1
|
Xing H, Xu P, Ma Y, Li T, Zhang Y, Ding X, Liu L, Keerman M, Niu Q. TFEB ameliorates DEHP-induced neurotoxicity by activating GAL3/TRIM16 axis dependent lysophagy and alleviating lysosomal dysfunction. ENVIRONMENTAL TOXICOLOGY 2024; 39:3779-3789. [PMID: 38488668 DOI: 10.1002/tox.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 06/12/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with known neurotoxic effects. However, the specific mechanism underlying this neurotoxicity remains unclear. This study aimed to investigate the role of lysosomal function and lysophagy in DEHP-induced neurotoxicity, with a particular focus on the regulatory role of Transcription factor EB (TFEB). To achieve this, we utilized in vitro models of DEHP-exposed SH-SY5Y cells and HT22 cells. Our findings revealed that DEHP exposure led to lysosomal damage and dysfunction. Moreover, we observed impaired autophagic degradation, characterized by elevated levels of LC3II and p62. DEHP treatment downregulated the expression of TFEB, GAL3, and TRIM16, while upregulating the expression of PARP. This led to the inhibition of GAL3/TRIM16 axis dependent lysophagy and ultimately excessive apoptosis in neuronal cells. Importantly, TFEB overexpression alleviated lysosomal dysfunction, activated lysophagy, and mitigated DEHP-induced apoptosis. Overall, our results suggest that DEHP induces not only lysosomal dysfunction, but also inhibits lysophagy through the suppression of GAL3/TRIM16 axis. Consequently, impaired clearance of damaged lysosomes occurs, culminating in neuronal apoptosis. Taken together, our findings highlight the critical role of TFEB in regulating lysophagy and lysosomal function. Furthermore, TFEB may serve as a potential therapeutic target for mitigating DEHP-induced neuronal toxicity.
Collapse
Affiliation(s)
- Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Mulatibieke Keerman
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| |
Collapse
|
2
|
Koster KP, Fyke Z, Nguyen TTA, Niqula A, Noriega-González LY, Woolfrey KM, Dell’Acqua ML, Cologna SM, Yoshii A. Akap5 links synaptic dysfunction to neuroinflammatory signaling in a mouse model of infantile neuronal ceroid lipofuscinosis. Front Synaptic Neurosci 2024; 16:1384625. [PMID: 38798824 PMCID: PMC11116793 DOI: 10.3389/fnsyn.2024.1384625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.
Collapse
Affiliation(s)
- Kevin P. Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zach Fyke
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Thu T. A. Nguyen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Amanda Niqula
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Kevin M. Woolfrey
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stephanie M. Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Akira Yoshii
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
- Department of Neurology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Peviani M, Das S, Patel J, Jno‐Charles O, Kumar R, Zguro A, Mathews TD, Cabras P, Milazzo R, Cavalca E, Poletti V, Biffi A. An innovative hematopoietic stem cell gene therapy approach benefits CLN1 disease in the mouse model. EMBO Mol Med 2023; 15:e15968. [PMID: 36876653 PMCID: PMC10086581 DOI: 10.15252/emmm.202215968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.
