1
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. Cell Rep 2024; 43:114347. [PMID: 38941190 PMCID: PMC11317994 DOI: 10.1016/j.celrep.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with the interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell-autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing IL-17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew T Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590728. [PMID: 38712094 PMCID: PMC11071379 DOI: 10.1101/2024.04.23.590728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing Il17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C. Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E. Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Matthew T. Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K. Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L. Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A. Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J. Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y. Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Hasbani DJ, Hamie L, Eid E, Tamer C, Abbas O, Kurban M. Treatments for Non-Syndromic Inherited Ichthyosis, Including Emergent Pathogenesis-Related Therapy. Am J Clin Dermatol 2022; 23:853-867. [PMID: 35960486 DOI: 10.1007/s40257-022-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
The term 'inherited ichthyosis' refers to a heterogeneous group of mendelian disorders of cornification that involve the integument with varying degrees of scaling. The management of ichthyosis poses a challenge for most physicians. Treatment options proposed in the literature include moisturizers, topical keratolytics, topical and systemic vitamin D analogues, and topical and systemic retinoids; however, some of these modalities are less reliable than others. Despite the therapeutic impasse imposed by the options above, the emergence of pathogenesis-based treatments along with novel gene therapies appear promising and hold the potential to halt or even revert disorders that arise from single genetic mutations, although research is still quite lacking in this domain. Hence, this review aims to highlight the various treatment modalities available for the management of the cutaneous manifestations of non-syndromic inherited ichthyosis, with an added emphasis on pathogenesis-targeted therapies.
Collapse
Affiliation(s)
- Divina Justina Hasbani
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Lamiaa Hamie
- Department of Dermatology, Division of Pediatric Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edward Eid
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Christel Tamer
- Department of Radiology, American University of Beirut, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center, Riad El Solh/Beirut 1107 2020, P.O. Box 11-0236, Beirut, Lebanon.
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
4
|
Chulpanova DS, Shaimardanova AA, Ponomarev AS, Elsheikh S, Rizvanov AA, Solovyeva VV. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int J Mol Sci 2022; 23:2506. [PMID: 35269649 PMCID: PMC8910354 DOI: 10.3390/ijms23052506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in genes such as transglutaminase-1 (TGM1), which are responsible for the formation and normal functioning of a lipid barrier, lead to the development of autosomal recessive congenital ichthyosis (ARCI). ARCIs are characterized by varying degrees of hyperkeratosis and the presence of scales on the body surface since birth. The quality of life of patients is often significantly affected, and in order to alleviate the manifestations of the disease, symptomatic therapy with moisturizers, keratolytics, retinoids and other cosmetic substances is often used to improve the condition of the patients' skin. Graft transplantation is commonly used to correct defects of the eye. However, these approaches offer symptomatic treatment that does not restore the lost protein function or provide a long-term skin barrier. Gene and cell therapies are evolving as promising therapy for ARCIs that can correct the functional activity of altered proteins. However, these approaches are still at an early stage of development. This review discusses current studies of gene and cell therapy approaches for various types of ichthyosis and their further prospects for patient treatment.
Collapse
Affiliation(s)
- Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Aleksei S. Ponomarev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Somaia Elsheikh
- Division of Cancer and Stem Cell, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (D.S.C.); (A.A.S.); (A.S.P.); (A.A.R.)
| |
Collapse
|
5
|
Yogarajah J, Gouveia C, Iype J, Häfliger S, Schaller A, Nuoffer J, Fux M, Gautschi M. Efficacy and safety of secukinumab for the treatment of severe ABCA12 deficiency-related ichthyosis in a child. SKIN HEALTH AND DISEASE 2021; 1:e25. [PMID: 35664977 PMCID: PMC9060064 DOI: 10.1002/ski2.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022]
Abstract
Background Patients with severe autosomal recessive congenital ichthyosis (ARCI) show a T helper 17/interleukin 17 (Th17/IL17) skewing in their skin and serum, resembling the inflammatory profile of psoriatic patients. Secukinumab, an IL-17A inhibitor, has shown clinical efficacy in patients with moderate-to-severe plaque psoriasis. Aims To test the clinical efficacy and safety of secukinumab in a paediatric patient with ATP-binding cassette subfamily A member 12 deficiency-related severe erythrodermic ARCI. Materials & Methods 6-months therapeutic trial. During the first 4-weeks induction period, the patient received weekly subcutaneous injections of 150 mg secukinumab (five injections in total). During the following 20-weeks maintenance period, the patient was given a subcutaneous injection of 150 mg secukinumab every 4 weeks. Result & Discussion After the 6-months therapy period, there was a 48% reduction from the baseline Ichthyosis-Area-Severity-Index (-Erythema/-Scaling) score. The treatment was well tolerated. Moreover, cytokine analysis revealed a reduction of keratinocyte-derived proinflammatory cytokines and an abrogation of Th17-skewing during therapy. Conclusion Further studies are needed to evaluate the effects of the use of IL-17A inhibition in ARCI patients.
