1
|
Evans LL, Hill LRS, Kulungowski AM. Neonatal Cutaneous Vascular Anomalies. Neoreviews 2025; 26:e12-e27. [PMID: 39740173 DOI: 10.1542/neo.26-1-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 01/02/2025]
Abstract
Vascular anomalies are broadly classified into 2 categories: vascular tumors and vascular malformations. Vascular anomalies frequently present as cutaneous lesions in infants. This review summarizes vascular anomalies that most commonly present as dermatologic lesions in the neonatal period, with a focus on the clinical findings, pathophysiology and histology, relevant radiographic findings, and management of common vascular anomalies such as infantile hemangiomas, congenital hemangiomas, and Kaposiform hemangioendothelioma, along with vascular malformations, including capillary, lymphatic, venous, and arteriovenous malformations.
Collapse
Affiliation(s)
- Lauren L Evans
- Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Lauren R S Hill
- Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Ann M Kulungowski
- Vascular Anomalies Center, Division of Pediatric Surgery, Children's Hospital Colorado, Aurora, Colorado
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
2
|
Kohl F, Laufkötter O, Firth M, Krimpenfort L, Mangla P, Ansarizadeh M, Geylan G, Eklund L, De Maria L, Jakobsson L, Wiseman J. Identification of cell type-specific cell-penetrating peptides through in vivo phage display leveraged by next generation sequencing. Biomed Pharmacother 2024; 182:117740. [PMID: 39671725 DOI: 10.1016/j.biopha.2024.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
Vascular anomalies (VA) refer to abnormal blood or lymphatic vessel architecture, most often as a result of dysregulated growth. Venous malformations (VM), a subgroup of VAs, are triggered by activating mutations in the Angiopoietin/TIE2-PI3K/AKT/mTOR signaling pathway with TIE2 L914F (gene name TEK) being one of the most frequent mutations in patients with VMs. Although systemic targeting of the overactivated pathway is possible, it would be a therapeutic advantage to restrict treatment to only the affected lesions. To identify peptides with potential selective binding to TIE2 L914F lesions we applied in vivo phage display to TIE2 L914F-overexpressing endothelial cells (ECs) in a subcutaneous matrigel xenograft mouse model of VMs. By panning for lesion-targeting phages in combination with subcellular fractionation, a screen for cell-penetrating candidate phages was established. Employing Next Generation Sequencing (NGS) and a refined bioinformatic analysis we were able to identify many novel cell-penetrating peptides (CPPs). To pinpoint the most selective and viable CCP candidates a hierarchical clustering algorithm was utilized. This method aggregated CPPs with highly similar sequences into a small number of clusters from which consensus sequences could be derived. Selected candidate CPPs exhibited uptake in TIE2 L914F-expressing human umbilical vein endothelial cells (HUVEC) in culture and were able to deliver siRNA into these cells. In conclusion, our NGS bioinformatic-supported approach led to the identification of novel and selective CPPs capable of transporting a siRNA cargo into targeted cells.
Collapse
Affiliation(s)
- Franziska Kohl
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Laufkötter
- Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Luc Krimpenfort
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Priyanka Mangla
- Oligonucleotides and Targeted Delivery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Gökçe Geylan
- Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Leonardo De Maria
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
3
|
Ghasemi R, Corliss MM, Bowling KM, Krysiak K, Walker J, Dickson AM, Schroeder MC, Parikh BA, Neidich JA, Polonis K, Cao Y. Comprehensive Analysis of TEK Variants in Patients With Vascular Malformations. Clin Genet 2024. [PMID: 39632338 DOI: 10.1111/cge.14667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Pathogenic variants in the receptor tyrosine kinase TIE2, encoded by TEK, are known to cause vascular malformations (VMs). In this study, we retrospectively reviewed the deidentified data generated through clinical NGS testing in our laboratory and found 88 VM cases with a total of 107 clinically significant TEK variants. Among those, 23 unique variants at the amino acid level were identified, including five novel (p.Cys1040Arg, p.Arg1099PhefsTer12, p.Glu1109Ter, p.Phe1111LeufsTer7, p.Phe1111ValfsTer7) and 18 previously published variants. Missense variants were identified more often in the tyrosine kinase domain, while all nonsense/frameshift variants were clustered in the C-terminal tail (CTT). In addition, most variants occurred as solitary alterations, whereas certain variants always co-occurred with a second TEK variant. Five patterns of TEK variants (P1-P5) were identified: (P1) Arg849 + another variant; (P2) Tyr897 + another variant; (P3) Leu914 single variants; (P4) Arg915/918 single variants; and (P5) CTT single /co-occurring variants. This study provides the most comprehensive view of pathogenic TEK variants in VMs to date.