Collapse
Affiliation(s)
- Marco Peviani
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
- Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly
| | - Sabyasachi Das
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Janki Patel
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Odella Jno‐Charles
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Rajesh Kumar
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Ana Zguro
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Tyler D Mathews
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
| | - Paolo Cabras
- Department of Biology and Biotechnology “L. Spallanzani”University of PaviaPaviaItaly
| | - Rita Milazzo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Cavalca
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), San Raffaele Scientific InstituteMilanItaly
| | - Valentina Poletti
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
| | - Alessandra Biffi
- Gene Therapy ProgramDana‐Farber/Boston Children's Cancer and Blood Disorders CenterBostonMAUSA
- Harvard Medical SchoolBostonMAUSA
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health DepartmentUniversity of PadovaPadovaItaly
| |
Collapse
|
4
|
Gorenberg EL, Massaro Tieze S, Yücel B, Zhao HR, Chou V, Wirak GS, Tomita S, Lam TT, Chandra SS. Identification of substrates of palmitoyl protein thioesterase 1 highlights roles of depalmitoylation in disulfide bond formation and synaptic function. PLoS Biol 2022; 20:e3001590. [PMID: 35358180 PMCID: PMC9004782 DOI: 10.1371/journal.pbio.3001590] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/12/2022] [Accepted: 03/02/2022] [Indexed: 12/30/2022] Open
Abstract
Loss-of-function mutations in the depalmitoylating enzyme palmitoyl protein thioesterase 1 (PPT1) cause neuronal ceroid lipofuscinosis (NCL), a devastating neurodegenerative disease. The substrates of PPT1 are largely undescribed, posing a limitation on molecular dissection of disease mechanisms and therapeutic development. Here, we provide a resource identifying >100 novel PPT1 substrates. We utilized Acyl Resin-Assisted Capture (Acyl RAC) and mass spectrometry to identify proteins with increased in vivo palmitoylation in PPT1 knockout (KO) mouse brains. We then validated putative substrates through direct depalmitoylation with recombinant PPT1. This stringent screen elucidated diverse PPT1 substrates at the synapse, including channels and transporters, G-protein–associated molecules, endo/exocytic components, synaptic adhesion molecules, and mitochondrial proteins. Cysteine depalmitoylation sites in transmembrane PPT1 substrates frequently participate in disulfide bonds in the mature protein. We confirmed that depalmitoylation plays a role in disulfide bond formation in a tertiary screen analyzing posttranslational modifications (PTMs). Collectively, these data highlight the role of PPT1 in mediating synapse functions, implicate molecular pathways in the etiology of NCL and other neurodegenerative diseases, and advance our basic understanding of the purpose of depalmitoylation.
Collapse
Affiliation(s)
- Erica L. Gorenberg
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| | - Sofia Massaro Tieze
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| | - Betül Yücel
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Helen R. Zhao
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Vicky Chou
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Gregory S. Wirak
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Susumu Tomita
- Departments of Neuroscience and of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - TuKiet T. Lam
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Keck MS & Proteomics Resource, WM Keck Biotechnology Resource Laboratory, New Haven, Connecticut, United States of America
| | - Sreeganga S. Chandra
- Departments of Neurology and Neuroscience, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sadhukhan T, Bagh MB, Appu AP, Mondal A, Zhang W, Liu A, Mukherjee AB. In a mouse model of INCL reduced S-palmitoylation of cytosolic thioesterase APT1 contributes to microglia proliferation and neuroinflammation. J Inherit Metab Dis 2021; 44:1051-1069. [PMID: 33739454 DOI: 10.1002/jimd.12379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 01/19/2023]
Abstract
S-palmitoylation is a reversible posttranslational modification in which a 16-carbon saturated fatty acid (generally palmitate) is attached to specific cysteine residues in polypeptides via thioester linkage. Dynamic S-palmitoylation (palmitoylation-depalmitoylation), like phosphorylation-dephosphorylation, regulates the function of numerous proteins, especially in the brain. While a family of 23 palmitoyl-acyl transferases (PATS), commonly known as ZDHHCs, catalyze S-palmitoylation of proteins, the thioesterases, localized either in the cytoplasm (eg, APT1) or in the lysosome (eg, PPT1) mediate depalmitoylation. Previously, we reported that APT1 requires dynamic S-palmitoylation for shuttling between the cytosol and the plasma membrane. APT1 depalmitoylated H-Ras to regulate its signaling pathway that stimulates cell proliferation. Although we demonstrated that APT1 catalyzed its own depalmitoylation, the ZDHHC(s) that S-palmitoylated APT1 had remained unidentified. We report here that ZDHHC5 and ZDHHC23 catalyze APT1 S-palmitoylation. Intriguingly, lysosomal Ppt1-deficiency in Cln1-/- mouse, a reliable animal model of INCL, markedly reduced ZDHHC5 and ZDHHC23 levels. Remarkably, in the brain of these mice decreased ZDHHC5 and ZDHHC23 levels suppressed membrane-bound APT1, thereby, increasing plasma membrane-localized H-Ras, which activated its signaling pathway stimulating microglia proliferation. Increased inflammatory cytokines produced by microglia together with increased complement C1q level contributed to the transformation of astrocytes to neurotoxic A1 phenotype. Importantly, neuroinflammation was ameliorated by treatment of Cln1-/- mice with a PPT1-mimetic small molecule, N-tert(Butyl)hydroxylamine (NtBuHA). Our results revealed a novel pathway to neuropathology in an INCL mouse model and uncovered a previously unrecognized mechanism of the neuroprotective actions of NtBuHA and its potential as a drug target.