Collapse
Affiliation(s)
- J. Yogarajah
- Division of Paediatric Endocrinology, Diabetology and MetabolismDepartment of PaediatricsUniversity Hospital BernInselspitalBernSwitzerland
| | - C. Gouveia
- Division of Paediatric Endocrinology, Diabetology and MetabolismDepartment of PaediatricsUniversity Hospital BernInselspitalBernSwitzerland,Department of DermatologyUniversity Hospital BernInselspitalBernSwitzerland
| | - J. Iype
- University Institute of Clinical ChemistryUniversity Hospital BernInselspitalBernSwitzerland
| | - S. Häfliger
- Division of Paediatric Endocrinology, Diabetology and MetabolismDepartment of PaediatricsUniversity Hospital BernInselspitalBernSwitzerland,Department of DermatologyUniversity Hospital BernInselspitalBernSwitzerland
| | - A. Schaller
- Department of Human GeneticsUniversity Hospital BernInselspitalBernSwitzerland
| | - J.M. Nuoffer
- Division of Paediatric Endocrinology, Diabetology and MetabolismDepartment of PaediatricsUniversity Hospital BernInselspitalBernSwitzerland,University Institute of Clinical ChemistryUniversity Hospital BernInselspitalBernSwitzerland
| | - M. Fux
- University Institute of Clinical ChemistryUniversity Hospital BernInselspitalBernSwitzerland
| | - M. Gautschi
- Division of Paediatric Endocrinology, Diabetology and MetabolismDepartment of PaediatricsUniversity Hospital BernInselspitalBernSwitzerland,University Institute of Clinical ChemistryUniversity Hospital BernInselspitalBernSwitzerland
| |
Collapse
|
6
|
Enjalbert F, Dewan P, Caley MP, Jones EM, Morse MA, Kelsell DP, Enright AJ, O'Toole EA. 3D model of harlequin ichthyosis reveals inflammatory therapeutic targets. J Clin Invest 2021; 130:4798-4810. [PMID: 32544098 PMCID: PMC7456239 DOI: 10.1172/jci132987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 06/10/2020] [Indexed: 02/04/2023] Open
Abstract
The biology of harlequin ichthyosis (HI), a devastating skin disorder caused by loss-of-function mutations in the gene ABCA12, is poorly understood, and to date, no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI that could lead to the identification of new treatments for improving patients' quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12 using HI patient skin samples and an engineered CRISPR/Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin, whereas the innate immune inhibitor IL-37 was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) as being upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor 1400W or the JAK inhibitor tofacitinib dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.