Collapse
Affiliation(s)
- Reza Ghasemi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meagan M Corliss
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kevin M Bowling
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kilannin Krysiak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jason Walker
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alexa M Dickson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Molly C Schroeder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie A Neidich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katarzyna Polonis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yang Cao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Lin X, Chen Z, Wu G, Jiang H, Liu Z. Correlation between the miR-618 rs2682818 C>A polymorphism and venous malformation susceptibility. Biotechnol Appl Biochem 2024; 71:1164-1169. [PMID: 38804038 DOI: 10.1002/bab.2618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Venous malformations are the most common congenital vascular malformations, and the incidence rate is high. Previous studies have confirmed that a variety of polymorphisms within the miRNA functional region are associated with tumor susceptibility. We examined the correlation between miR-618 rs2682818 C>A and risk of developing venous malformation in a southern Chinese population (1113 patients and 1158 controls). TaqMan genotyping of miR-618 rs2682818 C>A was conducted utilizing real-time fluorescent quantitative PCR. The miR-618 rs2682818 polymorphism was not correlated with susceptibility to venous malformation (CA/AA vs. CC: adjusted odds ratio [AOR] = 1.00, 95% confidence interval [CI] = 0.81-1.25, p = 0.994; AA vs. CC/CA: AOR = 1.10, 95% CI = 0.73-1.65, p = 0.646). Stratified analysis of different subtypes of venous malformation revealed that there was no significant difference in the rs2682818 C>A polymorphism genotypes across these subtypes. Our results indicate that miR-618 rs2682818 C>A polymorphism is not correlated with the susceptibility to venous malformation.
Collapse
Affiliation(s)
- Xi Lin
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zijian Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guitao Wu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hua Jiang
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenyin Liu
- Department of Interventional Radiology and Vascular Anomalies, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lazovic B, Nguyen HT, Ansarizadeh M, Wigge L, Kohl F, Li S, Carracedo M, Kettunen J, Krimpenfort L, Elgendy R, Richter K, De Silva L, Bilican B, Singh P, Saxena P, Jakobsson L, Hong X, Eklund L, Hicks R. Human iPSC and CRISPR targeted gene knock-in strategy for studying the somatic TIE2 L914F mutation in endothelial cells. Angiogenesis 2024; 27:523-542. [PMID: 38771392 PMCID: PMC11303492 DOI: 10.1007/s10456-024-09925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.
Collapse
Affiliation(s)
- Bojana Lazovic
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hoang-Tuan Nguyen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Finnadvance Ltd., Oulu, Finland
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leif Wigge
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Songyuan Li
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Miguel Carracedo
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Luc Krimpenfort
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ramy Elgendy
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kati Richter
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Laknee De Silva
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Bilada Bilican
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Pratik Saxena
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuechong Hong
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
White MH, Hawkins CM. The Role of Medical Management in Vascular Anomalies. Semin Intervent Radiol 2024; 41:404-412. [PMID: 39524237 PMCID: PMC11543096 DOI: 10.1055/s-0044-1791538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Historically, the care for patients with vascular anomalies has been challenging due to the complex nature and diversity of these anomalies with a wide array of symptomatology. In the recent past, most therapies for vascular anomalies focused on surgical, procedural, and supportive care measures to treat local symptoms, but many patients still experienced significant disease with excess morbidity and mortality. Today, the pharmacotherapeutic options available for treating vascular anomalies have greatly expanded due to the increased understanding of the genetic and molecular pathways causing these anomalies, with the subsequent development of more targeted pharmacotherapies. In addition to the growth in targeted medications available to treat patients with vascular anomalies, there has been an improved understanding of the hematologic abnormalities related to these diseases and how to manage them. While interventional radiologists do not typically primarily manage systemic medications to treat vascular anomalies, a baseline understanding of the medical management of these diseases is essential to ensuring that a contemporary, multidisciplinary, multimodal approach to treatment is pursued when appropriate. Ultimately, patients are now benefitting from having multiple modalities of treatments available to them and are experiencing improved quality of life and less morbidity.
