1
|
Provencher L, Nartey W, Brownlee PM, Atkins AW, Gagné JP, Baudrier L, Ting NSY, Piett CG, Fang S, Pearson DD, Moore S, Billon P, Nagel ZD, Poirier GG, Williams GJ, Goodarzi AA. CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair. Nat Commun 2025; 16:1026. [PMID: 39863586 PMCID: PMC11762318 DOI: 10.1038/s41467-025-56085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage. While CHD6 loss does not impair RAD51 foci formation or DNA double-strand break repair, it causes sensitivity to replication stress, and PARP1/2-trapping or Pol ζ inhibitor-induced γH2AX foci accumulation in S-phase. DNA repair pathway screening reveals that CHD6 loss elicits insufficiency in apurinic-apyrimidinic endonuclease (APEX1) activity and genomic abasic site accumulation. We reveal APEX1-linked roles for CHD6 important for understanding PARP1/2-trapping inhibitor sensitivity.
Collapse
Affiliation(s)
- Luc Provencher
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wilson Nartey
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Austin W Atkins
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Lou Baudrier
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas S Y Ting
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, USA
| | - Shujuan Fang
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shaun Moore
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Billon
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Gareth J Williams
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Blotas C, Férec C, Moisan S. Tissue-Specific Regulation of CFTR Gene Expression. Int J Mol Sci 2023; 24:10678. [PMID: 37445855 DOI: 10.3390/ijms241310678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
More than 2000 variations are described within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene and related to large clinical issues from cystic fibrosis to mono-organ diseases. Although these CFTR-associated diseases have been well documented, a large phenotype spectrum is observed and correlations between phenotypes and genotypes are still not well established. To address this issue, we present several regulatory elements that can modulate CFTR gene expression in a tissue-specific manner. Among them, cis-regulatory elements act through chromatin loopings and take part in three-dimensional structured organization. With tissue-specific transcription factors, they form chromatin modules and can regulate gene expression. Alterations of specific regulations can impact and modulate disease expressions. Understanding all those mechanisms highlights the need to expand research outside the gene to enhance our knowledge.
Collapse
Affiliation(s)
- Clara Blotas
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Stéphanie Moisan
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHU Brest, F-29200 Brest, France
| |
Collapse
|
3
|
The chromatin remodeler CHD6 promotes colorectal cancer development by regulating TMEM65-mediated mitochondrial dynamics via EGF and Wnt signaling. Cell Discov 2022; 8:130. [PMID: 36473865 PMCID: PMC9727023 DOI: 10.1038/s41421-022-00478-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Chromodomain helicase DNA binding protein (CHD) family plays critical roles in regulating gene transcription. The family is linked to cancer disease, but the family member's role in tumorigenesis remains largely unknown. Here, we report that CHD6 is highly expressed in colorectal cancer (CRC). CHD6 knockdown inhibited cancer cell proliferation, migration, invasion, and tumorigenesis. Consistently, Villin-specific Chd6 knockout in mice attenuates cancer formation in AOM/DSS model. We found that aberrant EGF signals promoted the stability of CHD6 by diminishing ubiquitin-mediated degradation. EGF signal inhibits GSK3β activity, which in turn prevents phosphodegron formation of CHD6, thereby hindering E3 ligase FBXW7-mediated CHD6 ubiquitination and degradation. CHD6's chromatin remodeler activity engages in binding Wnt signaling transcription factor TCF4 to facilitate the transcriptional expression of TMEM65, a mitochondrial inner membrane protein involved in ATP production and mitochondrial dynamics. In addition, Wnt signaling is also an upstream regulator of CHD6. CHD6 promoter contains TCF4 and β-catenin binding site, and CHD6 can be transcriptionally activated by Wnt ligand to facilitate TMEM65 transcription. Thus CHD6-TMEM65 axis can be regulated by both EGF and Wnt signaling pathways through two different mechanisms. We further illustrate that CHD6-TMEM65 axis is deregulated in cancer and that co-administration of Wnt inhibitor LGK974 and the anti-EGFR monoclonal antibody cetuximab largely restricted the growth of patient-derived xenografts of CRC. Targeting CHD6-TMEM65 axis may be effective for cancer intervention.