Collapse
Affiliation(s)
- Florence Enjalbert
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Priya Dewan
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Matthew P Caley
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Eleri M Jones
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mary A Morse
- Adaptive Immunity Research Unit, GlaxoSmithKline Medicine's Research Centre, Stevenage, United Kingdom
| | - David P Kelsell
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anton J Enright
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edel A O'Toole
- Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom.,Department of Dermatology, Royal London Hospital, Barts Health NHS Trust ERN-Skin, London, United Kingdom
| |
Collapse
|
7
|
Cottle DL, Ursino GM, Jones LK, Tham MS, Zylberberg AK, Smyth IM. Topical Aminosalicylic Acid Improves Keratinocyte Differentiation in an Inducible Mouse Model of Harlequin Ichthyosis. CELL REPORTS MEDICINE 2020; 1:100129. [PMID: 33294854 PMCID: PMC7691394 DOI: 10.1016/j.xcrm.2020.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022]
Abstract
Mutations in the lipid transport protein ABCA12 cause the life-threatening skin condition harlequin ichthyosis (HI), which is characterized by the loss of skin barrier function, inflammation, and dehydration. Inflammatory responses in HI increase disease severity by impairing keratinocyte differentiation, suggesting amelioration of this phenotype as a possible therapy for the condition. Existing treatments for HI are based around the use of retinoids, but their value in treating patients during the neonatal period has been questioned relative to other improved management regimens, and their long-term use is associated with side effects. We have developed a conditional mouse model to demonstrate that topical application of the aminosalicylic acid derivatives 5ASA or 4ASA considerably improves HI keratinocyte differentiation without the undesirable side effects of the retinoid acitretin and salicylic acid (aspirin). Analysis of changes in gene expression shows that 4ASA in particular elicits compensatory upregulation of a large family of barrier function-related genes, many of which are associated with other ichthyoses, identifying this compound as a lead candidate for developing topical treatments for HI. Inflammation impairs keratinocyte differentiation and worsens harlequin ichthyosis Harlequin ichthyosis mice can be used to assess therapies for this disease Aminosalicylic acids may be therapeutic treatments for harlequin ichthyosis 4ASA improves skin differentiation and barrier function in harlequin ichthyosis models
Collapse
Affiliation(s)
- Denny L. Cottle
- Department of Anatomy and Developmental Biology, Development and Stem Cell Program, Monash Biomedicine Discovery Institute (BDI), Monash University, Melbourne, Australia
| | - Gloria M.A. Ursino
- Department of Anatomy and Developmental Biology, Development and Stem Cell Program, Monash Biomedicine Discovery Institute (BDI), Monash University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Lynelle K. Jones
- Department of Anatomy and Developmental Biology, Development and Stem Cell Program, Monash Biomedicine Discovery Institute (BDI), Monash University, Melbourne, Australia
| | - Ming Shen Tham
- Department of Anatomy and Developmental Biology, Development and Stem Cell Program, Monash Biomedicine Discovery Institute (BDI), Monash University, Melbourne, Australia
| | - Allara K. Zylberberg
- Department of Anatomy and Developmental Biology, Development and Stem Cell Program, Monash Biomedicine Discovery Institute (BDI), Monash University, Melbourne, Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology, Development and Stem Cell Program, Monash Biomedicine Discovery Institute (BDI), Monash University, Melbourne, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
- Corresponding author
| |
Collapse
|
8
|
Ursino GM, Fu Y, Cottle DL, Mukhamedova N, Jones LK, Low H, Tham MS, Gan WJ, Mellett NA, Das PP, Weir JM, Ditiatkovski M, Fynch S, Thorn P, Thomas HE, Meikle PJ, Parkington HC, Smyth IM, Sviridov D. ABCA12 regulates insulin secretion from β-cells. EMBO Rep 2020; 21:e48692. [PMID: 32072744 DOI: 10.15252/embr.201948692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/12/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of lipid homeostasis is intimately associated with defects in insulin secretion, a key feature of type 2 diabetes. Here, we explore the role of the putative lipid transporter ABCA12 in regulating insulin secretion from β-cells. Mice with β-cell-specific deletion of Abca12 display impaired glucose-stimulated insulin secretion and eventual islet inflammation and β-cell death. ABCA12's action in the pancreas is independent of changes in the abundance of two other cholesterol transporters, ABCA1 and ABCG1, or of changes in cellular cholesterol or ceramide content. Instead, loss of ABCA12 results in defects in the genesis and fusion of insulin secretory granules and increases in the abundance of lipid rafts at the cell membrane. These changes are associated with dysregulation of the small GTPase CDC42 and with decreased actin polymerisation. Our findings establish a new, pleiotropic role for ABCA12 in regulating pancreatic lipid homeostasis and insulin secretion.