Collapse
Affiliation(s)
- Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Maria B Bagh
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Abhilash P Appu
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zhang
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Fritsch J, Särchen V, Schneider-Brachert W. Regulation of Death Receptor Signaling by S-Palmitoylation and Detergent-Resistant Membrane Micro Domains-Greasing the Gears of Extrinsic Cell Death Induction, Survival, and Inflammation. Cancers (Basel) 2021; 13:2513. [PMID: 34063813 PMCID: PMC8196677 DOI: 10.3390/cancers13112513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Death-receptor-mediated signaling results in either cell death or survival. Such opposite signaling cascades emanate from receptor-associated signaling complexes, which are often formed in different subcellular locations. The proteins involved are frequently post-translationally modified (PTM) by ubiquitination, phosphorylation, or glycosylation to allow proper spatio-temporal regulation/recruitment of these signaling complexes in a defined cellular compartment. During the last couple of years, increasing attention has been paid to the reversible cysteine-centered PTM S-palmitoylation. This PTM regulates the hydrophobicity of soluble and membrane proteins and modulates protein:protein interaction and their interaction with distinct membrane micro-domains (i.e., lipid rafts). We conclude with which functional and mechanistic roles for S-palmitoylation as well as different forms of membrane micro-domains in death-receptor-mediated signal transduction were unraveled in the last two decades.
Collapse
Affiliation(s)
- Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Vinzenz Särchen
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, 60528 Frankfurt, Germany;
| | - Wulf Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| |
Collapse
|
7
|
Huber RJ. Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. J Biomed Sci 2020; 27:64. [PMID: 32430003 PMCID: PMC7238602 DOI: 10.1186/s12929-020-00653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, belong to a family of neurological disorders that cause blindness, seizures, loss of motor function and cognitive ability, and premature death. There are 13 different subtypes of NCL that are associated with mutations in 13 genetically distinct genes (CLN1-CLN8, CLN10-CLN14). Similar clinical and pathological profiles of the different NCL subtypes suggest that common disease mechanisms may be involved. As a result, there have been many efforts to determine how NCL proteins are connected at the cellular level. A main driving force for NCL research has been the utilization of mammalian and non-mammalian cellular models to study the mechanisms underlying the disease. One non-mammalian model that has provided significant insight into NCL protein function is the social amoeba Dictyostelium discoideum. Accumulated data from Dictyostelium and mammalian cells show that NCL proteins display similar localizations, have common binding partners, and regulate the expression and activities of one another. In addition, genetic models of NCL display similar phenotypes. This review integrates findings from Dictyostelium and mammalian models of NCL to highlight our understanding of the molecular networking of NCL proteins. The goal here is to help set the stage for future work to reveal the cellular mechanisms underlying the NCLs.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9L 0G2, Canada.
| |
Collapse
|
8
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
9
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
10
|
Mice deficient in the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) display a complex retinal phenotype. Sci Rep 2019; 9:14185. [PMID: 31578378 PMCID: PMC6775149 DOI: 10.1038/s41598-019-50726-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) type 1 (CLN1) is a neurodegenerative storage disorder caused by mutations in the gene encoding the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). CLN1 patients suffer from brain atrophy, mental and motor retardation, seizures, and retinal degeneration ultimately resulting in blindness. Here, we performed an in-depth analysis of the retinal phenotype of a PPT1-deficient mouse, an animal model of this condition. Reactive astrogliosis and microgliosis were evident in mutant retinas prior to the onset of retinal cell loss. Progressive accumulation of storage material, a pronounced dysregulation of various lysosomal proteins, and accumulation of sequestosome/p62-positive aggregates in the inner nuclear layer also preceded retinal degeneration. At advanced stages of the disease, the mutant retina was characterized by a significant loss of ganglion cells, rod and cone photoreceptor cells, and rod and cone bipolar cells. Results demonstrate that PPT1 dysfunction results in early-onset pathological alterations in the mutant retina, followed by a progressive degeneration of various retinal cell types at relatively late stages of the disease. Data will serve as a reference for future work aimed at developing therapeutic strategies for the treatment of retinal degeneration in CLN1 disease.