Collapse
Affiliation(s)
- Michael H. White
- Address for correspondence Michael H. White, MD, MSc Division of Pediatrics, Department of Pediatric Hematology and Oncology, Emory School of Medicine, Aflac Cancer and Blood Disorders Center, Children's Healthcare of AtlantaAtlantaGA 30322
| | - C. Matthew Hawkins
- Children's Healthcare of Atlanta, Vascular Anomalies Clinic, Atlanta, Georgia
- Division of Pediatric Radiology, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, Georgia
| |
Collapse
|
7
|
Pastura P, McDaniel CG, Alharbi S, Fox D, Coleman B, Malik P, Adams DM, Le Cras TD. NRAS Q61R mutation drives elevated angiopoietin-2 expression in human endothelial cells and a genetic mouse model. Pediatr Blood Cancer 2024; 71:e31032. [PMID: 38711167 PMCID: PMC11116044 DOI: 10.1002/pbc.31032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Angiopoietin-2 (Ang-2) is increased in the blood of patients with kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE). While the genetic causes of KHE are not clear, a somatic activating NRASQ61R mutation has been found in the lesions of KLA patients. PROCEDURE Our study tested the hypothesis that the NRASQ61R mutation drives elevated Ang-2 expression in endothelial cells. Ang-2 was measured in human endothelial progenitor cells (EPC) expressing NRASQ61R and a genetic mouse model with endothelial targeted NRASQ61R. To determine the signaling pathways driving Ang-2, NRASQ61R EPC were treated with signaling pathway inhibitors. RESULTS Ang-2 levels were increased in EPC expressing NRASQ61R compared to NRASWT by Western blot analysis of cell lysates and ELISA of the cell culture media. Ang-2 levels were elevated in the blood of NRASQ61R mutant mice. NRASQ61R mutant mice also had reduced platelet counts and splenomegaly with hypervascular lesions, like some KLA patients. mTOR inhibitor rapamycin attenuated Ang-2 expression by NRASQ61R EPC. However, MEK1/2 inhibitor trametinib was more effective blocking increases in Ang-2. CONCLUSIONS Our studies show that the NRASQ61R mutation in endothelial cells induces Ang-2 expression in vitro and in vivo. In cultured human endothelial cells, NRASQ61R drives elevated Ang-2 through MAP kinase and mTOR-dependent signaling pathways.
Collapse
Affiliation(s)
- Patricia Pastura
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - C. Griffin McDaniel
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sara Alharbi
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Dermot Fox
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bethany Coleman
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute,
Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Denise M. Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Timothy D. Le Cras
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
8
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Hartman E, Balkin DM, See AP. A Review of the Current State and Future Directions for Management of Scalp and Facial Vascular Malformations. J Korean Neurosurg Soc 2024; 67:315-325. [PMID: 38720545 PMCID: PMC11079557 DOI: 10.3340/jkns.2024.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Vascular malformations are structural abnormalities that are thought to result from errors in vasculogenesis and angiogenesis during embryogenesis. Vascular malformations of the scalp present unique management challenges due to aesthetic and functional implications. This review examines the pathophysiology, clinical presentation, and management techniques for six common types of vascular malformations of the face and scalp : infantile hemangioma, capillary malformations, venous malformations, lymphatic malformations, arteriovenous malformations, and arteriovenous fistulas. These lesions range from common to rare, and have very different natural histories and management paradigms. There has been increasing understanding of the molecular pathways that are altered in association with these vascular lesions and these molecular targets may represent novel strategies of treating lesions that have historically been approached from a structural perspective only.
