1
|
Lopez ME, Wendt D, Lawrence R, Gong K, Ong H, Yip B, Chen J, Mangini L, Handyside B, Giaramita A, Lamichhane A, Lo M, Agrawal V, Van Vleet J, Abolhesn A, Felix JB, Villalpando I, Bhat V, De Angelis R, Ru Y, Khan A, Fong S, Christianson T, Bullens S, Crawford BE, Bunting S, Aoyagi-Scharber M. Intracerebroventricular administration of a modified hexosaminidase ameliorates late-stage neurodegeneration in a GM2 mouse model. PLoS One 2025; 20:e0315005. [PMID: 39752451 PMCID: PMC11698352 DOI: 10.1371/journal.pone.0315005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/19/2024] [Indexed: 01/06/2025] Open
Abstract
The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease. Enzyme replacement therapy was administered by repeat intracerebroventricular injections in Sandhoff disease model mice with dosing beginning before and after signs of neurodegeneration. As previously observed, HexA effectively increased the lifespan of Sandhoff disease mice by 3.5-fold only when treatment was started before onset of neurodegeneration. In contrast, HexD3 halted motor decline and ameliorated late-stage disease severity even when dosing began late, after neurodegeneration onset. Additionally, HexD3 had advantages over HexA in enzyme stability, distribution potential, and homodimer activity. Overall, our data indicate that advanced therapeutics may widen the treatment window for neurodegenerative disorders.
Collapse
Affiliation(s)
- Manuel E. Lopez
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Daniel Wendt
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Roger Lawrence
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Kerui Gong
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Hoonsan Ong
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Bryan Yip
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Joseph Chen
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Linley Mangini
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Britta Handyside
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | | | - Melanie Lo
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Vishal Agrawal
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Jeremy Van Vleet
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Amanda Abolhesn
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Jessica B. Felix
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Vikas Bhat
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Yuanbin Ru
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Ayesha Khan
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Sherry Bullens
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | | - Stuart Bunting
- BioMarin Pharmaceutical Inc., Novato, CA, United States of America
| | | |
Collapse
|
2
|
Osher E, Anis Y, Singer-Shapiro R, Urshanski N, Unger T, Albeck S, Bogin O, Weisinger G, Kohen F, Valevski A, Fattal-Valevski A, Sagi L, Weitman M, Shenberger Y, Sagiv N, Navon R, Wilchek M, Stern N. Treating late-onset Tay Sachs disease: Brain delivery with a dual trojan horse protein. Mol Ther Methods Clin Dev 2024; 32:101300. [PMID: 39211733 PMCID: PMC11357852 DOI: 10.1016/j.omtm.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/13/2024] [Indexed: 09/04/2024]
Abstract
Tay-Sachs (TS) disease is a neurodegenerative disease resulting from mutations in the gene encoding the α-subunit (HEXA) of lysosomal β-hexosaminidase A (HexA). We report that (1) recombinant HEXA alone increased HexA activity and decreased GM2 content in human TS glial cells and peripheral mononuclear blood cells; 2) a recombinant chimeric protein composed of HEXA linked to two blood-brain barrier (BBB) entry elements, a transferrin receptor binding sequence and granulocyte-colony stimulating factor, associates with HEXB in vitro; reaches human cultured TS cells lysosomes and mouse brain cells, especially neurons, in vivo; lowers GM2 in cultured human TS cells; lowers whole brain GM2 concentration by approximately 40% within 6 weeks, when injected intravenously (IV) to adult TS-mutant mice mimicking the slow course of late-onset TS; and increases forelimbs grip strength. Hence, a chimeric protein equipped with dual BBB entry elements can transport a large protein such as HEXA to the brain, decrease the accumulation of GM2, and improve muscle strength, thereby providing potential treatment for late-onset TS.
Collapse
Affiliation(s)
- Esther Osher
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Anis
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Ruth Singer-Shapiro
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Nataly Urshanski
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Unger
- Department of Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Albeck
- Department of Structural Proteomics, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Bogin
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Gary Weisinger
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Fortune Kohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Liora Sagi
- Pediatric Neurology Unit, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Weitman
- The Chemistry Department, Bar Ian University, Ramat Gan, Israel
| | | | - Nadav Sagiv
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
| | - Ruth Navon
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meir Wilchek
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Naftali Stern
- The Sagol Center for Epigenetics and Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Leal AF, Suarez DA, Echeverri-Peña OY, Albarracín SL, Alméciga-Díaz CJ, Espejo-Mojica ÁJ. Sphingolipids and their role in health and disease in the central nervous system. Adv Biol Regul 2022; 85:100900. [PMID: 35870382 DOI: 10.1016/j.jbior.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/22/2022]
Abstract
Sphingolipids (SLs) are lipids derived from sphingosine, and their metabolism involves a broad and complex network of reactions. Although SLs are widely distributed in the body, it is well known that they are present in high concentrations within the central nervous system (CNS). Under physiological conditions, their abundance and distribution in the CNS depend on brain development and cell type. Consequently, SLs metabolism impairment may have a significant impact on the normal CNS function, and has been associated with several disorders, including sphingolipidoses, Parkinson's, and Alzheimer's. This review summarizes the main SLs characteristics and current knowledge about synthesis, catabolism, regulatory pathways, and their role in physiological and pathological scenarios in the CNS.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Sonia Luz Albarracín
- Nutrition and Biochemistry Department, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| | - Ángela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.