Collapse
|
11
|
Marques ARA, Di Spiezio A, Thießen N, Schmidt L, Grötzinger J, Lüllmann-Rauch R, Damme M, Storck SE, Pietrzik CU, Fogh J, Bär J, Mikhaylova M, Glatzel M, Bassal M, Bartsch U, Saftig P. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 2019; 16:811-825. [PMID: 31282275 DOI: 10.1080/15548627.2019.1637200] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CTSD (cathepsin D) is one of the major lysosomal proteases indispensable for the maintenance of cellular proteostasis by turning over substrates of endocytosis, phagocytosis and autophagy. Consequently, CTSD deficiency leads to a strong impairment of the lysosomal-autophagy machinery. In mice and humans CTSD dysfunction underlies the congenital variant (CLN10) of neuronal ceroid lipofuscinosis (NCL). NCLs are distinct lysosomal storage disorders (LSDs) sharing various hallmarks, namely accumulation of protein aggregates and ceroid lipofuscin leading to neurodegeneration and blindness. The most established and clinically approved approach to treat LSDs is enzyme replacement therapy (ERT) aiming to replace the defective hydrolase with an exogenously applied recombinant protein. Here we reveal that recombinant human pro-CTSD produced in a mammalian expression system can be efficiently taken up by a variety of cell models, is correctly targeted to lysosomes and processed to the active mature form of the protease. In proof-of-principle experiments we provide evidence that recombinant human CTSD (rhCTSD) can improve the biochemical phenotype of CTSD-deficient hippocampal slice cultures in vitro and retinal cells in vivo. Furthermore, we demonstrate that dosing of rhCTSD in the murine CLN10 model leads to a correction of lysosomal hypertrophy, storage accumulation and impaired autophagic flux in the viscera and central nervous system (CNS). We establish that direct delivery of the recombinant protease to the CNS is required for improvement of neuropathology and lifespan extension. Together these data support the continuation of the pre-clinical studies for the application of rhCTSD in the treatment of NCL.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; BBB: blood brain barrier; CNS: central nervous system; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ERT: enzyme replacement therapy; GFAP: glial fibrillary acidic protein; INL: inner nuclear layer; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LDL: low-density lipoprotein; LRP1: low density lipoprotein receptor-related protein 1; LSD: lysosomal storage disorder; MEFs: mouse embryonic fibroblasts; M6P: mannose 6-phosphate; mCTSD: mature CTSD; NCL: neuronal ceroid lipofuscinosis; ONL: outer nuclear layer; PB: phosphate buffer; proCTSD: pro-cathepsin D; LRPAP1: low density lipoprotein receptor-related protein associated protein 1; rhCTSD: human recombinant CTSD; SAPC: saposin C; SAPD: saposin D; ATP5G1: ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C1 (subunit 9); SQSTM1/p62: sequestosome 1; TPP1: tripeptidyl peptidase I.
Collapse
Affiliation(s)
- André R A Marques
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Niklas Thießen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Lina Schmidt
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Julia Bär
- Center for Molecular Neurobiology, Emmy-Noether Group "Neuronal Protein Transport", ZMNH, University Medical Center, Hamburg, Germany
| | - Marina Mikhaylova
- Center for Molecular Neurobiology, Emmy-Noether Group "Neuronal Protein Transport", ZMNH, University Medical Center, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
12
|
