1
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Trimbour R, Deutschmann IM, Cantini L. Molecular mechanisms reconstruction from single-cell multi-omics data with HuMMuS. Bioinformatics 2024; 40:btae143. [PMID: 38460192 PMCID: PMC11065476 DOI: 10.1093/bioinformatics/btae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
MOTIVATION The molecular identity of a cell results from a complex interplay between heterogeneous molecular layers. Recent advances in single-cell sequencing technologies have opened the possibility to measure such molecular layers of regulation. RESULTS Here, we present HuMMuS, a new method for inferring regulatory mechanisms from single-cell multi-omics data. Differently from the state-of-the-art, HuMMuS captures cooperation between biological macromolecules and can easily include additional layers of molecular regulation. We benchmarked HuMMuS with respect to the state-of-the-art on both paired and unpaired multi-omics datasets. Our results proved the improvements provided by HuMMuS in terms of transcription factor (TF) targets, TF binding motifs and regulatory regions prediction. Finally, once applied to snmC-seq, scATAC-seq and scRNA-seq data from mouse brain cortex, HuMMuS enabled to accurately cluster scRNA profiles and to identify potential driver TFs. AVAILABILITY AND IMPLEMENTATION HuMMuS is available at https://github.com/cantinilab/HuMMuS.
Collapse
Affiliation(s)
- Remi Trimbour
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Ina Maria Deutschmann
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics Group, F-75015 Paris, France
- Institut de Biologie de l’Ecole Normale Supérieure, CNRS, INSERM, Ecole Normale Supérieure, Université PSL, 75005 Paris, France
| |
Collapse
|
3
|
Juan CX, Mao Y, Han X, Qian HY, Chu KK. EGR1 Regulates SHANK3 Transcription at Different Stages of Brain Development. Neuroscience 2024; 540:27-37. [PMID: 38218401 DOI: 10.1016/j.neuroscience.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
The expression levels of SHANK3 are associated with autism spectrum disorder (ASD). The dynamic changes in SHANK3 expression during different stages of brain development may impact the progression of ASD. However, no studies or detailed analyses exploring the upstream mechanisms that regulate SHANK3 expression have been reported. In this study, we employed immunofluorescence to examine the expression of SHANK3 in brain organoids at various stages. Our results revealed elevated levels of SHANK3 expression in brain-like organoids at Day 60. Additionally, we utilized bioinformatics software to predict and analyze the SHANK3 gene's transcription start site. Through the dual luciferase reporter gene technique, we identified core transcription elements within the SHANK3 promoter. Site-directed mutations were used to identify specific transcription sites of SHANK3. To determine the physical binding of potential transcription factors to the SHANK3 promoter, we employed electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP). Our findings demonstrated that the transcription factor EGR1 regulates SHANK3 expression by binding to the transcription site of the SHANK3 promoter. Although this study did not investigate the pathological phenotypes of human brain organoids or animal model brains with EGR1 deficiency, which could potentially substantiate the findings observed for SHANK3 mutants, our findings provide valuable insights into the relationship between the transcription factor, EGR1, and SHANK3. This study contributes to the molecular understanding of ASD and offers potential foundations for precise targeted therapy.
Collapse
Affiliation(s)
- Chen-Xia Juan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China; Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yan Mao
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Xiao Han
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hua-Ying Qian
- Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Kang-Kang Chu
- Child Mental Health Research Center, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
4
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Cupaioli FA, Fallerini C, Mencarelli MA, Perticaroli V, Filippini V, Mari F, Renieri A, Mezzelani A. Autism Spectrum Disorders: Analysis of Mobile Elements at 7q11.23 Williams-Beuren Region by Comparative Genomics. Genes (Basel) 2021; 12:genes12101605. [PMID: 34680999 PMCID: PMC8535890 DOI: 10.3390/genes12101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders, characterized by a deficit in social interaction and communication. Many genetic variants are associated with ASD, including duplication of 7q11.23 encompassing 26-28 genes. Symmetrically, the hemizygous deletion of 7q11.23 causes Williams-Beuren syndrome (WBS), a multisystem disorder characterized by "hyper-sociability" and communication skills. Interestingly, deletion of four non-exonic mobile elements (MEs) in the "canine WBS locus" were associated with the behavioral divergence between the wolf and the dog and dog sociability and domestication. We hypothesized that indel of these MEs could be involved in ASD, associated with its different phenotypes and useful as biomarkers for patient stratification and therapeutic design. Since these MEs are non-exonic they have never been discovered before. We searched the corresponding MEs and loci in humans by comparative genomics. Interestingly, they mapped on different but ASD related genes. The loci in individuals with phenotypically different autism and neurotypical controls were amplified by PCR. A sub-set of each amplicon was sequenced by Sanger. No variant resulted associated with ASD and neither specific phenotypes were found but novel small-scale insertions and SNPs were discovered. Since MEs are hyper-methylated and epigenetically modulate gene expression, further investigation in ASD is necessary.