| |
Collapse
|
4
|
Sala D, Ornaghi F, Morena F, Argentati C, Valsecchi M, Alberizzi V, Di Guardo R, Bolino A, Aureli M, Martino S, Gritti A. Therapeutic advantages of combined gene/cell therapy strategies in a murine model of GM2 gangliosidosis. Mol Ther Methods Clin Dev 2022; 25:170-189. [PMID: 35434178 PMCID: PMC8983315 DOI: 10.1016/j.omtm.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/13/2022] [Indexed: 11/28/2022]
Abstract
Genetic deficiency of β-N-acetylhexosaminidase (Hex) functionality leads to accumulation of GM2 ganglioside in Tay-Sachs disease and Sandhoff disease (SD), which presently lack approved therapies. Current experimental gene therapy (GT) approaches with adeno-associated viral vectors (AAVs) still pose safety and efficacy issues, supporting the search for alternative therapeutic strategies. Here we leveraged the lentiviral vector (LV)-mediated intracerebral (IC) GT platform to deliver Hex genes to the CNS and combined this strategy with bone marrow transplantation (BMT) to provide a timely, pervasive, and long-lasting source of the Hex enzyme in the CNS and periphery of SD mice. Combined therapy outperformed individual treatments in terms of lifespan extension and normalization of the neuroinflammatory/neurodegenerative phenotypes of SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in brain tissues that single treatments failed to achieve. Our results highlight the synergic mode of action of LV-mediated IC GT and BMT, clarify the contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of corrective enzymatic activity. These results have important implications for interpretation of ongoing experimental therapies and for design of more effective treatment strategies for GM2 gangliosidosis.
Collapse
Affiliation(s)
- Davide Sala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesca Ornaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Manuela Valsecchi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Roberta Di Guardo
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, 20132 Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Via Fratelli Cervi 93, 20090 Segrate, MI, Italy
| | - Sabata Martino
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
5
|
Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconj J 2021; 39:39-53. [PMID: 34757540 PMCID: PMC8979855 DOI: 10.1007/s10719-021-10023-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
It is well established that lysosomal glucocerebrosidase gene (GBA) variants are a risk factor for Parkinson’s disease (PD), with increasing evidence suggesting a loss of function mechanism. One question raised by this genetic association is whether variants of genes involved in other aspects of sphingolipid metabolism are also associated with PD. Recent studies in sporadic PD have identified variants in multiple genes linked to diseases of glycosphingolipid (GSL) metabolism to be associated with PD. GSL biosynthesis is a complex pathway involving the coordinated action of multiple enzymes in the Golgi apparatus. GSL catabolism takes place in the lysosome and is dependent on the action of multiple acid hydrolases specific for certain substrates and glycan linkages. The finding that variants in multiple GSL catabolic genes are over-represented in PD in a heterozygous state highlights the importance of GSLs in the healthy brain and how lipid imbalances and lysosomal dysfunction are associated with normal ageing and neurodegenerative diseases. In this article we will explore the link between lysosomal storage disorders and PD, the GSL changes seen in both normal ageing, lysosomal storage disorders (LSDs) and PD and the mechanisms by which these changes can affect neurodegeneration.
Collapse
|
6
|
Osmon KJ, Thompson P, Woodley E, Karumuthil-Melethil S, Heindel C, Keimel JG, Kaemmerer WF, Gray SJ, Walia JS. Treatment of GM2 Gangliosidosis in Adult Sandhoff Mice using an Intravenous Self-Complementary Hexosaminidase Vector. Curr Gene Ther 2021; 22:262-276. [PMID: 34530708 DOI: 10.2174/1566523221666210916153051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of β-hexosaminidase A enzyme (HexA), an α/β-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEXM, has previously been shown to form a stable homodimer, HexM, that hydrolyzes GM2 gangliosides (GM2) in vivo. MATERIALS & METHODS The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. RESULTS Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. CONCLUSION These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.
Collapse
Affiliation(s)
- Karlaina Jl Osmon
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario. Canada
| | - Patrick Thompson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario. Canada
| | - Evan Woodley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario. Canada
| | | | - Cliff Heindel
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina. United States
| | - John G Keimel
- New Hope Research Foundation, North Oaks, Minnesota. United States
| | | | - Steven J Gray
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina. United States
| | - Jagdeep S Walia
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario. Canada
| |
Collapse
|
7
|
Maguire AS, Martin DR. White Matter Pathology as a Barrier to Gangliosidosis Gene Therapy. Front Cell Neurosci 2021; 15:682106. [PMID: 34456684 PMCID: PMC8397537 DOI: 10.3389/fncel.2021.682106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
The gangliosidoses are a family of neurodegenerative lysosomal storage diseases that have recently seen promising advances in gene therapy. White matter deficits are well established components of gangliosidosis pathology that are now receiving more attention because they are partially refractory to correction by gene therapy. After a brief synopsis of normal myelinogenesis, this review outlines current viewpoints on the origin of white matter deficits in the gangliosidoses and potential obstacles to treating them effectively by gene therapy. Dysmyelinogenesis (failure of myelin sheaths to form properly) is proposed as the predominant contributor to white matter pathology, but precise mechanistic details are not well understood. The involvement of neuronal storage deficits may extend beyond secondary demyelination (destruction of myelin due to axonal loss) and contribute to dysmyelinogenesis. Preclinical studies in animal models of the gangliosidoses have substantially improved lifespan and quality of life, leading to the initiation of several clinical trials. However, improvement of white matter pathology has lagged behind other metrics and few evidence-based explanations have been proposed to date. Research groups in the field are encouraged to include myelin-specific investigations in future gene therapy work to address this gap in knowledge.