Wu Y, Zhang Q, Qi Y, Gao J, Li W, Lv L, Chen G, Zhang Z, Yue X, Peng S. Enzymatic activity of palmitoyl-protein thioesterase-1 in serum from schizophrenia significantly associates with schizophrenia diagnosis scales. J Cell Mol Med 2019; 23:6512-6518. [PMID: 31270934 PMCID: PMC6714227 DOI: 10.1111/jcmm.14496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies have confirmed that schizophrenia is an inheritable multiple-gene mental disorder. Longitudinal studies about depression, first episode psychosis (FEP) and acute psychotic relapse have mostly searched for brain imaging biomarkers and inflammatory markers from the blood. However, to the best of our knowledge, the association between enzymatic activities with diagnosis or prediction of treatment response in people with schizophrenia has barely been validated. Under the Longitudinal Study of National Mental Health Work Plan (2015-2020), we have studied a subsample of approximately 36 individuals from the cohort with data on palmitoyl-protein thioesterase-1 enzymatic activity from FEP and performed a bivariate correlation analysis with psychiatric assessment scores. After adjusting for sex, age, body mass index (BMI) and total serum protein, our data demonstrated that PPT1 enzymatic activity is significantly associated with schizophrenia and its Positive and Negative Syndrome Scale (PANSS) scores. This longitudinal study compared the PPT1 enzymatic activity in FEP schizophrenia patients and healthy volunteers, and the former exhibited a significant 1.5-fold increase in PPT1 enzymatic levels (1.79 mmol/L/h/mL, and 1.18 mmol/L/h/mL; P < 0.05; 95% CI, 2.3-2.9 and 1.4-1.8). The higher PPT1 enzymatic levels in FEP schizophrenia patients were positively associated with larger PANSS scaling scores (r = 0.32, P = 0.0079 for positive scaling; r = 0.41, P = 0.0006 for negative scaling; r = 0.45, P = 0.0001 for general scaling; and r = 0.34, P = 0.0048 for PNASS-S scaling). Higher enzymatic PPT1 in FEP schizophrenia patients is significantly associated with increased PANSS scaling values, indicating more serious rates of developing psychosis. Enzymatic activity of PPT1 may provide an important new view for schizophrenia disorders.
Collapse
Affiliation(s)
- Yaoyao Wu
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Qianqian Zhang
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Yawei Qi
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Jingjing Gao
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Wenqiang Li
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Mental Hospital, Xinxiang, China
| | - Luxiang Lv
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Mental Hospital, Xinxiang, China
| | - Guanjie Chen
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland
| | - Zhongjian Zhang
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China.,Section on Developmental Genetics, PDEGEN, NICHD, NIH, Bethesda, Maryland
| | - Xuyi Yue
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Shiyong Peng
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| |
Collapse
|
13
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|
14
|
Gu X, Han M, Du Y, Wu Y, Xu Y, Zhou X, Ye D, Wang HL. Pb disrupts autophagic flux through inhibiting the formation and activity of lysosomes in neural cells. Toxicol In Vitro 2018; 55:43-50. [PMID: 30496793 DOI: 10.1016/j.tiv.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Lead (Pb) has long been known as a metallic toxin to exert detrimental effects on human health, particularly on the central nervous system (CNS). Misregulated autophagy was regularly associated with multiple cellular dysfunctions and human diseases. However, the role of autophagy underlying Pb-induced neurotoxicity remains to be elucidated. In this study, we demonstrated that Pb promoted the accumulation of autophagosomes in PC12 cells, and subsequent findings revealed that this autophagosome accumulation was primarily caused by the inhibition of autophagic flux. Moreover, the results showed that Pb affected autophagy course through increasing Beclin 1 and ATG5 expression levels. Specifically, by double labeling with LC3-II (a marker of autophagosome) and LAMP-1 (a marker of lysosome), Pb impaired fusion between autophagosomes and lysosomes. Additionally, Pb exposure significantly reduced the number or size of lysosomes via decreasing the level of LAMP1, which is confirmed by the LysoTracker Red staining. Furthermore, the impairment of lysosomal activity was also signaled by the altered pH value of this acidic organelle. Overall, Pb exposure led to injuries of autophagy of neural cells through inhibiting the genesis and activity of lysosomes. The data provides insight with the neurotoxicity of Pb in a novel perspective, autophagy.