Collapse
|
4
|
Zhao D, Zhang M, Huang S, Liu Q, Zhu S, Li Y, Jiang W, Kiss DL, Cao Q, Zhang L, Chen K. CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Res 2022; 50:12186-12201. [PMID: 36408932 PMCID: PMC9757051 DOI: 10.1093/nar/gkac1090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being a member of the chromodomain helicase DNA-binding protein family, little is known about the exact role of CHD6 in chromatin remodeling or cancer disease. Here we show that CHD6 binds to chromatin to promote broad nucleosome eviction for transcriptional activation of many cancer pathways. By integrating multiple patient cohorts for bioinformatics analysis of over a thousand prostate cancer datasets, we found CHD6 expression elevated in prostate cancer and associated with poor prognosis. Further comprehensive experiments demonstrated that CHD6 regulates oncogenicity of prostate cancer cells and tumor development in a murine xenograft model. ChIP-Seq for CHD6, along with MNase-Seq and RNA-Seq, revealed that CHD6 binds on chromatin to evict nucleosomes from promoters and gene bodies for transcriptional activation of oncogenic pathways. These results demonstrated a key function of CHD6 in evicting nucleosomes from chromatin for transcriptional activation of prostate cancer pathways.
Collapse
Affiliation(s)
- Dongyu Zhao
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Zhang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Shaodong Huang
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qi Liu
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sen Zhu
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Yanqiang Li
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Weihua Jiang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Daniel L Kiss
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Cao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Urology, and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kaifu Chen
- Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
6
|
Luo Y, Vlaeminck-Guillem V, Baron S, Dallel S, Zhang CX, Le Romancer M. MEN1 silencing aggravates tumorigenic potential of AR-independent prostate cancer cells through nuclear translocation and activation of JunD and β-catenin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:270. [PMID: 34446068 PMCID: PMC8393735 DOI: 10.1186/s13046-021-02058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
Background Recent studies highlighted the increased frequency of AR-low or -negative prostate cancers (PCas) and the importance of AR-independent mechanisms in driving metastatic castration-resistant PCa (mCRPC) development and progression. Several previous studies have highlighted the involvement of the MEN1 gene in PCa. In the current study, we focused on its role specifically in AR-independent PCa cells. Methods Cell tumorigenic features were evaluated by proliferation assay, foci formation, colony formation in soft agar, wound healing assay and xenograft experiments in mice. Quantitative RT-PCR, Western blot and immunostaining were performed to determine the expression of different factors in human PCa lines. Different ChIP-qPCR-based assays were carried out to dissect the action of JunD and β-catenin. Results We found that MEN1 silencing in AR-independent cell lines, DU145 and PC3, resulted in an increase in anchorage independence and cell migration, accompanied by sustained MYC expression. By searching for factors known to positively regulate MYC expression and play a relevant role in PCa development and progression, we uncovered that MEN1-KD triggered the nuclear translocation of JunD and β-catenin. ChIP and 3C analyses further demonstrated that MEN1-KD led to, on the one hand, augmented binding of JunD to the MYC 5′ enhancer and increased formation of loop structure, and on the other hand, increased binding of β-catenin to the MYC promoter. Moreover, the expression of several molecular markers of EMT, including E-cadherin, BMI1, Twist1 and HIF-1α, was altered in MEN1-KD DU145 and PC3 cells. In addition, analyses using cultured cells and PC3-GFP xenografts in mice demonstrated that JunD and β-catenin are necessary for the altered tumorigenic potential triggered by MEN1 inactivation in AR-independent PCa cells. Finally, we observed a significant negative clinical correlation between MEN1 and CTNNB1 mRNA expression in primary PCa and mCRPC datasets. Conclusions Our current work highlights an unrecognized oncosuppressive role for menin specifically in AR-independent PCa cells, through the activation of JunD and β-catenin pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02058-7.