Collapse
Affiliation(s)
- Anne S. Maguire
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Douglas R. Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, United States
| |
Collapse
|
8
|
Asahina M, Fujinawa R, Nakamura S, Yokoyama K, Tozawa R, Suzuki T. Ngly1 -/- rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum Mol Genet 2021; 29:1635-1647. [PMID: 32259258 PMCID: PMC7322575 DOI: 10.1093/hmg/ddaa059] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency, an autosomal recessive disease caused by mutations in the NGLY1 gene, is characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, movement disorders and other neurological phenotypes. Because of few animal models that recapitulate these clinical signatures, the mechanisms of the onset of the disease and its progression are poorly understood, and the development of therapies is hindered. In this study, we generated the systemic Ngly1-deficient rodent model, Ngly1−/− rats, which showed developmental delay, movement disorder, somatosensory impairment and scoliosis. These phenotypes in Ngly1−/− rats are consistent with symptoms in human patients. In accordance with the pivotal role played by NGLY1 in endoplasmic reticulum-associated degradation processes, cleaving N-glycans from misfolded glycoproteins in the cytosol before they can be degraded by the proteasome, loss of Ngly1 led to accumulation of cytoplasmic ubiquitinated proteins, a marker of misfolded proteins in the neurons of the central nervous system of Ngly1−/− rats. Histological analysis identified prominent pathological abnormalities, including necrotic lesions, mineralization, intra- and extracellular eosinophilic bodies, astrogliosis, microgliosis and significant loss of mature neurons in the thalamic lateral and the medial parts of the ventral posterior nucleus and ventral lateral nucleus of Ngly1−/− rats. Axonal degradation in the sciatic nerves was also observed, as in human subjects. Ngly1−/− rats, which mimic the symptoms of human patients, will be a useful animal model for preclinical testing of therapeutic options and understanding the detailed mechanisms of NGLY1 deficiency.
Collapse
Affiliation(s)
- Makoto Asahina
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Kanagawa 2518555, Japan
| | - Reiko Fujinawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan
| | - Sayuri Nakamura
- Nonclinical Safety Research, Axcelead Drug Discovery Partners Inc., Kanagawa 2510012, Japan
| | - Kotaro Yokoyama
- Nonclinical Safety Research, Axcelead Drug Discovery Partners Inc., Kanagawa 2510012, Japan
| | - Ryuichi Tozawa
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Kanagawa 2518555, Japan
| | - Tadashi Suzuki
- Takeda-CiRA Joint Program (T-CiRA), Kanagawa 2518555, Japan.,Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 3510198, Japan
| |
Collapse
|
9
|
Rha AK, Maguire AS, Martin DR. GM1 Gangliosidosis: Mechanisms and Management. Appl Clin Genet 2021; 14:209-233. [PMID: 33859490 PMCID: PMC8044076 DOI: 10.2147/tacg.s206076] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023] Open
Abstract
The lysosomal storage disorder, GM1 gangliosidosis (GM1), is a neurodegenerative condition resulting from deficiency of the enzyme β-galactosidase (β-gal). Mutation of the GLB1 gene, which codes for β-gal, prevents cleavage of the terminal β-1,4-linked galactose residue from GM1 ganglioside. Subsequent accumulation of GM1 ganglioside and other substrates in the lysosome impairs cell physiology and precipitates dysfunction of the nervous system. Beyond palliative and supportive care, no FDA-approved treatments exist for GM1 patients. Researchers are critically evaluating the efficacy of substrate reduction therapy, pharmacological chaperones, enzyme replacement therapy, stem cell transplantation, and gene therapy for GM1. A Phase I/II clinical trial for GM1 children is ongoing to evaluate the safety and efficacy of adeno-associated virus-mediated GLB1 delivery by intravenous injection, providing patients and families with hope for the future.
Collapse
Affiliation(s)
- Allisandra K Rha
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
| | - Anne S Maguire
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University, Auburn, AL, 36849, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| |
Collapse
|
10
|
Erskine D, Koss D, Korolchuk VI, Outeiro TF, Attems J, McKeith I. Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol 2021; 141:511-526. [PMID: 33515275 PMCID: PMC7952289 DOI: 10.1007/s00401-021-02266-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Accumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.
Collapse
Affiliation(s)
- Daniel Erskine
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle upon Tyne, UK.
| | - David Koss
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Viktor I Korolchuk
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago F Outeiro
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany
- Max Planck Institute for Experimental Medicine, Goettingen, Germany
- Scientific Employee With an Honorary Contract at Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Johannes Attems
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian McKeith
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics. Metabolites 2020; 11:metabo11010018. [PMID: 33396723 PMCID: PMC7823728 DOI: 10.3390/metabo11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Sandhoff disease (SD) is a lysosomal disease caused by mutations in the gene coding for the β subunit of β-hexosaminidase, leading to deficiency in the enzymes β-hexosaminidase (HEX) A and B. SD is characterised by an accumulation of gangliosides and related glycolipids, mainly in the central nervous system, and progressive neurodegeneration. The underlying cellular mechanisms leading to neurodegeneration and the contribution of inflammation in SD remain undefined. The aim of the present study was to measure global changes in metabolism over time that might reveal novel molecular pathways of disease. We used liquid chromatography-mass spectrometry and 1H Nuclear Magnetic Resonance spectroscopy to profile intact lipids and aqueous metabolites, respectively. We examined spinal cord and cerebrum from healthy and Hexb
-/- mice, a mouse model of SD, at ages one, two, three and four months. We report decreased concentrations in lipids typical of the myelin sheath, galactosylceramides and plasmalogen-phosphatidylethanolamines, suggesting that reduced synthesis of myelin lipids is an early event in the development of disease pathology. Reduction in neuronal density is progressive, as demonstrated by decreased concentrations of N-acetylaspartate and amino acid neurotransmitters. Finally, microglial activation, indicated by increased amounts of myo-inositol correlates closely with the late symptomatic phases of the disease.