Collapse
Affiliation(s)
- Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Miaomiao Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yang Du
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yulan Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xianxuan Zhou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Danlei Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
15
|
Pezzini F, Bianchi M, Benfatto S, Griggio F, Doccini S, Carrozzo R, Dapkunas A, Delledonne M, Santorelli FM, Lalowski MM, Simonati A. The Networks of Genes Encoding Palmitoylated Proteins in Axonal and Synaptic Compartments Are Affected in PPT1 Overexpressing Neuronal-Like Cells. Front Mol Neurosci 2017; 10:266. [PMID: 28878621 PMCID: PMC5572227 DOI: 10.3389/fnmol.2017.00266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022] Open
Abstract
CLN1 disease (OMIM #256730) is an early childhood ceroid-lipofuscinosis associated with mutated CLN1, whose product Palmitoyl-Protein Thioesterase 1 (PPT1) is a lysosomal enzyme involved in the removal of palmitate residues from S-acylated proteins. In neurons, PPT1 expression is also linked to synaptic compartments. The aim of this study was to unravel molecular signatures connected to CLN1. We utilized SH-SY5Y neuroblastoma cells overexpressing wild type CLN1 (SH-p.wtCLN1) and five selected CLN1 patients’ mutations. The cellular distribution of wtPPT1 was consistent with regular processing of endogenous protein, partially detected inside Lysosomal Associated Membrane Protein 2 (LAMP2) positive vesicles, while the mutants displayed more diffuse cytoplasmic pattern. Transcriptomic profiling revealed 802 differentially expressed genes (DEGs) in SH-p.wtCLN1 (as compared to empty-vector transfected cells), whereas the number of DEGs detected in the two mutants (p.L222P and p.M57Nfs*45) was significantly lower. Bioinformatic scrutiny linked DEGs with neurite formation and neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes were predicted to be hampered in the wtCLN1 overexpressing cell line, and these findings were corroborated by morphological investigations. Palmitoylation survey identified 113 palmitoylated protein-encoding genes in SH-p.wtCLN1, including 25 ones simultaneously assigned to axonal growth and synaptic compartments. A remarkable decrease in the expression of palmitoylated proteins, functionally related to axonal elongation (GAP43, CRMP1 and NEFM) and of the synaptic marker SNAP25, specifically in SH-p.wtCLN1 cells was confirmed by immunoblotting. Subsequent, bioinformatic network survey of DEGs assigned to the synaptic annotations linked 81 DEGs, including 23 ones encoding for palmitoylated proteins. Results obtained in this experimental setting outlined two affected functional modules (connected to the axonal and synaptic compartments), which can be associated with an altered gene dosage of wtCLN1. Moreover, these modules were interrelated with the pathological effects associated with loss of PPT1 function, similarly as observed in the Ppt1 knockout mice and patients with CLN1 disease.
Collapse
Affiliation(s)
- Francesco Pezzini
- Neurology (Neuropathology and Child Neurology), Department of Neuroscience, Biomedicine and Movement, University of VeronaVerona, Italy
| | - Marzia Bianchi
- Unit of Muscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's HospitalRome, Italy
| | - Salvatore Benfatto
- Functional Genomics Center, Department of Biotechnology, University of VeronaVerona, Italy
| | - Francesca Griggio
- Functional Genomics Center, Department of Biotechnology, University of VeronaVerona, Italy
| | - Stefano Doccini
- Molecular Medicine, IRCCS Stella MarisCalambrone-Pisa, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Children's HospitalRome, Italy
| | - Arvydas Dapkunas
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of HelsinkiHelsinki, Finland
| | - Massimo Delledonne
- Functional Genomics Center, Department of Biotechnology, University of VeronaVerona, Italy
| | | | - Maciej M Lalowski
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of HelsinkiHelsinki, Finland
| | - Alessandro Simonati
- Neurology (Neuropathology and Child Neurology), Department of Neuroscience, Biomedicine and Movement, University of VeronaVerona, Italy
| |
Collapse
|
16
|
Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model. Nat Commun 2017; 8:14612. [PMID: 28266544 PMCID: PMC5344305 DOI: 10.1038/ncomms14612] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022] Open
Abstract
Defective lysosomal acidification contributes to virtually all lysosomal storage disorders (LSDs) and to common neurodegenerative diseases like Alzheimer's and Parkinson's. Despite its fundamental importance, the mechanism(s) underlying this defect remains unclear. The v-ATPase, a multisubunit protein complex composed of cytosolic V1-sector and lysosomal membrane-anchored V0-sector, regulates lysosomal acidification. Mutations in the CLN1 gene, encoding PPT1, cause a devastating neurodegenerative LSD, INCL. Here we report that in Cln1−/− mice, which mimic INCL, reduced v-ATPase activity correlates with elevated lysosomal pH. Moreover, v-ATPase subunit a1 of the V0 sector (V0a1) requires palmitoylation for interacting with adaptor protein-2 (AP-2) and AP-3, respectively, for trafficking to the lysosomal membrane. Notably, treatment of Cln1−/− mice with a thioesterase (Ppt1)-mimetic, NtBuHA, ameliorated this defect. Our findings reveal an unanticipated role of Cln1 in regulating lysosomal targeting of V0a1 and suggest that varying factors adversely affecting v-ATPase function dysregulate lysosomal acidification in other LSDs and common neurodegenerative diseases. Lysosomal acidification defects have been implicated in various neurodegenerative disorders. Bagh et al. show that the V0a1 subunit of v-ATPase requires palmitoylation for correct sorting and trafficking to the lysosome membrane, and that such a process is impaired in a mouse model of a devastating neurodegenerative lysosomal storage disease, INCL.