Collapse
Affiliation(s)
- Emma Hartman
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel M. Balkin
- Department of Plastic & Oral Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Lai WQ, Xia HF, Chen GH, Wang XL, Yang JG, Wu LZ, Zhao YF, Jia YL, Chen G. p-AKT/VPS4B regulates the small extracellular vesicle size in venous malformation endothelial cells. Oral Dis 2024; 30:1273-1285. [PMID: 37154262 DOI: 10.1111/odi.14608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/08/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs. SUBJECTS AND METHODS Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study. sEVs were isolated from both fresh lesions and cell supernatant, and were examined by western blotting, nanoparticle tracking analysis and transmission electron microscopy. Western blot analysis, immunohistochemistry and immunofluorescence were adopted to screening candidate regulator of sEV size. Specific inhibitors and siRNA were employed to validate the role of dysregulated p-AKT/vacuolar protein sorting-associated protein 4B (VPS4B) signaling on the size of sEVs in endothelial cells. RESULTS The size of sEVs derived from both VM lesion tissues and cell model was significantly increased. VPS4B, whose expression level was mostly significantly downregulated in VM endothelial cells, was responsible for the size change of sEVs. Targeting abnormal AKT activation corrected the size change of sEVs by recovering the expression level of VPS4B. CONCLUSION Downregulated VPS4B in endothelial cells, resulted from abnormally activated AKT signaling, contributed to the increased size of sEVs in VMs.
Collapse
Affiliation(s)
- Wen-Qiang Lai
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gao-Hong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiao-Le Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie-Gang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lian-Zhi Wu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Lin PK, Sun Z, Davis GE. Defining the Functional Influence of Endothelial Cell-Expressed Oncogenic Activating Mutations on Vascular Morphogenesis and Capillary Assembly. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:574-598. [PMID: 37838010 PMCID: PMC10988768 DOI: 10.1016/j.ajpath.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 10/16/2023]
Abstract
This study sought to define key molecules and signals controlling major steps in vascular morphogenesis, and how these signals regulate pericyte recruitment and pericyte-induced basement membrane deposition. The morphogenic impact of endothelial cell (EC) expression of activating mutants of Kirsten rat sarcoma virus (kRas), mitogen-activated protein kinase 1 (Mek1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), Akt serine/threonine kinase 1 (Akt1), Ras homolog enriched in brain (Rheb) Janus kinase 2 (Jak2), or signal transducer and activator of transcription 3 (Stat3) expression versus controls was evaluated, along with EC signaling events, pharmacologic inhibitor assays, and siRNA suppression experiments. Primary stimulators of EC lumen formation included kRas, Akt1, and Mek1, whereas PIK3CA and Akt1 stimulated a specialized type of cystic lumen formation. In contrast, the key drivers of EC sprouting behavior were Jak2, Stat3, Mek1, PIK3CA, and mammalian target of rapamycin (mTor). These conclusions are further supported by pharmacologic inhibitor and siRNA suppression experiments. EC expression of active Akt1, kRas, and PIK3CA led to markedly dysregulated lumen formation coupled to strongly inhibited pericyte recruitment and basement membrane deposition. For example, activated Akt1 expression in ECs excessively stimulated lumen formation, decreased EC sprouting behavior, and showed minimal pericyte recruitment with reduced mRNA expression of platelet-derived growth factor-BB, platelet-derived growth factor-DD, and endothelin-1, critical EC-derived factors known to stimulate pericyte invasion. The study identified key signals controlling fundamental steps in capillary morphogenesis and maturation and provided mechanistic details on why EC activating mutations induced a capillary deficiency state with abnormal lumens, impaired pericyte recruitment, and basement deposition: predisposing stimuli for the development of vascular malformations.
Collapse
Affiliation(s)
- Prisca K Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida
| | - George E Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, Florida.
| |
Collapse
|
12
|
Hirose K, Hori Y, Ozeki M, Motooka D, Hata K, Tahara S, Matsui T, Kohara M, Maruyama K, Imanaka-Yoshida K, Toyosawa S, Morii E. Comprehensive phenotypic and genomic characterization of venous malformations. Hum Pathol 2024; 145:48-55. [PMID: 38367816 DOI: 10.1016/j.humpath.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Venous malformations (VMs) are the most common vascular malformations. TEK and PIK3CA are the causal genes of VMs, and may be involved in the PI3K/AKT pathway. However, the downstream mechanisms underlying the TEK or PIK3CA mutations in VMs are not completely understood. This study aimed to identify a possible association between genetic mutations and clinicopathological features. A retrospective clinical, pathological, and genetic study of 114 patients with VMs was performed. TEK, PIK3CA, and combined TEK/PIK3CA mutations were identified in 49 (43%), 13 (11.4%), and 2 (1.75%) patients, respectively. TEK-mutant VMs more commonly occurred in younger patients than TEK and PIK3CA mutation-negative VMs (other-mutant VMs), and showed more frequent skin involvement and no lymphocytic aggregates. No significant differences were observed in sex, location of occurrence, malformed vessel size, vessel density, or thickness of the vascular smooth muscle among the VM genotypes. Immunohistochemical analysis revealed that the expression levels of phosphorylated AKT (p-AKT) were higher in the TEK-mutant VMs than those in PIK3CA-mutant and other-mutant VMs. The expression levels of p-mTOR and its downstream effectors were higher in all the VM genotypes than those in normal vessels. Spatial transcriptomics revealed that the genes involved in "blood vessel development", "positive regulation of cell migration", and "extracellular matrix organization" were up-regulated in a TEK-mutant VM. Significant genotype-phenotype correlations in clinical and pathological features were observed among the VM genotypes, indicating gene-specific effects. Detailed analysis of gene-specific effects in VMs may offer insights into the underlying molecular pathways and implications for targeted therapies.