Collapse
|
12
|
Vahhab N, Ebrahimi N, Amirmahani F, Vallian S. Analysis of polymorphic markers located in the HEXA gene region associated with Tay-Sachs disease. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Therapeutic benefit after intracranial gene therapy delivered during the symptomatic stage in a feline model of Sandhoff disease. Gene Ther 2020; 28:142-154. [PMID: 32884151 PMCID: PMC7925702 DOI: 10.1038/s41434-020-00190-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023]
Abstract
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by defects in the β-subunit of β-N-acetylhexosaminidase (Hex), the enzyme that catabolizes GM2 ganglioside (GM2). Hex deficiency causes neuronal storage of GM2 and related glycoconjugates, resulting in progressive neurodegeneration and death, typically in infancy. No effective treatment exists for human patients. Adeno-associated virus (AAV) gene therapy led to improved clinical outcome and survival of SD cats treated before the onset of disease symptoms. Most human patients are diagnosed after clinical disease onset, so it is imperative to test AAV gene therapy in symptomatic SD cats to provide a realistic indication of therapeutic benefits that can be expected in humans. In this study, AAVrh8 vectors injected into the thalamus and deep cerebellar nuclei of symptomatic SD cats resulted in widespread central nervous system enzyme distribution, although a substantial burden of storage material remained. Cats treated in the early symptomatic phase showed delayed disease progression and a significant survival increase versus untreated cats. Treatment was less effective when administered later in the disease course, although therapeutic benefit was still possible. Results are encouraging for the treatment of human patients and provide support for the development AAV gene therapy for human SD.
Collapse
|
14
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
15
|
Brekk OR, Korecka JA, Crapart CC, Huebecker M, MacBain ZK, Rosenthal SA, Sena-Esteves M, Priestman DA, Platt FM, Isacson O, Hallett PJ. Upregulating β-hexosaminidase activity in rodents prevents α-synuclein lipid associations and protects dopaminergic neurons from α-synuclein-mediated neurotoxicity. Acta Neuropathol Commun 2020; 8:127. [PMID: 32762772 PMCID: PMC7409708 DOI: 10.1186/s40478-020-01004-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
Sandhoff disease (SD) is a lysosomal storage disease, caused by loss of β-hexosaminidase (HEX) activity resulting in the accumulation of ganglioside GM2. There are shared features between SD and Parkinson's disease (PD). α-synuclein (aSYN) inclusions, the diagnostic hallmark sign of PD, are frequently found in the brain in SD patients and HEX knockout mice, and HEX activity is reduced in the substantia nigra in PD. In this study, we biochemically demonstrate that HEX deficiency in mice causes formation of high-molecular weight (HMW) aSYN and ubiquitin in the brain. As expected from HEX enzymatic function requirements, overexpression in vivo of HEXA and B combined, but not either of the subunits expressed alone, increased HEX activity as evidenced by histochemical assays. Biochemically, such HEX gene expression resulted in increased conversion of GM2 to its breakdown product GM3. In a neurodegenerative model of overexpression of aSYN in rats, increasing HEX activity by AAV6 gene transfer in the substantia nigra reduced aSYN embedding in lipid compartments and rescued dopaminergic neurons from degeneration. Overall, these data are consistent with a paradigm shift where lipid abnormalities are central to or preceding protein changes typically associated with PD.
Collapse
Affiliation(s)
- Oeystein R Brekk
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Joanna A Korecka
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
- Current address: Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Cecile C Crapart
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, UK
- Current address: Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zachary K MacBain
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Sara Ann Rosenthal
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
16
|
Lahey HG, Webber CJ, Golebiowski D, Izzo CM, Horn E, Taghian T, Rodriguez P, Batista AR, Ellis LE, Hwang M, Martin DR, Gray-Edwards H, Sena-Esteves M. Pronounced Therapeutic Benefit of a Single Bidirectional AAV Vector Administered Systemically in Sandhoff Mice. Mol Ther 2020; 28:2150-2160. [PMID: 32592687 DOI: 10.1016/j.ymthe.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
Abstract
The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme β-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.
Collapse
Affiliation(s)
- Hannah G Lahey
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Chelsea J Webber
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Diane Golebiowski
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Cassandra M Izzo
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin Horn
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Toloo Taghian
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paola Rodriguez
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lauren E Ellis
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Misako Hwang
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Auburn University College of Veterinary Medicine, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | - Heather Gray-Edwards
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA; Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
|
18
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
19
|
Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 2019; 134:104667. [PMID: 31682993 DOI: 10.1016/j.nbd.2019.104667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
The favorable outcome of in vivo and ex vivo gene therapy approaches in several Lysosomal Storage Diseases suggests that these treatment strategies might equally benefit GM2 gangliosidosis. Tay-Sachs and Sandhoff disease (the main forms of GM2 gangliosidosis) result from mutations in either the HEXA or HEXB genes encoding, respectively, the α- or β-subunits of the lysosomal β-Hexosaminidase enzyme. In physiological conditions, α- and β-subunits combine to generate β-Hexosaminidase A (HexA, αβ) and β-Hexosaminidase B (HexB, ββ). A major impairment to establishing in vivo or ex vivo gene therapy for GM2 gangliosidosis is the need to synthesize the α- and β-subunits at high levels and with the correct stoichiometric ratio, and to safely deliver the therapeutic products to all affected tissues/organs. Here, we report the generation and in vitro validation of novel bicistronic lentiviral vectors (LVs) encoding for both the murine and human codon optimized Hexa and Hexb genes. We show that these LVs drive the safe and coordinate expression of the α- and β-subunits, leading to supranormal levels of β-Hexosaminidase activity with prevalent formation of a functional HexA in SD murine neurons and glia, murine bone marrow-derived hematopoietic stem/progenitor cells (HSPCs), and human SD fibroblasts. The restoration/overexpression of β-Hexosaminidase leads to the reduction of intracellular GM2 ganglioside storage in transduced and in cross-corrected SD murine neural progeny, indicating that the transgenic enzyme is secreted and functional. Importantly, bicistronic LVs safely and efficiently transduce human neurons/glia and CD34+ HSPCs, which are target and effector cells, respectively, in prospective in vivo and ex vivo GT approaches. We anticipate that these bicistronic LVs may overcome the current requirement of two vectors co-delivering the α- or β-subunits genes. Careful assessment of the safety and therapeutic potential of these bicistronic LVs in the SD murine model will pave the way to the clinical development of LV-based gene therapy for GM2 gangliosidosis.