Collapse
|
17
|
Bunderson-Schelvan M, Holian A, Hamilton RF. Engineered nanomaterial-induced lysosomal membrane permeabilization and anti-cathepsin agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:230-248. [PMID: 28632040 PMCID: PMC6127079 DOI: 10.1080/10937404.2017.1305924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Engineered nanomaterials (ENMs), or small anthropogenic particles approximately < 100 nm in size and of various shapes and compositions, are increasingly incorporated into commercial products and used for industrial and medical purposes. There is an exposure risk to both the population at large and individuals in the workplace with inhalation exposures to ENMs being a primary concern. Further, there is increasing evidence to suggest that certain ENMs may represent a significant health risk, and many of these ENMs exhibit distinct similarities with other particles and fibers that are known to induce adverse health effects, such as asbestos, silica, and particulate matter (PM). Evidence regarding the importance of lysosomal membrane permeabilization (LMP) and release of cathepsins in ENM toxicity has been accumulating. The aim of this review was to describe our current understanding of the mechanisms leading to ENM-associated pathologies, including LMP and the role of cathepsins with a focus on inflammation. In addition, anti-cathepsin agents, some of which have been tested in clinical trials and may prove useful for ameliorating the harmful effects of ENM exposure, are examined.
Collapse
Affiliation(s)
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| | - Raymond F. Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
18
|
Early infantile neuronal ceroid lipofuscinosis (CLN10 disease) associated with a novel mutation in CTSD. J Neurol 2016; 263:1029-1032. [DOI: 10.1007/s00415-016-8111-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
19
|
Henderson MX, Wirak GS, Zhang YQ, Dai F, Ginsberg SD, Dolzhanskaya N, Staropoli JF, Nijssen PCG, Lam TT, Roth AF, Davis NG, Dawson G, Velinov M, Chandra SS. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol 2016; 131:621-37. [PMID: 26659577 DOI: 10.1007/s00401-015-1512-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 01/09/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are a group of inherited neurodegenerative disorders with lysosomal pathology (CLN1-14). Recently, mutations in the DNAJC5/CLN4 gene, which encodes the presynaptic co-chaperone CSPα were shown to cause autosomal-dominant NCL. Although 14 NCL genes have been identified, it is unknown if they act in common disease pathways. Here we show that two disease-associated proteins, CSPα and the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1/CLN1) are biochemically linked. We find that in DNAJC5/CLN4 patient brains, PPT1 is massively increased and mis-localized. Surprisingly, the specific enzymatic activity of PPT1 is dramatically reduced. Notably, we demonstrate that CSPα is depalmitoylated by PPT1 and hence its substrate. To determine the consequences of PPT1 accumulation, we compared the palmitomes from control and DNAJC5/CLN4 patient brains by quantitative proteomics. We discovered global changes in protein palmitoylation, mainly involving lysosomal and synaptic proteins. Our findings establish a functional link between two forms of NCL and serve as a springboard for investigations of NCL disease pathways.
Collapse
Affiliation(s)
- Michael X Henderson
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Gregory S Wirak
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Yong-Quan Zhang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Feng Dai
- Yale Center for Analytical Services, New Haven, CT, USA
| | - Stephen D Ginsberg
- Nathan Kline Institute, Orangeburg, NY, USA
- Departments of Psychiatry and Physiology and Neuroscience, New York University Langone Medical Center, New York, NY, USA
| | - Natalia Dolzhanskaya
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - John F Staropoli
- Department of Neurology, Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biogen Idec, Cambridge, MA, 02142, USA
| | - Peter C G Nijssen
- Department of Neurology, St. Elisabeth Hospital, 5022 GC, Tilburg, Netherlands
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Amy F Roth
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Nicholas G Davis
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Glyn Dawson
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | - Milen Velinov
- Department of Pediatrics, Albert Einstein College of Medicine, New York, NY, USA
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sreeganga S Chandra
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA.