Collapse
Affiliation(s)
- Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan; Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan.
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu. Mie, 514-8507, Japan.
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu. Mie, 514-8507, Japan.
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Clapp A, Shawber CJ, Wu JK. Pathophysiology of Slow-Flow Vascular Malformations: Current Understanding and Unanswered Questions. JOURNAL OF VASCULAR ANOMALIES 2023; 4:e069. [PMID: 37662560 PMCID: PMC10473035 DOI: 10.1097/jova.0000000000000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
Background Slow-flow vascular malformations include venous, lymphatic, and lymphaticovenous malformations. Recent studies have linked genetic variants hyperactivating either the PI3K/AKT/mTOR and/or RAS/RAF/MAPK signaling pathways with slow-flow vascular malformation development, leading to the use of pharmacotherapies such as sirolimus and alpelisib. It is important that clinicians understand basic and translational research advances in slow-flow vascular malformations. Methods A literature review of basic science publications in slow-flow vascular malformations was performed on Pubmed, using search terms "venous malformation," "lymphatic malformation," "lymphaticovenous malformation," "genetic variant," "genetic mutation," "endothelial cells," and "animal model." Relevant publications were reviewed and summarized. Results The study of patient tissues and the use of primary pathogenic endothelial cells from vascular malformations shed light on their pathological behaviors, such as endothelial cell hyperproliferation and disruptions in vessel architecture. The use of xenograft and transgenic animal models confirmed the pathogenicity of genetic variants and allowed for preclinical testing of potential therapies. These discoveries underscore the importance of basic and translational research in understanding the pathophysiology of vascular malformations, which will allow for the development of improved biologically targeted treatments. Conclusion Despite basic and translation advances, a cure for slow-flow vascular malformations remains elusive. Many questions remain unanswered, including how genotype variants result in phenotypes, and genotype-phenotype heterogeneity. Continued research into venous and lymphatic malformation pathobiology is critical in understanding the mechanisms by which genetic variants contribute to vascular malformation phenotypic features.
Collapse
Affiliation(s)
- Averill Clapp
- Columbia University Vagelos College of Physicians & Surgeons, New York, NY
| | - Carrie J. Shawber
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| | - June K. Wu
- Department of Obstetrics and Gynecology, Department of Surgery, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
14
|
Cullion K, Ostertag-Hill CA, Pan M, Timko B, Boscolo E, Kohane DS. Ablation of Venous Malformations by Photothermal Therapy with Intravenous Gold Nanoshells. NANO LETTERS 2023; 23:7092-7099. [PMID: 37498114 PMCID: PMC10773554 DOI: 10.1021/acs.nanolett.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Venous malformations (VMs) consist of hugely enlarged and dysmorphic veins. These lesions cause significant disfigurement, pain, and complications such as bleeding and coagulopathy. Pharmacotherapy for the treatment of VMs has limited efficacy and potentially limiting toxicity. Current treatment for patients with VMs entails life-long pharmacotherapy or surgical procedures. Here we explored whether intravenously administered agents can be used to destroy VMs by photothermal therapy (PTT), using gold nanoshells (AuNSs) that generated heat following irradiation with near-infrared (NIR) light. In a murine model of VMs, intravenous AuNSs accumulated within the VMs. Irradiation of the VMs induced marked regression and even elimination. Nanoparticle-based photothermal therapy can provide effective therapy for VMs, which are otherwise relatively refractory to treatment.