Collapse
Affiliation(s)
- Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | | | - Valentina Perticaroli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Virginia Filippini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
- Correspondence:
| |
Collapse
|
6
|
SPRY4 acts as an indicator of osteoarthritis severity and regulates chondrocyte hypertrophy and ECM protease expression. NPJ Regen Med 2021; 6:56. [PMID: 34535669 PMCID: PMC8448831 DOI: 10.1038/s41536-021-00165-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoarthritis (OA) causes serious changes in the metabolic and signaling pathways of chondrocytes, including the mitogen-activated protein kinase (MAPK) pathway. However, the role of sprouty RTK signaling antagonist 4 (SPRY4), an inhibitor of MAPK, in the human cartilage tissues and chondrocytes remains to be understood. Here, using SPRY4 gene delivery into healthy and degenerated chondrocytes, we elucidated the role of SPRY4 in preventing chondrocyte hypertrophy. In addition to using the human cartilage tissues with the destabilization of the medial meniscus (DMM) model in Sprague-Dawley (SD) rats, the role of SPRY4 in cartilage tissues and chondrocytes was explored through their molecular and histological analyses. In order to determine the effects of SPRY4 on healthy human chondrocyte hypertrophy, small interfering RNA (siRNA) was used to knock down SPRY4. Lentiviral transduction of SPRY4 into degenerated human chondrocytes allowed us to investigate its ability to prevent hypertrophy. SPRY4 expression levels were higher in healthy human cartilage tissue and chondrocytes than in degenerated human cartilage tissues and hypertrophy-induced chondrocytes. The knockdown of SPRY4 in healthy chondrocytes caused an increase in hypertrophy, senescence, reactive oxygen species (ROS) production, and extracellular matrix (ECM) protease expression. However, all these factors decreased upon overexpression of SPRY4 in degenerated chondrocytes via regulation of the MAPK signaling pathway. We conclude that SPRY4 is a crucial indicator of osteoarthritis (OA) severity and could play an important role in preventing OA in the cartilage by inhibiting chondrocyte hypertrophy.
Collapse
|
7
|
Uechi L, Jalali M, Wilbur JD, French JL, Jumbe NL, Meaney MJ, Gluckman PD, Karnani N, Sakhanenko NA, Galas DJ. Complex genetic dependencies among growth and neurological phenotypes in healthy children: Towards deciphering developmental mechanisms. PLoS One 2020; 15:e0242684. [PMID: 33270668 PMCID: PMC7714163 DOI: 10.1371/journal.pone.0242684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/09/2020] [Indexed: 11/18/2022] Open
Abstract
The genetic mechanisms of childhood development in its many facets remain largely undeciphered. In the population of healthy infants studied in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) program, we have identified a range of dependencies among the observed phenotypes of fetal and early childhood growth, neurological development, and a number of genetic variants. We have quantified these dependencies using our information theory-based methods. The genetic variants show dependencies with single phenotypes as well as pleiotropic effects on more than one phenotype and thereby point to a large number of brain-specific and brain-expressed gene candidates. These dependencies provide a basis for connecting a range of variants with a spectrum of phenotypes (pleiotropy) as well as with each other. A broad survey of known regulatory expression characteristics, and other function-related information from the literature for these sets of candidate genes allowed us to assemble an integrated body of evidence, including a partial regulatory network, that points towards the biological basis of these general dependencies. Notable among the implicated loci are RAB11FIP4 (next to NF1), MTMR7 and PLD5, all highly expressed in the brain; DNMT1 (DNA methyl transferase), highly expressed in the placenta; and PPP1R12B and DMD (dystrophin), known to be important growth and development genes. While we cannot specify and decipher the mechanisms responsible for the phenotypes in this study, a number of connections for further investigation of fetal and early childhood growth and neurological development are indicated. These results and this approach open the door to new explorations of early human development.