Collapse
Affiliation(s)
- Gloria M Ursino
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | | | - Lynelle K Jones
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Ming Shen Tham
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Wan Jun Gan
- Charles Perkins Centre, Camperdown, NSW, Australia
| | | | - Partha P Das
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | | | | | - Stacey Fynch
- St Vincent's Institute, Fitzroy, Vic., Australia
| | - Peter Thorn
- Charles Perkins Centre, Camperdown, NSW, Australia
| | | | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Helena C Parkington
- Department of Physiology, Neuroscience Discovery Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Vic., Australia
| |
Collapse
|
9
|
Pan Y, Wen X, Hao D, Wang Y, Wang L, He G, Jiang X. The role of IL-37 in skin and connective tissue diseases. Biomed Pharmacother 2019; 122:109705. [PMID: 31918276 DOI: 10.1016/j.biopha.2019.109705] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 02/05/2023] Open
Abstract
IL-37 was discovered as an anti-inflammatory and immunosuppressive cytokine of the IL-1 family. Significant advancements in the understanding of signaling pathways associated with IL-37 have been made in recent years. IL-37 binds to IL-18R and recruits IL-1R8 to form the IL-37/IL-1R8/IL-18Rα complex. Capase-1 plays a key role in the nuclear transduction of IL-37 signal, processing precursor IL-37 into the mature isoform, and interacting with Smad3. IL-37 exerts its role by activating anti-inflammation pathways including AMPK, PTEN, Mer, STAT3 and p62, and promoting tolerogenic dendritic cells and Tregs. In addition, IL-37 inhibits pro-inflammatory cytokines such as IL-1, IL-6, IL-8, IL-17, IL-23, TNF-α, and IFN-γ, and suppresses Fyn, MAPK, TAK1, NFκB, and mTOR signaling. The final effects of IL-37 depend on the interaction among IL-18R, IL-1R8, IL-37 and IL-18BP. Previous studies have deciphered the role of IL-37 in the development and pathogenesis of autoimmune diseases, chronic infections and cancer. In this review, we discuss the role of IL-37 in psoriasis, atopic dermatitis, Behcet's diseases, systemic lupus erythematosus, and other skin and connective tissue diseases.
Collapse
Affiliation(s)
- Yu Pan
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Dan Hao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yujia Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
10
|
Zhang M, Wang X, Guo F, Jia Q, Liu N, Chen Y, Yan Y, Huang M, Tang H, Deng Y, Huang S, Zhou Z, Zhang L, Zhang L. Cdc42 Deficiency Leads To Epidermal Barrier Dysfunction by Regulating Intercellular Junctions and Keratinization of Epidermal Cells during Mouse Skin Development. Am J Cancer Res 2019; 9:5065-5084. [PMID: 31410202 PMCID: PMC6691388 DOI: 10.7150/thno.34014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/08/2019] [Indexed: 01/19/2023] Open
Abstract
Rationale: Cdc42 is a Rho GTPase that regulates diverse cellular functions. Here, we used genetic techniques to investigate the role of Cdc42 in epidermal development and epidermal barrier formation. Methods: Keratinocyte-restricted Cdc42 knockout mice were generated with the Cre-LoxP system under the keratin 14 (K14) promoter. The skin and other tissues were collected from mutant and wild-type mice, and their cellular, molecular, morphological, and physiological features were analyzed. Results: Loss of Cdc42 in the epidermis in vivo resulted in neonatal lethality and impairment of epidermal barrier formation. Cdc42 deficiency led to the loss of epidermal stem cells. The absence of Cdc42 led to increased thickening of the epidermis, which was associated with increased proliferation and reduced apoptosis of keratinocytes. In addition, Cdc42 deficiency damaged tight junctions, adherens junctions and desmosomes. RNA sequencing results showed that the most significantly altered genes were enriched by the terms of “keratinization” and “cornified envelope” (CE). Among the differentially expressed genes in the CE term, several members of the small proline-rich protein (SPRR) family were upregulated. Further study revealed that there may be a Cdc42-SPRR pathway, which may correlate with epidermal barrier function. Conclusions: Our study indicates that Cdc42 is essential for epidermal development and epidermal barrier formation. Defects in Cdc42-SPRR signaling may be associated with skin barrier dysfunction and a variety of skin diseases.
Collapse
|
11
|
Paller AS. Profiling Immune Expression to Consider Repurposing Therapeutics for the Ichthyoses. J Invest Dermatol 2019; 139:535-540. [PMID: 30670307 PMCID: PMC7259373 DOI: 10.1016/j.jid.2018.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 01/09/2023]
Abstract
Despite extensive discovery about the mutations underlying genetic skin disorders, there have been few therapeutic advances. Better understanding of the molecular changes that may lead to the phenotypic manifestations of genetic disorders may lead to the discovery of new pharmacologic interventions. The ichthyoses are characterized by scaling, inflammation, and an impaired epidermal barrier. Recent studies have uncovered T helper type 17 skewing in ichthyotic skin, resembling psoriasis, and high frequencies of IL-17- and IL-22-expressing T cells in blood, correlating with severity and transepidermal water loss. Repurposing systemic T helper type 17/IL-23-inhibitory therapies for psoriasis may prove useful for patients with ichthyosis.