- Department of Neurology, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Molecular Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum Mol Genet 2016; 25:777-91. [PMID: 26681805 DOI: 10.1093/hmg/ddv615] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/12/2022] Open
Abstract
CLN7 disease is an autosomal recessive, childhood-onset neurodegenerative lysosomal storage disorder caused by the defective lysosomal membrane protein CLN7. We have disrupted the Cln7/Mfsd8 gene in mice by targeted deletion of exon 2 generating a novel knockout (KO) mouse model for CLN7 disease, which recapitulates key features of human CLN7 disease pathology. Cln7 KO mice showed increased mortality and a neurological phenotype including hind limb clasping and myoclonus. Lysosomal dysfunction in the brain of mutant mice was shown by the storage of autofluorescent lipofuscin-like lipopigments, subunit c of mitochondrial ATP synthase and saposin D and increased expression of lysosomal cathepsins B, D and Z. By immunohistochemical co-stainings, increased cathepsin Z expression restricted to Cln7-deficient microglia and neurons was found. Ultrastructural analyses revealed large storage bodies in Purkinje cells of Cln7 KO mice containing inclusions composed of irregular, curvilinear and rectilinear profiles as well as fingerprint profiles. Generalized astrogliosis and microgliosis in the brain preceded neurodegeneration in the olfactory bulb, cerebral cortex and cerebellum in Cln7 KO mice. Increased levels of LC3-II and the presence of neuronal p62- and ubiquitin-positive protein aggregates suggested that impaired autophagy represents a major pathomechanism in the brain of Cln7 KO mice. The data suggest that loss of the putative lysosomal transporter Cln7 in the brain leads to lysosomal dysfunction, impaired constitutive autophagy and neurodegeneration late in disease.
Collapse
Affiliation(s)
| | | | - Jan Sedlacik
- Department of Diagnostics and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Jens Fiehler
- Department of Diagnostics and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | | |
Collapse
|
21
|
Macías-Vidal J, Guerrero-Hernández M, Estanyol JM, Aguado C, Knecht E, Coll MJ, Bachs O. Identification of lysosomal Npc1-binding proteins: Cathepsin D activity is regulated by NPC1. Proteomics 2015; 16:150-8. [PMID: 26507101 DOI: 10.1002/pmic.201500110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/14/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022]
Abstract
Niemann-Pick type C (NPC) disease is an inherited lysosomal storage disorder, characterized by severe neurodegeneration. It is mostly produced by mutations in the NPC1 gene, encoding for a protein of the late endosomes/lysosomes membrane, involved in cholesterol metabolism. However, the specific role of this protein in NPC disease still remains unknown. We aimed to identify Npc1-binding proteins in order to define new putative NPC1 lysosomal functions. By affinity chromatography using an Npc1 peptide (amino acids 1032-1066 of loop I), as bait, we fished 31 lysosomal proteins subsequently identified by LC-MS/MS. Most of them were involved in proteolysis and lipid catabolism and included the protease cathepsin D. Cathepsin D and NPC1 interaction was validated by immunoprecipitation and the functional relevance of this interaction was studied. We found that fibroblasts from NPC patients with low levels of NPC1 protein have high amounts of procathepsin D but reduced quantities of the mature protein, thus showing a diminished cathepsin D activity. The increase of NPC1 protein levels in NPC cells by treatment with the proteasome inhibitor bortezomib, induced an elevation of cathepsin D activity. All these results suggest a new lysosomal function of NPC1 as a regulator of cathepsin D processing and activity.
Collapse
Affiliation(s)
- Judit Macías-Vidal
- Secció d'Errors Congènits del Metabolisme (IBC), Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Josep Maria Estanyol
- Proteomic Unit, Centres Científics i Tecnològics, University of Barcelona, Barcelona, Spain
| | - Carmen Aguado
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Erwin Knecht
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Laboratory of Cellular Biology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maria Josep Coll
- Secció d'Errors Congènits del Metabolisme (IBC), Servei de Bioquímica i Genètica Molecular, Hospital Clínic, Barcelona, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Oriol Bachs
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Cell Biology, Immunology and Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|