Collapse
Affiliation(s)
- Lisa Uechi
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Mahjoubeh Jalali
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
| | - Jayson D. Wilbur
- Metrum Research Group, Tariffville, CT, United States of America
| | | | - N. L. Jumbe
- Pharmactuarials LLC, Mountain View, CA, United States of America
| | - Michael J. Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR) Institute, Toronto, Canada
| | - Peter D. Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Neerja Karnani
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, National University of Singapore, Singapore, Singapore
| | - Nikita A. Sakhanenko
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- * E-mail: (DJG); (NAS)
| | - David J. Galas
- Pacific Northwest Research Institute, Seattle, Washington, United States of America
- * E-mail: (DJG); (NAS)
| | | |
Collapse
|
8
|
A case series of infants with increased VAMP7 gene dosage at birth and virilization defects. J Pediatr Urol 2020; 16:423.e1-423.e6. [PMID: 32622737 DOI: 10.1016/j.jpurol.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Genitourinary disorders are the most frequent congenital defects in newborns; however, little is known about their etiology. Several studies have been carried out to find genetic risk factors in the development of these malformations. The expression of VAMP7 is found in testes, epididymis, seminal vesicles, prostatic tissues, penis, and urethra. Alterations in gene dose of VAMP7 were recently reported in a subset of male patients initially identified clinically by the presence of congenital genitourinary disorders. In 2016, the authors developed a diagnostic algorithm for early detection of sex chromosome aneuploidies by quantifying the SHOX, VAMP7, and SRY gene dose in newborns by qPCR using dried blood spot (DBS) samples. OBJECTIVE Correlate the increased gene dose of VAMP7, obtained by qPCR using DBS, with genitourinary congenital defects attributable to disorders in virilization and verify the increased gene dose by microarrays. STUDY DESIGN Samples that only presented increased VAMP7 gene dosage were selected from a previously analyzed group of 5088 males in which the early detection of sex chromosomes aneuploidies was performed. Eight males were found with an increased gene dose of VAMP7 (relative quantitation > 1.3) and were called in for a complete clinical evaluation aimed at the identification of genitourinary anomalies, qPCR and microarrays. RESULTS Eight males from 5088 samples were identified with increased VAMP7 gene dosage of which six patients were clinically evaluated, of which 50% were identified with alterations in genital development (bilateral cryptorchidism, unilateral cryptorchidism, and glandular hypospadias) and speech delay, while the rest presented different types of atopy. DISCUSSION Tannour-Louet et al. postulated on 2014 that the duplication of the Xq28 region, specifically of VAMP7, plays a role in the human masculinization disorders of the urogenital tract. The study was based on array comparative genomic hybridization (aCGH) results performed to 116 males with disorders of sexual differentiation. In the present study, the patients were initially selected due to an increased gene dose of VAMP7 detected by qPCR, then the clinical evaluation and the aCGH were performed, inverse to what was reported previously but with similar percentages between both studies. CONCLUSION In this work, the authors report cases of cryptorchidism, hypospadias, language delay and atopy in male preschoolers initially identified because they have an increased gene dose of VAMP7.
Collapse
|
9
|
Justice CM, Cuellar A, Bala K, Sabourin JA, Cunningham ML, Crawford K, Phipps JM, Zhou Y, Cilliers D, Byren JC, Johnson D, Wall SA, Morton JEV, Noons P, Sweeney E, Weber A, Rees KEM, Wilson LC, Simeonov E, Kaneva R, Yaneva N, Georgiev K, Bussarsky A, Senders C, Zwienenberg M, Boggan J, Roscioli T, Tamburrini G, Barba M, Conway K, Sheffield VC, Brody L, Mills JL, Kay D, Sicko RJ, Langlois PH, Tittle RK, Botto LD, Jenkins MM, LaSalle JM, Lattanzi W, Wilkie AOM, Wilson AF, Romitti PA, Boyadjiev SA. A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis. Hum Genet 2020; 139:1077-1090. [PMID: 32266521 PMCID: PMC7415527 DOI: 10.1007/s00439-020-02157-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/25/2020] [Indexed: 12/31/2022]
Abstract
Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.