Collapse
Affiliation(s)
- Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Claire A Ostertag-Hill
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michelle Pan
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Brian Timko
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Elisa Boscolo
- Division of Experiment Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio 45229, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Chen S, Wang Y, Kong L, Ji Y, Cui J, Shen W. Role of UDP-glucose ceramide glucosyltransferase in venous malformation. Front Cell Dev Biol 2023; 11:1178045. [PMID: 37274734 PMCID: PMC10235597 DOI: 10.3389/fcell.2023.1178045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Venous malformation (VM) results from the abnormal growth of the vasculature; however, the detailed molecular mechanism remains unclear. As a glycosyltransferase, UDP-glucose ceramide glucosyltransferase (UGCG) is localized to the Golgi body and is a key enzyme in the first step of glycosphingolipid synthesis. Here, we aimed to explore the relationship between UGCG and the development of VM. First, investigations using RT-qPCR and Western blotting on the diseased vasculature of VM patients and normal vascular tissues revealed that UGCG expression was markedly elevated in the diseased vessels. Subsequently, immunofluorescence assay showed that UGCG was co-localized with CD31, an endothelial cell marker, in tissues from patients with VM and healthy subjects. Then, we established TIE2-L914F-mutant human umbilical vein endothelial cells (HUVECs) by lentivirus transfection. Next, Western blotting revealed that UGCG expression was considerably higher in HUVECsTIE2-L914F. In addition, we established a UGCG-overexpressing HUVECs line by plasmid transfection. With the CCK8 cell proliferation experiment, wound healing assay, and tube formation assay, we found that UGCG could promote the proliferation, migration, and tube formation activity of HUVECs, whereas the inhibition of UGCG could inhibit the proliferation, migration, and tube formation activity of HUVECsTIE2-L914F. Finally, Western blotting revealed that UGCG regulates the AKT/mTOR pathway in HUVECs. These data demonstrated that UGCG can affect the activity of vascular endothelial cells and regulate the AKT/mTOR signaling pathway; this is a potential mechanism underlying VM pathogenesis.
Collapse
|
16
|
The Genetic Architecture of Vascular Anomalies: Current Data and Future Therapeutic Perspectives Correlated with Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012199. [PMID: 36293054 PMCID: PMC9603778 DOI: 10.3390/ijms232012199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular anomalies (VAs) are morphogenesis defects of the vascular system (arteries, capillaries, veins, lymphatic vessels) singularly or in complex combinations, sometimes with a severe impact on the quality of life. The progress made in recent years with the identification of the key molecular pathways (PI3K/AKT/mTOR and RAS/BRAF/MAPK/ERK) and the gene mutations that lead to the appearance of VAs has allowed the deciphering of their complex genetic architecture. Understanding these mechanisms is critical both for the correct definition of the phenotype and classification of VAs, as well as for the initiation of an optimal therapy and the development of new targeted therapies. The purpose of this review is to present in synthesis the current data related to the genetic factors involved in the etiology of VAs, as well as the possible directions for future research. We analyzed the data from the literature related to VAs, using databases (Google Scholar, PubMed, MEDLINE, OMIM, MedGen, Orphanet) and ClinicalTrials.gov. The obtained results revealed that the phenotypic variability of VAs is correlated with genetic heterogeneity. The identification of new genetic factors and the molecular mechanisms in which they intervene, will allow the development of modern therapies that act targeted as a personalized therapy. We emphasize the importance of the geneticist in the diagnosis and treatment of VAs, as part of a multidisciplinary team involved in the management of VAs.
Collapse
|
17
|
Nozawa A, Fujino A, Yuzuriha S, Suenobu S, Kato A, Shimizu F, Aramaki-Hattori N, Kuniyeda K, Sakaguchi K, Ohnishi H, Aoki Y, Ozeki M. Comprehensive targeted next-generation sequencing in patients with slow-flow vascular malformations. J Hum Genet 2022; 67:721-728. [PMID: 36171295 DOI: 10.1038/s10038-022-01081-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 01/19/2023]
Abstract
Recent studies have shown that the PI3K signaling pathway plays an important role in the pathogenesis of slow-flow vascular malformations (SFVMs). Analysis of genetic mutations has advanced our understanding of the mechanisms involved in SFVM pathogenesis and may identify new therapeutic targets. We screened for somatic variants in a cohort of patients with SFVMs using targeted next-generation sequencing. Targeted next-generation sequencing of 29 candidate genes associated with vascular anomalies or with the PI3K signaling pathway was performed on affected tissues from patients with SFVMs. Fifty-nine patients with SFVMs (venous malformations n = 21, lymphatic malformations n = 27, lymphatic venous malformations n = 1, and Klippel-Trenaunay syndrome n = 10) were included in the study. TEK and PIK3CA were the most commonly mutated genes in the study. We detected eight TEK pathogenic variants in 10 samples (16.9%) and three PIK3CA pathogenic variants in 28 samples (47.5%). In total, 37 of 59 patients (62.7%) with SFVMs harbored pathogenic variants in these three genes involved in the PI3K signaling pathway. Inhibitors of this pathway may prove useful as molecular targeted therapies for SFVMs.
