PMC4837572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cholesterol is an important constituent of cell membranes and plays a crucial role in the compartmentalization of the plasma membrane and signaling. Brain cholesterol accounts for a large proportion of the body's total cholesterol, existing in two pools: the plasma membranes of neurons and glial cells and the myelin membranes . Cholesterol has been recently shown to be important for synaptic transmission, and a link between cholesterol metabolism defects and neurodegenerative disorders is now recognized. Many neurodegenerative diseases are characterized by impaired cholesterol turnover in the brain. However, at which stage the cholesterol biosynthetic pathway is perturbed and how this contributes to pathogenesis remains unknown. Cognitive deficits and neurodegeneration may be associated with impaired synaptic transduction. Defects in cholesterol biosynthesis can trigger dysfunction of synaptic transmission. In this review, an overview of cholesterol turnover under physiological and pathological conditions is presented (Huntington's, Niemann-Pick type C diseases, Smith-Lemli-Opitz syndrome). We will discuss possible mechanisms by which cholesterol content in the plasma membrane influences synaptic processes. Changes in cholesterol metabolism in Alzheimer's disease, Parkinson's disease, and autistic disorders are beyond the scope of this review and will be summarized in our next paper.
Collapse
Affiliation(s)
- A. M. Petrov
- Kazan Medical University, Department of Normal Physiology, Butlerova str. 49, Kazan, Russia, 420012
| | - M. R. Kasimov
- Kazan Medical University, Department of Normal Physiology, Butlerova str. 49, Kazan, Russia, 420012
| | - A. L. Zefirov
- Kazan Medical University, Department of Normal Physiology, Butlerova str. 49, Kazan, Russia, 420012
| |
Collapse
|
19
|
Cha SH, Choi YR, Heo CH, Kang SJ, Joe EH, Jou I, Kim HM, Park SM. Loss of parkin promotes lipid rafts-dependent endocytosis through accumulating caveolin-1: implications for Parkinson's disease. Mol Neurodegener 2015; 10:63. [PMID: 26627850 PMCID: PMC4666086 DOI: 10.1186/s13024-015-0060-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Parkinson’s disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor dysfunctions. While most PD is sporadic in nature, a significant subset can be linked to either autosomal dominant or recessive mutations. PARK2, encoding the E3 ubiquitin ligase, parkin, is the most frequently mutated gene in autosomal recessive early onset PD. It has recently been reported that PD-associated gene products such as PINK1, α-synuclein, LRRK2, and DJ-1, as well as parkin associate with lipid rafts, suggesting that the dysfunction of these proteins in lipid rafts may be a causal factor of PD. Therefore here, we examined the relationship between lipid rafts-related proteins and parkin. Results We identified caveolin-1 (cav-1), which is one of the major constituents of lipid rafts at the plasma membrane, as a substrate of parkin. Loss of parkin function was found to disrupt the ubiquitination and degradation of cav-1, resulting in elevated cav-1 protein level in cells. Moreover, the total cholesterol level and membrane fluidity was altered by parkin deficiency, causing dysregulation of lipid rafts-dependent endocytosis. Further, cell-to-cell transmission of α-synuclein was facilitated by parkin deficiency. Conclusions Our results demonstrate that alterations in lipid rafts by the loss of parkin via cav-1 may be a causal factor of PD, and cav-1 may be a novel therapeutic target for PD.