Collapse
Affiliation(s)
- Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
12
|
Loss of GRHL3 leads to TARC/CCL17-mediated keratinocyte proliferation in the epidermis. Cell Death Dis 2018; 9:1072. [PMID: 30341279 PMCID: PMC6195598 DOI: 10.1038/s41419-018-0901-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022]
Abstract
Identifying soluble factors that influence epidermal integrity is critical for the development of preventative and therapeutic strategies for disorders such as ichthyosis, psoriasis, dermatitis and epidermal cancers. The transcription factor Grainyhead-like 3 (GRHL3) is essential for maintaining barrier integrity and preventing development of cutaneous squamous cell carcinoma (SCC); however, how loss of this factor, which in the skin is expressed exclusively within suprabasal epidermal layers triggers proliferation of basal keratinocytes, had thus far remained elusive. Our present study identifies thymus and activation-regulated chemokine (TARC) as a novel soluble chemokine mediator of keratinocyte proliferation following loss of GRHL3. Knockdown of GRHL3 in human keratinocytes showed that of 42 cytokines examined, TARC was the only significantly upregulated chemokine. Mouse skin lacking Grhl3 presented an inflammatory response with hallmarks of TARC activation, including heightened induction of blood clotting, increased infiltration of mast cells and pro-inflammatory T cells, increased expression of the pro-proliferative/pro-inflammatory markers CD3 and pSTAT3, and significantly elevated basal keratinocyte proliferation. Treatment of skin cultures lacking Grhl3 with the broad spectrum anti-inflammatory 5-aminosalicylic acid (5ASA) partially restored epidermal differentiation, indicating that abnormal keratinocyte proliferation/differentiation balance is a key driver of barrier dysfunction following loss of Grhl3, and providing a promising therapeutic avenue in the treatment of GRHL3-mediated epidermal disorders.
Collapse
|
13
|
Activation of S6 signaling is associated with cell survival and multinucleation in hyperplastic skin after epidermal loss of AURORA-A Kinase. Cell Death Differ 2018; 26:548-564. [PMID: 30050055 DOI: 10.1038/s41418-018-0167-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023] Open
Abstract
The role of mitosis in the progression of precancerous skin remains poorly understood. To address this question, we deleted the mitotic Kinase Aurora-A (Aur-A) in hyperplastic mutant p53 mouse skin as an experimental tool to study the G2/M transition in precancerous keratinocytes and AUR-A's role in this process. Epidermal Aur-A deletion (Aur-AepiΔ) led to marked keratinocyte enlargement, pleomorphism, multinucleation, and attenuated induction of cell death. This phenotype was characteristic of slippage after a stalled mitosis. We also observed altered or impaired epidermal differentiation, indicative of a partial skin barrier defect. The upregulation of mTOR/PI3K signaling was implicated as a mechanism by which keratinocytes may evade cell death after AUR-A deficiency. This was evidenced by the ectopic expression of the pathway readout, p-S6, in the basal layer of Aur-AepiΔ skin and its mitotic upregulation in isolated keratinocytes. We further tested whether our findings were extended to skin carcinoma cells. The chemical inhibition of AUR-A led to a similar mitotic delay, polyploidy/multinucleation, and attenuated cell death in skin cancer cell lines. Moreover, inhibition of mTOR/PI3K signaling ameliorated the effects caused by the deficiency of AUR-A activity but was also associated with the persistence of mitotic p-S6 detection in surviving cancer cells. These results show the induction of multinucleation/polyploidy may be a compensatory state in keratinocytes that allows for cellular survival and maintenance of partial barrier function in face of aberrant cell division or differentiation. Moreover, mTOR/PI3K signaling is active in the mitosis of hyperplastic keratinocytes expressing mutant p53 and is further enhanced by stalled mitosis, indicating a potential resistance mechanism to the use of anti-mitotic drugs in the treatment of skin cancers.