Collapse
Affiliation(s)
- Cristina M Justice
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Araceli Cuellar
- Department of Pediatrics, University of California Davis, 4625 2nd Avenue, Research Building II, Sacramento, CA, 95817, USA
| | - Krithi Bala
- Department of Pediatrics, University of California Davis, 4625 2nd Avenue, Research Building II, Sacramento, CA, 95817, USA
| | - Jeremy A Sabourin
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Michael L Cunningham
- Department of Pediatrics, Division of Craniofacial Medicine, Seattle Children's Craniofacial Center, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA
| | - Karen Crawford
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Julie M Phipps
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Yan Zhou
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jo C Byren
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Johnson
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Steven A Wall
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jenny E V Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
- Birmingham Craniofacial Unit, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Peter Noons
- Birmingham Craniofacial Unit, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Sweeney
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, England, UK
| | - Astrid Weber
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, England, UK
| | - Katie E M Rees
- Clinical Genetics Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Louise C Wilson
- Clinical Genetics Service, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Emil Simeonov
- National Institute of Pediatrics, Sofia Medical University, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Nadezhda Yaneva
- National Genetic Laboratory, University Hospital of Obstetrics and Gynecology "Maichin Dom", Medical University of Sofia, Sofia, Bulgaria
| | - Kiril Georgiev
- Department of Neurosurgery, University Hospital 'St. Ivan Rilski', Medical University of Sofia, Sofia, Bulgaria
| | - Assen Bussarsky
- Department of Neurosurgery, University Hospital 'St. Ivan Rilski', Medical University of Sofia, Sofia, Bulgaria
| | - Craig Senders
- Department of Otolaryngology, Head and Neck Surgery, University of California Davis, Sacramento, CA, USA
| | - Marike Zwienenberg
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - James Boggan
- Department of Neurosurgery, University of California Davis, Sacramento, CA, USA
| | - Tony Roscioli
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Neurosurgery, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Experimental Biology, Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Kristin Conway
- Department of Epidemiology, College of Public Health, The University of Iowa, 145 N Riverside Dr, S416 CPHB, Iowa City, IA, 52242, USA
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Lawrence Brody
- Gene and Environment Interaction Section, NHGRI, Bethesda, NIHMD, USA
| | - James L Mills
- Epidemiology Branch, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Denise Kay
- Division of Genetics, NYS Department of Health, Wadsworth CenterAlbany, NY, USA
| | - Robert J Sicko
- Division of Genetics, NYS Department of Health, Wadsworth CenterAlbany, NY, USA
| | - Peter H Langlois
- Birth Defects Epidemiology and Surveillance Branch, Texas Department of State Health Services, Austin, TX, USA
| | - Rachel K Tittle
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Lorenzo D Botto
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mary M Jenkins
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California Davis, Davis, CA, USA
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Section of Experimental Biology, Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrew O M Wilkie
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Craniofacial Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexander F Wilson
- Genometrics Section, Computational and Statistical Genomics Branch, Division of Intramural Research, NHGRI, NIH, Baltimore, MD, USA
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, The University of Iowa, 145 N Riverside Dr, S416 CPHB, Iowa City, IA, 52242, USA.
| | - Simeon A Boyadjiev
- Department of Pediatrics, University of California Davis, 4625 2nd Avenue, Research Building II, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Maccarini S, Cipani A, Bertini V, Skripac J, Salvi A, Borsani G, Marchina E. Inherited duplication of the pseudoautosomal region Xq28 in a subject with Gilles de la Tourette syndrome and intellectual disability: a case report. Mol Cytogenet 2020; 13:23. [PMID: 32582378 PMCID: PMC7310047 DOI: 10.1186/s13039-020-00493-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Background Tourette syndrome (TS) is a complex neurodevelopmental disorder (NDD) characterized by multiple chronic involuntary motor and vocal tics with onset during childhood or adolescence. Most TS patients present with additional comorbidities, typically attention deficit hyperactivity disorder (ADHD), obsessive- compulsive disorder (OCD), autism spectrum disorder (ASD) and intellectual disability (ID). Both TS and ID are genetically complex disorders that likely occur as a result of the effects of multiple genes interacting with other environmental factors. In addition to single gene mutations and chromosomal disorders, copy number variations (CNVs) are implicated across many NDDs and ID and contribute to their shared genetic etiology. Screening of CNVs using microarray-based Comparative Genomic Hybridization (aCGH) is now routinely performed in all subjects with NDD and ID. Case presentation We report a case of a 12-year-old girl diagnosed with Gilles de la Tourette Syndrome associated to behavior disorders and intellectual disability in particular with regard to language. Array-CGH analysis showed a CNV of a subtelomeric region Xq28 (gain of 260 kb) inherited from the healthy father. The duplication contains two genes, VAMP7 and SPRY3 of the PAR2 pseudoautosomal region. FISH analysis revealed that the duplicated segment is located on the short arm of a chromosome 13, resulting in a trisomy of the region. In the proband the expression levels of the genes evaluated in the peripheral blood sample are comparable both those of the mother and to those of female control subjects. Conclusions Although the trisomy of the 260 kb region from Xq28 identified in proband is also shared by the healthy father, it is tantalizing to speculate that, together with genetic risk factors inherited from the mother, it may play a role in the development of a form of Tourette syndrome with intellectual disability. This hypothesis is also supported by the fact that both genes present in the duplicated region (VAMP7 and SPRY3) are expressed in the CNS and are implicated in neurotransmission and neurite growth and branching. In addition, similar CNVs have been identified in individuals whose phenotype is associated with autism spectrum disorders or intellectual disability.