Collapse
Affiliation(s)
- Yakun Luo
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France
| | - Virginie Vlaeminck-Guillem
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France.,Centre de biologie Sud, Hôpital Lyon Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 Place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Sarah Dallel
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28 Place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
| | - Chang Xian Zhang
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France.
| | - Muriel Le Romancer
- Université Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008, Lyon, France
| |
Collapse
|
7
|
Kargapolova Y, Rehimi R, Kayserili H, Brühl J, Sofiadis K, Zirkel A, Palikyras S, Mizi A, Li Y, Yigit G, Hoischen A, Frank S, Russ N, Trautwein J, van Bon B, Gilissen C, Laugsch M, Gusmao EG, Josipovic N, Altmüller J, Nürnberg P, Längst G, Kaiser FJ, Watrin E, Brunner H, Rada-Iglesias A, Kurian L, Wollnik B, Bouazoune K, Papantonis A. Overarching control of autophagy and DNA damage response by CHD6 revealed by modeling a rare human pathology. Nat Commun 2021; 12:3014. [PMID: 34021162 PMCID: PMC8140133 DOI: 10.1038/s41467-021-23327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.
Collapse
Affiliation(s)
- Yulia Kargapolova
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Heart Center, University Hospital Cologne, Cologne, Germany.
| | - Rizwan Rehimi
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | - Joanna Brühl
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | | | - Anne Zirkel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Spiros Palikyras
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stefan Frank
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Bayer AG, Wuppertal, Germany
| | - Nicole Russ
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Jonathan Trautwein
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany
| | - Bregje van Bon
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magdalena Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eduardo Gade Gusmao
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gernot Längst
- Biochemistry Centre Regensburg (BRC), University of Regensburg, Regensburg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Erwan Watrin
- Research Institute of Genetics and Development, Faculté de Médecine, Rennes, France
| | - Han Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alvaro Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Age-associated Disorders (CECAD), University of Cologne, Cologne, Germany
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria, Santander, Spain
| | - Leo Kurian
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, Göttingen, Germany
| | - Karim Bouazoune
- Institute of Molecular Biology and Tumor Research, Philipps-University Marburg, Marburg, Germany.
| | - Argyris Papantonis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
8
|
Liu H, Yan R, Liang L, Zhang H, Xiang J, Liu L, Zhang X, Mao Y, Peng W, Xiao Y, Zhang F, Zhou Y, Shi M, Wang Y, Guo B. The role of CDX2 in renal tubular lesions during diabetic kidney disease. Aging (Albany NY) 2021; 13:6782-6803. [PMID: 33621200 PMCID: PMC7993706 DOI: 10.18632/aging.202537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Renal tubules are vulnerable targets of various factors causing kidney injury in diabetic kidney disease (DKD), and the degree of tubular lesions is closely related to renal function. Abnormal renal tubular epithelial cells (RTECs) differentiation and depletion of cell junction proteins are important in DKD pathogenesis. Caudal-type homeobox transcription factor 2 (CDX2), represents a key nuclear transcription factor that maintains normal proliferation and differentiation of the intestinal epithelium. The present study aimed to evaluate the effects of CDX2 on RTECs differentiation and cell junction proteins in DKD. The results demonstrated that CDX2 was mainly localized in renal tubules, and downregulated in various DKD models. CDX2 upregulated E-cadherin and suppressed partial epithelial-mesenchymal transition (EMT), which can alleviate hyperglycemia-associated RTECs injury. Cystic fibrosis transmembrane conductance regulator (CFTR) was regulated by CDX2 in NRK-52E cells, and CFTR interfered with β-catenin activation by binding to Dvl2, which is an essential component of Wnt/β-catenin signaling. CFTR knockdown abolished the suppressive effects of CDX2 on Wnt/β-catenin signaling, thereby upregulating cell junction proteins and inhibiting partial EMT in RTECs. In summary, CDX2 can improve renal tubular lesions during DKD by increasing CFTR amounts to suppress the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Huiming Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Huifang Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Jiayi Xiang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xiaohuan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wei Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| |
Collapse
|
9
|
Moore S, Berger ND, Luijsterburg MS, Piett CG, Stanley FKT, Schräder CU, Fang S, Chan JA, Schriemer DC, Nagel ZD, van Attikum H, Goodarzi AA. The CHD6 chromatin remodeler is an oxidative DNA damage response factor. Nat Commun 2019; 10:241. [PMID: 30651562 PMCID: PMC6335469 DOI: 10.1038/s41467-018-08111-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
Cell survival after oxidative DNA damage requires signaling, repair and transcriptional events often enabled by nucleosome displacement, exchange or removal by chromatin remodeling enzymes. Here, we show that Chromodomain Helicase DNA-binding protein 6 (CHD6), distinct to other CHD enzymes, is stabilized during oxidative stress via reduced degradation. CHD6 relocates rapidly to DNA damage in a manner dependent upon oxidative lesions and a conserved N-terminal poly(ADP-ribose)-dependent recruitment motif, with later retention requiring the double chromodomain and central core. CHD6 ablation increases reactive oxygen species persistence and impairs anti-oxidant transcriptional responses, leading to elevated DNA breakage and poly(ADP-ribose) induction that cannot be rescued by catalytic or double chromodomain mutants. Despite no overt epigenetic or DNA repair abnormalities, CHD6 loss leads to impaired cell survival after chronic oxidative stress, abnormal chromatin relaxation, amplified DNA damage signaling and checkpoint hypersensitivity. We suggest that CHD6 is a key regulator of the oxidative DNA damage response. Oxidative DNA damage is associated with nucleosome respacing and transcriptional changes requiring chromatin remodeling enzymes. Here, the authors reveal that the CHD6 remodeler is a DNA damage response factor that relocates to damaged sites and promotes cell survival following oxidative damage.