Collapse
|
20
|
Isacson O, Brekk OR, Hallett PJ. Novel Results and Concepts Emerging From Lipid Cell Biology Relevant to Degenerative Brain Aging and Disease. Front Neurol 2019; 10:1053. [PMID: 31649605 PMCID: PMC6794469 DOI: 10.3389/fneur.2019.01053] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/17/2019] [Indexed: 01/26/2023] Open
Abstract
While very rare familial forms of proteinopathy can cause Parkinson's disease (PD), Lewy body dementia (LBD) and age-related dementias, recent in-depth studies of lipid disturbances in the majority of the common forms of these diseases instead suggest a primary pathogenesis in lipid pathways. This review synthesizes a perspective from new data that point to an interdependence of lipids and proteinopathy. This article describes disturbed relationships in lipid homeostasis that causes neuropathology to develop over time and with age, which includes altered mechanisms of glia-neuron exchange of lipids and inflammatory signals.
Collapse
Affiliation(s)
- Ole Isacson
- McLean Hospital and Harvard Medical School, Neuroregeneration Research Institute, Belmont, MA, United States
| | | | | |
Collapse
|
21
|
Hallett PJ, Engelender S, Isacson O. Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. J Neuroinflammation 2019; 16:153. [PMID: 31331333 PMCID: PMC6647317 DOI: 10.1186/s12974-019-1532-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
This article describes pathogenic concepts and factors, in particular glycolipid abnormalities, that create cell dysfunction and synaptic loss in neurodegenerative diseases. By phenocopying lysosomal storage disorders, such as Gaucher disease and related disorders, age- and dose-dependent changes in glycolipid cell metabolism can lead to Parkinson's disease and related dementias. Recent results show that perturbation of sphingolipid metabolism can precede or is a part of abnormal protein handling in both genetic and idiopathic Parkinson's disease and Lewy body dementia. In aging and genetic predisposition with lipid disturbance, α-synuclein's normal vesicular and synaptic role may be detrimentally shifted toward accommodating and binding such lipids. Specific neuronal glycolipid, protein, and vesicular interactions create potential pathophysiology that is amplified by astroglial and microglial immune mechanisms resulting in neurodegeneration. This perspective provides a new logic for therapeutic interventions that do not focus on protein aggregation, but rather provides a guide to the complex biology and the common sequence of events that lead to age-dependent neurodegenerative disorders.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA
| | - Simone Engelender
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.,Present Address: Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Boston, USA.
| |
Collapse
|
22
|
Abstract
Introduction: Lysosomal storage disease is caused by the deficiency of a single hydrolase (lysosomal enzymes). GM2 gangliosidoses are autosomal recessive disorders caused by deficiency of β-hexosaminidase and Tay-Sachs disease (TSD) is one of its three forms.Objective: To perform a review of the state of the art on TSD describing its definition, epidemiology, etiology, physiopathology, clinical manifestations and news in diagnosis and treatment.Materials and methods: A literature search was carried out in PubMed using the MeSH terms “Tay-Sachs Disease”.Results: 1 233 results were retrieved in total, of which 53 articles were selected. TSD is caused by the deficiency of the lysosomal enzyme β-hexosaminidase A (HexA), and is characterized by neurodevelopmental regression, hypotonia, hyperacusis and cherry-red spots in the macula. Research on molecular pathogenesis and the development of possible treatments has been limited, consequently there is no treatment established to date.Conclusion: TSD is an autosomal recessive neurodegenerative disorder. Death usually occurs before the age of five. More research and studies on this type of gangliosidosis are needed in order to find an adequate treatment.
Collapse
|
23
|
Improvement in dysmyelination by the inhibition of microglial activation in a mouse model of Sandhoff disease. Neuroreport 2019; 29:962-967. [PMID: 29847465 DOI: 10.1097/wnr.0000000000001060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sandhoff disease (SD) is a genetic disorder caused by a mutation of the β-subunit gene β-hexosaminidase B (HexB) in humans, which results in the massive accumulation of the ganglioside GM2 and related glycosphingolipids in the nervous system. SD causes progressive neurodegeneration and changes in white matter in human infants. An animal model of SD has been established, Hexb-deficient (Hexb) mice, which shows abnormalities resembling the severe phenotype found in human infants. Previously, we reported that the activation state of microglia caused astrogliosis in the early stage of Hexb mouse development. To study how the symptoms of SD develop, we explored the difference in gene expression between 4-week-old Hexb and Hexb mouse cerebral cortices by microarray analysis. The data indicated not only the upregulation of immune system-related genes but also the downregulation of myelin-related genes in the 4-week-old Hexb mouse cerebral cortices. To test the correlation between inflammation and dysmyelination, we generated double-knockout mice of Hexb and the Fc receptor γ gene (Fcrγ), which is a regulator of autoimmune responses. Dysmyelination recovered in these double-knockout mice. The number of oligodendrocyte progenitors, which expressed platelet-derived growth factor receptor-α, did not change in the 2-week-old mouse brain. These results indicate that microglial activation plays an important role in the myelination process, without influencing the number of oligodendrocyte progenitors, in the development of Hexb mice.
Collapse
|
24
|
Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Chakrabarti L, Rizvanov AA. New Approaches to Tay-Sachs Disease Therapy. Front Physiol 2018; 9:1663. [PMID: 30524313 PMCID: PMC6256099 DOI: 10.3389/fphys.2018.01663] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/05/2018] [Indexed: 12/18/2022] Open
Abstract
Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
25
|
Efficacy of a Bicistronic Vector for Correction of Sandhoff Disease in a Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:47-57. [PMID: 30534578 PMCID: PMC6279944 DOI: 10.1016/j.omtm.2018.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/23/2018] [Indexed: 12/01/2022]
Abstract
GM2 gangliosidoses are a family of severe neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A enzyme. These disorders include Tay-Sachs disease and Sandhoff disease, caused by mutations in the HEXA gene and HEXB gene, respectively. The HEXA and HEXB genes are required to produce the α and β subunits of the β-hexosaminidase A enzyme, respectively. Using a Sandhoff disease mouse model, we tested for the first time the potential of a comparatively lower dose (2.04 × 1013 vg/kg) of systemically delivered single-stranded adeno-associated virus 9 expressing both human HEXB and human HEXA cDNA under the control of a single promoter with a P2A-linked bicistronic vector design to correct the neurological phenotype. A bicistronic design allows maximal overexpression and secretion of the Hex A enzyme. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector or a vehicle solution via the superficial temporal vein. An increase in survival of 56% compared with vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in enzyme activity and a decrease in brain GM2 ganglioside buildup. This is a proof-of-concept study showing the “correction efficacy” of a bicistronic AAV9 vector delivered intravenously for GM2 gangliosidoses. Further studies with higher doses are warranted.