Collapse
|
14
|
Vahlquist A, Fischer J, Törmä H. Inherited Nonsyndromic Ichthyoses: An Update on Pathophysiology, Diagnosis and Treatment. Am J Clin Dermatol 2018; 19:51-66. [PMID: 28815464 PMCID: PMC5797567 DOI: 10.1007/s40257-017-0313-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hereditary ichthyoses are due to mutations on one or both alleles of more than 30 different genes, mainly expressed in the upper epidermis. Syndromic as well as nonsyndromic forms of ichthyosis exist. Irrespective of etiology, virtually all types of ichthyosis exhibit a defective epidermal barrier that constitutes the driving force for hyperkeratosis, skin scaling, and inflammation. In nonsyndromic forms, these features are most evident in severe autosomal recessive congenital ichthyosis (ARCI) and epidermolytic ichthyosis, but to some extent also occur in the common type of non-congenital ichthyosis. A correct diagnosis of ichthyosis-essential not only for genetic counseling but also for adequate patient information about prognosis and therapeutic options-is becoming increasingly feasible thanks to recent progress in genetic knowledge and DNA sequencing methods. This paper reviews the most important aspects of nonsyndromic ichthyoses, focusing on new knowledge about the pathophysiology of the disorders, which will hopefully lead to novel ideas about therapy.
Collapse
Affiliation(s)
- Anders Vahlquist
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden
| | - Judith Fischer
- Institute of Human Genetics, University Medical Centre, Freiburg, Germany
| | - Hans Törmä
- Department of Medical Sciences, Dermatology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Kim SC, Boese AC, Moore MH, Cleland RM, Chang L, Delafontaine P, Yin KJ, Lee JP, Hamblin MH. Rapid estrogen receptor-α signaling mediated by ERK activation regulates vascular tone in male and ovary-intact female mice. Am J Physiol Heart Circ Physiol 2017; 314:H330-H342. [PMID: 28887333 DOI: 10.1152/ajpheart.00841.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Estrogen has been shown to affect vascular reactivity. Here, we assessed the estrogen receptor-α (ERα) dependency of estrogenic effects on vasorelaxation via a rapid nongenomic pathway in both male and ovary-intact female mice. We compared the effect of a primary estrogen, 17β-estradiol (E2) or 4,4',4″-(4-propyl-[1H]pyrazole-1,3,5-triyl)tris-phenol (PPT; selective ERα agonist). We found that E2 and PPT induced greater aortic relaxation in female mice than in male mice, indicating ERα mediation, which was further validated by using ERα antagonism. Treatment with 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP dihydrochloride; ERα antagonist) attenuated PPT-mediated vessel relaxation in both sexes. ERα-mediated vessel relaxation was further validated by the absence of significant PPT-mediated relaxation in aortas isolated from ERα knockout mice. Treatment with a specific ERK inhibitor, PD-98059, reduced E2-induced vessel relaxation in both sexes but to a lesser extent in female mice. Furthermore, PD-98059 prevented PPT-induced vessel relaxation in both sexes. Both E2 and PPT treatment activated ERK as early as 5-10 min, which was attenuated by PD-98059 in aortic tissue, cultured primary vascular smooth muscle cells (VSMCs), and endothelial cells (ECs). Aortic rings denuded of endothelium showed no differences in vessel relaxation after E2 or PPT treatment, implicating a role of ECs in the observed sex differences. Here, our results are unique to show estrogen-stimulated rapid ERα signaling mediated by ERK activation in aortic tissue, as well as VSMCs and ECs in vitro, in regulating vascular function by using side-by-side comparisons in male and ovary-intact female mice in response to E2 or PPT. NEW & NOTEWORTHY Here, we assessed the estrogen receptor-α dependency of estrogenic effects in vasorelaxation of both male and ovary-intact female mice by performing side-by-side comparisons. Also, we describe the connection between estrogen-stimulated rapid estrogen receptor-α signaling and downstream ERK activation in regulating vascular function in male and ovary-intact female mice.