Collapse
Affiliation(s)
- Shaun Moore
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - N Daniel Berger
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Fintan K T Stanley
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christoph U Schräder
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shujuan Fang
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer A Chan
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - David C Schriemer
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry & Molecular Biology and/or Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
10
|
Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome. Trends Genet 2015; 31:600-611. [PMID: 26411921 PMCID: PMC4604214 DOI: 10.1016/j.tig.2015.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause of CHARGE syndrome. Here, we review recent work aimed at understanding the mechanism of CHD7 function in normal and pathological states, highlighting results from biochemical and in vivo studies. The emerging picture from this work suggests that the mechanisms by which CHD7 fine-tunes gene expression are context specific, consistent with the pleiotropic nature of CHARGE syndrome.
Collapse
|
11
|
Chromatin Dynamics in the Regulation of CFTR Expression. Genes (Basel) 2015; 6:543-58. [PMID: 26184320 PMCID: PMC4584316 DOI: 10.3390/genes6030543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022] Open
Abstract
The contribution of chromatin dynamics to the regulation of human disease-associated loci such as the cystic fibrosis transmembrane conductance regulator (CFTR) gene has been the focus of intensive experimentation for many years. Recent technological advances in the analysis of transcriptional mechanisms across the entire human genome have greatly facilitated these studies. In this review we describe the complex machinery of tissue-specific regulation of CFTR expression, and put earlier observations in context by incorporating them into datasets generated by the most recent genomics methods. Though the gene promoter is required for CFTR expression, cell-type specific regulatory elements are located elsewhere in the gene and in flanking intergenic regions. Probably within its own topological domain established by the architectural proteins CTCF and cohesin, the CFTR locus utilizes chromatin dynamics to remodel nucleosomes, recruit cell-selective transcription factors, and activate intronic enhancers. These cis-acting elements are then brought to the gene promoter by chromatin looping mechanisms, which establish long-range interactions across the locus. Despite its complexity, the CFTR locus provides a paradigm for elucidating the critical role of chromatin dynamics in the transcription of individual human genes.
Collapse
|
12
|
Cubeñas-Potts C, Corces VG. Architectural proteins, transcription, and the three-dimensional organization of the genome. FEBS Lett 2015; 589:2923-30. [PMID: 26008126 DOI: 10.1016/j.febslet.2015.05.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 12/20/2022]
Abstract
Architectural proteins mediate interactions between distant sequences in the genome. Two well-characterized functions of architectural protein interactions include the tethering of enhancers to promoters and bringing together Polycomb-containing sites to facilitate silencing. The nature of which sequences interact genome-wide appears to be determined by the orientation of the architectural protein binding sites as well as the number and identity of architectural proteins present. Ultimately, long range chromatin interactions result in the formation of loops within the chromatin fiber. In this review, we discuss data suggesting that architectural proteins mediate long range chromatin interactions that both facilitate and hinder neighboring interactions, compartmentalizing the genome into regions of highly interacting chromatin domains.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA.
| |
Collapse
|