Collapse
|
26
|
Cachón-González MB, Zaccariotto E, Cox TM. Genetics and Therapies for GM2 Gangliosidosis. Curr Gene Ther 2018; 18:68-89. [PMID: 29618308 PMCID: PMC6040173 DOI: 10.2174/1566523218666180404162622] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 12/30/2022]
Abstract
Tay-Sachs disease, caused by impaired β-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from diseasecausing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.
Collapse
Affiliation(s)
| | - Eva Zaccariotto
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
27
|
Osmon KJL, Woodley E, Thompson P, Ong K, Karumuthil-Melethil S, Keimel JG, Mark BL, Mahuran D, Gray SJ, Walia JS. Systemic Gene Transfer of a Hexosaminidase Variant Using an scAAV9.47 Vector Corrects GM2 Gangliosidosis in Sandhoff Mice. Hum Gene Ther 2017; 27:497-508. [PMID: 27199088 DOI: 10.1089/hum.2016.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
GM2 gangliosidosis is a group of neurodegenerative diseases caused by β-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and β, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (β-subunit knockout) mouse model. The study utilized a modified human β-hexosaminidase α-subunit (μ-subunit) that contains critical sequences from the β-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD mouse phenotype for long-term. Our data could have implications not only for treatment of SD but also for Tay-Sachs disease (α-subunit deficiency) and similar brain disorders.
Collapse
Affiliation(s)
- Karlaina J L Osmon
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada
| | - Evan Woodley
- 2 Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada
| | - Patrick Thompson
- 3 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | - Katalina Ong
- 3 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | | | - John G Keimel
- 5 New Hope Research Foundation , North Oaks, Minnesota
| | - Brian L Mark
- 6 Department of Microbiology, University of Manitoba , Winnipeg, Manitoba, Canada
| | - Don Mahuran
- 7 Genetics and Genome Biology, SickKids, Toronto, Ontario, Canada .,8 Department of Laboratory Medicine and Pathology, University of Toronto , Toronto, Ontario, Canada
| | - Steven J Gray
- 4 Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina.,9 Department of Ophthalmology, University of North Carolina , Chapel Hill, North Carolina
| | - Jagdeep S Walia
- 1 Centre for Neuroscience Studies, Queen's University , Kingston, Ontario, Canada .,2 Department of Biomedical and Molecular Sciences, Queen's University , Kingston, Ontario, Canada .,3 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| |
Collapse
|
28
|
Karumuthil-Melethil S, Nagabhushan Kalburgi S, Thompson P, Tropak M, Kaytor MD, Keimel JG, Mark BL, Mahuran D, Walia JS, Gray SJ. Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease. Hum Gene Ther 2017; 27:509-21. [PMID: 27197548 DOI: 10.1089/hum.2016.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-β), "A" isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.
Collapse
Affiliation(s)
| | | | - Patrick Thompson
- 2 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | - Michael Tropak
- 3 Genetics and Genome Biology, SickKids, Toronto, Ontario, Canada
| | | | - John G Keimel
- 4 New Hope Research Foundation , North Oaks, Minnesota
| | - Brian L Mark
- 5 Department of Microbiology, University of Manitoba , Winnipeg, Manitoba, Canada
| | - Don Mahuran
- 3 Genetics and Genome Biology, SickKids, Toronto, Ontario, Canada .,6 Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Jagdeep S Walia
- 2 Medical Genetics/Departments of Pediatrics, Queen's University , Kingston, Ontario, Canada
| | - Steven J Gray
- 1 Gene Therapy Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,7 Department of Ophthalmology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
29
|
Christensen CL, Choy FYM. A Prospective Treatment Option for Lysosomal Storage Diseases: CRISPR/Cas9 Gene Editing Technology for Mutation Correction in Induced Pluripotent Stem Cells. Diseases 2017; 5:E6. [PMID: 28933359 PMCID: PMC5456334 DOI: 10.3390/diseases5010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
Ease of design, relatively low cost and a multitude of gene-altering capabilities have all led to the adoption of the sophisticated and yet simple gene editing system: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9). The CRISPR/Cas9 system holds promise for the correction of deleterious mutations by taking advantage of the homology directed repair pathway and by supplying a correction template to the affected patient's cells. Currently, this technique is being applied in vitro in human-induced pluripotent stem cells (iPSCs) to correct a variety of severe genetic diseases, but has not as of yet been used in iPSCs derived from patients affected with a lysosomal storage disease (LSD). If adopted into clinical practice, corrected iPSCs derived from cells that originate from the patient themselves could be used for therapeutic amelioration of LSD symptoms without the risks associated with allogeneic stem cell transplantation. CRISPR/Cas9 editing in a patient's cells would overcome the costly, lifelong process associated with currently available treatment methods, including enzyme replacement and substrate reduction therapies. In this review, the overall utility of the CRISPR/Cas9 gene editing technique for treatment of genetic diseases, the potential for the treatment of LSDs and methods currently employed to increase the efficiency of this re-engineered biological system will be discussed.