Collapse
Affiliation(s)
- Stefania Maccarini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annamaria Cipani
- Unit of Child and Adolescent Neuropsychiatry, ASST of Garda, Brescia, Italy
| | - Valeria Bertini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jelena Skripac
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Salvi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giuseppe Borsani
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
11
|
Guelfi S, D'Sa K, Botía JA, Vandrovcova J, Reynolds RH, Zhang D, Trabzuni D, Collado-Torres L, Thomason A, Quijada Leyton P, Gagliano Taliun SA, Nalls MA, Small KS, Smith C, Ramasamy A, Hardy J, Weale ME, Ryten M. Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information. Nat Commun 2020; 11:1041. [PMID: 32098967 PMCID: PMC7042265 DOI: 10.1038/s41467-020-14483-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/. Regulation of gene expression and splicing are thought to be tissue-specific. Here, the authors obtain genomic and transcriptomic data from putamen and substantia nigra of 117 neurologically healthy human brains and find that splicing eQTLs are enriched for neuron-specific regulatory information.
Collapse
Affiliation(s)
- Sebastian Guelfi
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Karishma D'Sa
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK.,Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, UK
| | - Juan A Botía
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK.,Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Jana Vandrovcova
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Regina H Reynolds
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - David Zhang
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Daniah Trabzuni
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK.,Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | | | | | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, US National Institutes of Health, Bethesda, MD, USA.,Data Tecnica International, Glen Echo, MD, USA
| | | | | | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Colin Smith
- Department of Neuropathology, MRC Sudden Death Brain Bank Project, University of Edinburgh, Edinburgh, UK
| | - Adaikalavan Ramasamy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK.,Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, UK.,Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK
| | - Michael E Weale
- Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, UK.,Genomics plc, Oxford, UK
| | - Mina Ryten
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, University College London (UCL) Institute of Neurology, London, UK.
| |
Collapse
|
12
|
Ning Z, Williams JM, Kumari R, Baranov PV, Moore T. Opposite Expression Patterns of Spry3 and p75NTR in Cerebellar Vermis Suggest a Male-Specific Mechanism of Autism Pathogenesis. Front Psychiatry 2019; 10:416. [PMID: 31275178 PMCID: PMC6591651 DOI: 10.3389/fpsyt.2019.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
Autism is a genetically complex neurobehavioral disorder with a population prevalence of more than 1%. Cerebellar abnormalities, including Purkinje cell deficits in the vermis, are consistently reported, and rodent models of cerebellar dysfunction exhibit features analogous to human autism. We previously analyzed the regulation and expression of the pseudoautosomal region 2 gene SPRY3, which is adjacent to X chromosome-linked TMLHE, a known autism susceptibility gene. SPRY3 is a regulator of branching morphogenesis and is strongly expressed in Purkinje cells. We previously showed that mouse Spry3 is not expressed in cerebellar vermis lobules VI-VII and X, regions which exhibit significant Purkinje cell loss or abnormalities in autism. However, these lobules have relatively high expression of p75NTR, which encodes a neurotrophin receptor implicated in autism. We propose a mechanism whereby inappropriate SPRY3 expression in these lobules could interact with TrkB and p75NTR signaling pathways resulting in Purkinje cell pathology. We report preliminary characterization of X and Y chromosome-linked regulatory sequences upstream of SPRY3, which are polymorphic in the general population. We suggest that an OREG-annotated region on chromosome Yq12 ∼60 kb from SPRY3 acts as a silencer of Y-linked SPRY3 expression. Deletion of a β-satellite repeat, or alterations in chromatin structure in this region due to trans-acting factors, could affect the proposed silencing function, leading to reactivation and inappropriate expression of Y-linked SPRY3. This proposed male-specific mechanism could contribute to the male bias in autism prevalence.
Collapse
Affiliation(s)
| | | | | | | | - Tom Moore
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Krsička D, Geryk J, Vlčková M, Havlovicová M, Macek M, Pourová R. Identification of likely associations between cerebral folate deficiency and complex genetic- and metabolic pathogenesis of autism spectrum disorders by utilization of a pilot interaction modeling approach. Autism Res 2017; 10:1424-1435. [DOI: 10.1002/aur.1780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel Krsička
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Jan Geryk
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Markéta Havlovicová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Milan Macek
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| | - Radka Pourová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine; Charles University and University Hospital Motol; V Úvalu 84, 150 06 Prague Czech Republic
| |
Collapse
|