Collapse
Affiliation(s)
- Seong Chul Kim
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Matthew H Moore
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Rea M Cleland
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center , Ann Arbor, Michigan
| | - Patrice Delafontaine
- Heart and Vascular Institute, Tulane University School of Medicine , New Orleans, Louisiana
| | - Ke-Jie Yin
- Pittsburgh Institute of Brain Disorders and Recovery, Department of Neurology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana.,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine , New Orleans, Louisiana
| |
Collapse
|
16
|
Paller AS, Renert-Yuval Y, Suprun M, Esaki H, Oliva M, Huynh TN, Ungar B, Kunjravia N, Friedland R, Peng X, Zheng X, Estrada YD, Krueger JG, Choate KA, Suárez-Fariñas M, Guttman-Yassky E. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol 2016; 139:152-165. [PMID: 27554821 DOI: 10.1016/j.jaci.2016.07.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/18/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The ichthyoses are rare genetic disorders associated with generalized scaling, erythema, and epidermal barrier impairment. Pathogenesis-based therapy is largely lacking because the underlying molecular basis is poorly understood. OBJECTIVE We sought to characterize molecularly cutaneous inflammation and its correlation with clinical and barrier characteristics. METHODS We analyzed biopsy specimens from 21 genotyped patients with ichthyosis (congenital ichthyosiform erythroderma, n = 6; lamellar ichthyosis, n = 7; epidermolytic ichthyosis, n = 5; and Netherton syndrome, n = 3) using immunohistochemistry and RT-PCR and compared them with specimens from healthy control subjects, patients with atopic dermatitis (AD), and patients with psoriasis. Clinical measures included the Ichthyosis Area Severity Index (IASI), which integrates erythema (IASI-E) and scaling (IASI-S); transepidermal water loss; and pruritus. RESULTS Ichthyosis samples showed increased epidermal hyperplasia (increased thickness and keratin 16 expression) and T-cell and dendritic cell infiltrates. Increases of general inflammatory (IL-2), innate (IL-1β), and some TH1/interferon (IFN-γ) markers in patients with ichthyosis were comparable with those in patients with psoriasis or AD. TNF-α levels in patients with ichthyosis were increased only in those with Netherton syndrome but were much lower than in patients with psoriasis and those with AD. Expression of TH2 cytokines (IL-13 and IL-31) was similar to that seen in control subjects. The striking induction of IL-17-related genes or markers synergistically induced by IL-17 and TNF-α (IL-17A/C, IL-19, CXCL1, PI3, CCL20, and IL36G; P < .05) in patients with ichthyosis was similar to that seen in patients with psoriasis. IASI and IASI-E scores strongly correlated with IL-17A (r = 0.74, P < .001) and IL-17/TNF-synergistic/additive gene expression. These markers also significantly correlated with transepidermal water loss, suggesting a link between the barrier defect and inflammation in patients with ichthyosis. CONCLUSION Our data associate a shared TH17/IL-23 immune fingerprint with the major orphan forms of ichthyosis and raise the possibility of IL-17-targeting strategies.
Collapse
Affiliation(s)
- Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Suprun
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hitokazu Esaki
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Margeaux Oliva
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thy Nhat Huynh
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Benjamin Ungar
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Rivka Friedland
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Xiangyu Peng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James G Krueger
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Conn
| | - Mayte Suárez-Fariñas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| |
Collapse
|
17
|
Takeichi T, Akiyama M. Inherited ichthyosis: Non-syndromic forms. J Dermatol 2016; 43:242-51. [DOI: 10.1111/1346-8138.13243] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/25/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Takuya Takeichi
- Department of Dermatology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Masashi Akiyama
- Department of Dermatology; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
18
|
Cottle DL, Kretzschmar K, Gollnick HP, Quist SR. p53 activity contributes to defective interfollicular epidermal differentiation in hyperproliferative murine skin. Br J Dermatol 2016; 174:204-8. [PMID: 26212071 PMCID: PMC4832295 DOI: 10.1111/bjd.14048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- D L Cottle
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, U.K..
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, VIC, Australia.
| | - K Kretzschmar
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, U.K
- Centre for Stem Cell and Regenerative Medicine Research, King's College London, London SE1 9RT, U.K
| | - H P Gollnick
- Clinic of Dermatology and Venereology, Otto-von-Guericke University, DE-39120, Magdeburg, Germany
| | - S R Quist
- Clinic of Dermatology and Venereology, Otto-von-Guericke University, DE-39120, Magdeburg, Germany
- CR-UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, U.K
| |
Collapse
|
19
|
Sugiura K, Akiyama M. Update on autosomal recessive congenital ichthyosis: mRNA analysis using hair samples is a powerful tool for genetic diagnosis. J Dermatol Sci 2015; 79:4-9. [DOI: 10.1016/j.jdermsci.2015.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/06/2023]
|