Collapse
Affiliation(s)
- Chloe L Christensen
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| | - Francis Y M Choy
- Department of Biology, Centre for Biomedical Research, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
30
|
Bradbury AM, Peterson TA, Gross AL, Wells SZ, McCurdy VJ, Wolfe KG, Dennis JC, Brunson BL, Gray-Edwards H, Randle AN, Johnson AK, Morrison EE, Cox NR, Baker HJ, Sena-Esteves M, Martin DR. AAV-mediated gene delivery attenuates neuroinflammation in feline Sandhoff disease. Neuroscience 2016; 340:117-125. [PMID: 27793778 DOI: 10.1016/j.neuroscience.2016.10.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 11/26/2022]
Abstract
Sandhoff disease (SD) is a lysosomal storage disorder characterized by the absence of hydrolytic enzyme β-N-acetylhexosaminidase (Hex), which results in storage of GM2 ganglioside in neurons and unremitting neurodegeneration. Neuron loss initially affects fine motor skills, but rapidly progresses to loss of all body faculties, a vegetative state, and death by five years of age in humans. A well-established feline model of SD allows characterization of the disease in a large animal model and provides a means to test the safety and efficacy of therapeutic interventions before initiating clinical trials. In this study, we demonstrate a robust central nervous system (CNS) inflammatory response in feline SD, primarily marked by expansion and activation of the microglial cell population. Quantification of major histocompatibility complex II (MHC-II) labeling revealed significant up-regulation throughout the CNS with areas rich in white matter most severely affected. Expression of the leukocyte chemokine macrophage inflammatory protein-1 alpha (MIP-1α) was also up-regulated in the brain. SD cats were treated with intracranial delivery of adeno-associated viral (AAV) vectors expressing feline Hex, with a study endpoint 16weeks post treatment. AAV-mediated gene delivery repressed the expansion and activation of microglia and normalized MHC-II and MIP-1α levels. These data reiterate the profound inflammatory response in SD and show that neuroinflammation is abrogated after AAV-mediated restoration of enzymatic activity.
Collapse
Affiliation(s)
- Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| | - Tiffany A Peterson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Stephen Z Wells
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Karen G Wolfe
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - John C Dennis
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Heather Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Edward E Morrison
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
31
|
Kitakaze K, Tasaki C, Tajima Y, Hirokawa T, Tsuji D, Sakuraba H, Itoh K. Combined replacement effects of human modified β-hexosaminidase B and GM2 activator protein on GM2 gangliosidoses fibroblasts. Biochem Biophys Rep 2016; 7:157-163. [PMID: 28955902 PMCID: PMC5613250 DOI: 10.1016/j.bbrep.2016.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 01/17/2023] Open
Abstract
GM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in the HEXA, HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium. We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effectiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2 gangliosidoses. Purification of recombinant human GM2A proteins by CHO cell line overexpressing GM2A. Reduction of GM2 accumulated in GM2A deficiency fibroblasts by GM2A replacement. Combined effects of modified HexB and GM2A for HexA deficiency fibroblasts. In silico prediction of molecular interaction between modified HexB and GM2A.
Collapse
Key Words
- CI-M6PR, cation-independent M6P receptor
- CM, conditioned medium
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GM2, GM2 ganglioside
- GM2A, GM2 activator protein
- Gm2 activator protein
- Gm2 gangliosidosis
- Hex, β-hexosaminidase
- LAMP-1, lysosomal associated membrane protein 1
- LSD, lysosomal storage disease
- Lysosomal storage disease
- M6P, mannose-6-phosphate
- SD, Sandhoff disease
- TSD, Tay-Sachs disease
- modB, modified HexB
- β-hexosaminidase
Collapse
Affiliation(s)
- Keisuke Kitakaze
- Department of Medicinal Biotechnology, Institute of Biomedical Sciences, Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1, Tokushima 770-8505, Japan
| | - Chikako Tasaki
- Department of Medicinal Biotechnology, Institute of Biomedical Sciences, Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1, Tokushima 770-8505, Japan
| | - Youichi Tajima
- Molecular Medical Research Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute of Biomedical Sciences, Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1, Tokushima 770-8505, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute of Biomedical Sciences, Graduate School of Pharmaceutical Science, Tokushima University, 1-78-1, Tokushima 770-8505, Japan
| |
Collapse
|
32
|
Kitakaze K, Mizutani Y, Sugiyama E, Tasaki C, Tsuji D, Maita N, Hirokawa T, Asanuma D, Kamiya M, Sato K, Setou M, Urano Y, Togawa T, Otaka A, Sakuraba H, Itoh K. Protease-resistant modified human β-hexosaminidase B ameliorates symptoms in GM2 gangliosidosis model. J Clin Invest 2016; 126:1691-703. [PMID: 27018595 DOI: 10.1172/jci85300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
GM2 gangliosidoses, including Tay-Sachs and Sandhoff diseases, are neurodegenerative lysosomal storage diseases that are caused by deficiency of β-hexosaminidase A, which comprises an αβ heterodimer. There are no effective treatments for these diseases; however, various strategies aimed at restoring β-hexosaminidase A have been explored. Here, we produced a modified human hexosaminidase subunit β (HexB), which we have termed mod2B, composed of homodimeric β subunits that contain amino acid sequences from the α subunit that confer GM2 ganglioside-degrading activity and protease resistance. We also developed fluorescent probes that allow visualization of endocytosis of mod2B via mannose 6-phosphate receptors and delivery of mod2B to lysosomes in GM2 gangliosidosis models. In addition, we applied imaging mass spectrometry to monitor efficacy of this approach in Sandhoff disease model mice. Following i.c.v. administration, mod2B was widely distributed and reduced accumulation of GM2, asialo-GM2, and bis(monoacylglycero)phosphate in brain regions including the hypothalamus, hippocampus, and cerebellum. Moreover, mod2B administration markedly improved motor dysfunction and a prolonged lifespan in Sandhoff disease mice. Together, the results of our study indicate that mod2B has potential for intracerebrospinal fluid enzyme replacement therapy and should be further explored as a gene therapy for GM2 gangliosidoses.