Collapse
Affiliation(s)
- Seon-Heui Cha
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Yu Ree Choi
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Cheol-Ho Heo
- Department of Chemistry, Ajou University, Suwon, Korea
| | - Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | | | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
20
|
Budworth H, Harris FR, Williams P, Lee DY, Holt A, Pahnke J, Szczesny B, Acevedo-Torres K, Ayala-Peña S, McMurray CT. Suppression of Somatic Expansion Delays the Onset of Pathophysiology in a Mouse Model of Huntington's Disease. PLoS Genet 2015; 11:e1005267. [PMID: 26247199 PMCID: PMC4527696 DOI: 10.1371/journal.pgen.1005267] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. We have created an HD mouse model that resolves the effects of the inherited and somatic expansions. We show here that suppressing somatic expansion substantially delays the onset of disease in littermates that inherit the same disease-length allele. Furthermore, a pharmacological inhibitor, XJB-5-131, inhibits the lengthening of the repeat tracks, and correlates with rescue of motor decline in these animals. The results provide evidence that pharmacological approaches to offset disease progression are possible. Huntington’s Disease (HD) is caused by inheritance of a single disease-length allele harboring an expanded CAG repeat, which continues to expand in somatic tissues with age. There is no correction for the inherited mutation, but if somatic expansion contributes to disease, then a therapeutic approach is possible. The inherited disease allele expresses a toxic protein, and whether further somatic expansion adds to toxicity is unknown. Here we describe a mouse model of Huntington’s disease that allows us to separate out the effects of the inherited gene from the expansion that occurs during life. We find that blocking the continued expansion of the gene causes a delay in onset of symptoms. This result opens the doors to future therapeutics designed to shorten the repeat.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Faye R. Harris
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Paul Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Do Yup Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, Korea
| | - Amy Holt
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Jens Pahnke
- Department of Neuropathology, University of Oslo, Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
| | - Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Karina Acevedo-Torres
- Puerto Rico Center for Inherited Diseases, University of Puerto Rico, San Juan, Puerto Rico
- Department of Pharmacology and Toxicology, University of Puerto Rico, San Juan, Puerto Rico
| | - Sylvette Ayala-Peña
- Puerto Rico Center for Inherited Diseases, University of Puerto Rico, San Juan, Puerto Rico
- Department of Pharmacology and Toxicology, University of Puerto Rico, San Juan, Puerto Rico
| | - Cynthia T. McMurray
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
The impairment of cholesterol metabolism in Huntington disease. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1095-105. [DOI: 10.1016/j.bbalip.2014.12.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 02/02/2023]
|
22
|
Hamilton J, Pellman JJ, Brustovetsky T, Harris RA, Brustovetsky N. Oxidative metabolism in YAC128 mouse model of Huntington's disease. Hum Mol Genet 2015; 24:4862-78. [PMID: 26041817 DOI: 10.1093/hmg/ddv209] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022] Open
Abstract
Alterations in oxidative metabolism are considered to be one of the major contributors to Huntington's disease (HD) pathogenesis. However, existing data about oxidative metabolism in HD are contradictory. Here, we investigated the effect of mutant huntingtin (mHtt) on oxidative metabolism in YAC128 mice. Both mHtt and wild-type huntingtin (Htt) were associated with mitochondria and the amount of bound Htt was four-times higher than the amount of bound mHtt. Percoll gradient-purified brain synaptic and non-synaptic mitochondria as well as unpurified brain, liver and heart mitochondria, isolated from 2- and 10-month-old YAC128 mice and age-matched WT littermates had similar respiratory rates. There was no difference in mitochondrial membrane potential or ADP and ATP levels. Expression of selected nuclear-encoded mitochondrial proteins in 2- and 10-month-old YAC128 and WT mice was similar. Cultured striatal and cortical neurons from YAC128 and WT mice had similar respiratory and glycolytic activities as measured with Seahorse XF24 analyzer in medium containing 10 mm glucose and 15 mm pyruvate. In the medium with 2.5 mm glucose, YAC128 striatal neurons had similar respiration, but slightly lower glycolytic activity. Striatal neurons had lower maximal respiration compared with cortical neurons. In vivo experiments with YAC128 and WT mice showed similar O2 consumption, CO2 release, physical activity, food consumption and fasted blood glucose. However, YAC128 mice were heavier and had more body fat compared with WT mice. Overall, our data argue against respiratory deficiency in YAC128 mice and, consequently, suggest that mitochondrial respiratory dysfunction is not essential for HD pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Robert A Harris
- Department of Biochemistry and Molecular Biology and Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Department of Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| |
Collapse
|