Collapse
|
33
|
Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15057. [PMID: 26966698 PMCID: PMC4774620 DOI: 10.1038/mtm.2015.57] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.
Collapse
|
34
|
In Vivo NMR Studies of the Brain with Hereditary or Acquired Metabolic Disorders. Neurochem Res 2015; 40:2647-85. [PMID: 26610379 DOI: 10.1007/s11064-015-1772-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 11/10/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Metabolic disorders, whether hereditary or acquired, affect the brain, and abnormalities of the brain are related to cellular integrity; particularly in regard to neurons and astrocytes as well as interactions between them. Metabolic disturbances lead to alterations in cellular function as well as microscopic and macroscopic structural changes in the brain with diabetes, the most typical example of metabolic disorders, and a number of hereditary metabolic disorders. Alternatively, cellular dysfunction and degeneration of the brain lead to metabolic disturbances in hereditary neurological disorders with neurodegeneration. Nuclear magnetic resonance (NMR) techniques allow us to assess a range of pathophysiological changes of the brain in vivo. For example, magnetic resonance spectroscopy detects alterations in brain metabolism and energetics. Physiological magnetic resonance imaging (MRI) detects accompanying changes in cerebral blood flow related to neurovascular coupling. Diffusion and T1/T2-weighted MRI detect microscopic and macroscopic changes of the brain structure. This review summarizes current NMR findings of functional, physiological and biochemical alterations within a number of hereditary and acquired metabolic disorders in both animal models and humans. The global view of the impact of these metabolic disorders on the brain may be useful in identifying the unique and/or general patterns of abnormalities in the living brain related to the pathophysiology of the diseases, and identifying future fields of inquiry.
Collapse
|
35
|
Rockwell HE, McCurdy VJ, Eaton SC, Wilson DU, Johnson AK, Randle AN, Bradbury AM, Gray-Edwards HL, Baker HJ, Hudson JA, Cox NR, Sena-Esteves M, Seyfried TN, Martin DR. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro 2015; 7:7/2/1759091415569908. [PMID: 25873306 PMCID: PMC4720176 DOI: 10.1177/1759091415569908] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the β-subunit of β-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.
Collapse
Affiliation(s)
| | - Victoria J McCurdy
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Samuel C Eaton
- Boston College Biology Department, Chestnut Hill, MA, USA
| | - Diane U Wilson
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Ashley N Randle
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - Allison M Bradbury
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA
| | - Henry J Baker
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Judith A Hudson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, AL, USA
| | - Nancy R Cox
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, USA
| | - Miguel Sena-Esteves
- Department of Neurology and Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, AL, USA Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, AL, USA
| |
Collapse
|
36
|
Ricca A, Rufo N, Ungari S, Morena F, Martino S, Kulik W, Alberizzi V, Bolino A, Bianchi F, Del Carro U, Biffi A, Gritti A. Combined gene/cell therapies provide long-term and pervasive rescue of multiple pathological symptoms in a murine model of globoid cell leukodystrophy. Hum Mol Genet 2015; 24:3372-89. [PMID: 25749991 PMCID: PMC4498152 DOI: 10.1093/hmg/ddv086] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral gene therapy (IC GT) or transplantation of GALC-overexpressing neural stem cells (NSC) synergize with bone marrow transplant (BMT) providing dramatic extension of lifespan and global clinical–pathological rescue in a relevant GLD murine model. We show that timely and long-lasting delivery of functional GALC in affected tissues ensured by the exclusive complementary mode of action of the treatments underlies the outstanding benefit. In particular, the contribution of neural stem cell transplantation and IC GT during the early asymptomatic stage of the disease is instrumental to enhance long-term advantage upon BMT. We clarify the input of central nervous system, peripheral nervous system and periphery to the disease, and the relative contribution of treatments to the final therapeutic outcome, with important implications for treatment strategies to be tried in human patients. This study gives proof-of-concept of efficacy, tolerability and clinical relevance of the combined gene/cell therapies proposed here, which may constitute a feasible and effective therapeutic opportunity for children affected by GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Nicole Rufo
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Silvia Ungari
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, via del Giochetto, Perugia, Italy
| | - Wilem Kulik
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands and
| | - Valeria Alberizzi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Bolino
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Francesca Bianchi
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Ubaldo Del Carro
- Division of Neuroscience, San Raffaele Scientific Institute, INSPE, Via Olgettina 58, Milano, Italy
| | - Alessandra Biffi
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (TIGET), Via Olgettina 58, Milano 20132, Italy,
| |
Collapse
|
37
|
Abstract
Progressive myoclonic epilepsies are a group of disorders characterised by a relentlessly progressive disease course until death; treatment-resistant epilepsy is just a part of the phenotype. This umbrella term encompasses many diverse conditions, ranging from Lafora body disease to Gaucher's disease. These diseases as a group are important because of a generally poor response to antiepileptic medication, an overall poor prognosis and inheritance risks to siblings or offspring (where there is a proven genetic cause). A correct diagnosis also helps patients and their families to accept and understand the nature of their disease, even if incurable. Here, we discuss the phenotypes of these disorders and summarise the relevant specific investigations to identify the underlying cause.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - William Stewart
- Department of Neuropathology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - John Greene
- Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| |
Collapse
|
38
|
Long-term correction of Sandhoff disease following intravenous delivery of rAAV9 to mouse neonates. Mol Ther 2014; 23:414-22. [PMID: 25515709 DOI: 10.1038/mt.2014.240] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
G(M2) gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in β-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb(-/-)) of the G(M2) gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or -LacZ and monitored for serum β-hexosaminidase activity, motor function, and survival. Brain G(M2) ganglioside, β-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB-treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB-treated mice had a significant increase in brain β-hexosaminidase activity, and a reduction in G(M2) ganglioside storage and neuroinflammation compared to adult SD-HexB- and SD-LacZ-treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other G(M2) gangliosidoses through early rAAV9 based systemic gene therapy.
Collapse
|