Collapse
Affiliation(s)
- Akifumi Nozawa
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.,Department of Medical Genetics, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Akihiro Fujino
- Division of Surgery, Department of Surgical Subspecialties, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto-Shi, Nagano, 390-8621, Japan
| | - Souichi Suenobu
- Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan.,Division of General Pediatrics and Emergency Medicine, Department of Pediatrics, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Aiko Kato
- Department of Plastic Surgery, Oita University Hospital, 1-1 Idaigaoka, Hasamamachi, Yufu-shi, Oita, 879-5503, Japan
| | - Fumiaki Shimizu
- Department of Plastic Surgery, Oita University Hospital, 1-1 Idaigaoka, Hasamamachi, Yufu-shi, Oita, 879-5503, Japan
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kanako Kuniyeda
- ARTham Therapeutics, Inc., 24-8, Yamashita-cho, Naka-ku, Yokohama Kanagawa, 231-0023, Japan
| | - Kazuya Sakaguchi
- Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome Fujisawa, Kanagawa, 251-0012, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.,Clinical Genetics Center, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, 980-8574, Japan
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
18
|
Xia HF, Lai WQ, Chen GH, Li Y, Xie QH, Jia YL, Chen G, Zhao YF. A histological study of vascular wall resident stem cells in venous malformations. Cell Tissue Res 2022; 390:229-243. [PMID: 35916917 DOI: 10.1007/s00441-022-03672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.
Collapse
Affiliation(s)
- Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wen-Qiang Lai
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gao-Hong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Ye Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qi-Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China. .,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
19
|
Chen GH, Yang JG, Xia HF, Zhang LZ, Chen YH, Wang KM, Duan X, Wu LZ, Zhao YF, Chen G. Endothelial cells induce degradation of ECM through enhanced secretion of MMP14 carried on extracellular vesicles in venous malformation. Cell Tissue Res 2022; 389:517-530. [PMID: 35786766 DOI: 10.1007/s00441-022-03657-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Venous malformations (VMs), featuring localized dilated veins, are the most common developmental vascular anomalies. Aberrantly organized perivascular extracellular matrix (ECM) is one of the prominent pathological hallmarks of VMs, accounting for vascular dysfunction. Although previous studies have revealed various proteins involved in ECM remodeling, the detailed pattern and molecular mechanisms underlying the endothelium-ECM interplay have not been fully elucidated. Our previous studies revealed drastically elevated extracellular vesicle (EV) secretion in VM lesions. Here, we identified increased EV-carried MMP14 in lesion fluids of VMs and culture medium of TIE2-L914F mutant endothelial cells (ECs), along with stronger ECM degradation. Knockdown of RAB27A, a required regulator for vesicle docking and fusion, led to decreased secretion of EV-carried MMP14 in vitro. Histochemical analysis further demonstrated a highly positive correlation between RAB27A in the endothelium and MMP14 in the perivascular environment. Therefore, our results proved that RAB27A-regulated secretion of EV-MMP14, as a new pattern of endothelium-ECM interplay, contributed to the development of VMs by promoting ECM degradation.
Collapse
Affiliation(s)
- Gao-Hong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie-Gang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Zhou Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yin-Hsueh Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kui-Ming Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xu Duan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lian-Zhi Wu
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi-Fang Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China. .,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Adham S, Revencu N, Mestre S, Nou-Howaldt M, Vernhet-Kovacsik H, Quéré I. Somatic TEK variant with intraarticular venous malformation and knee hemarthrosis treated with rapamycin. Mol Genet Genomic Med 2022; 10:e1931. [PMID: 35426265 PMCID: PMC9184663 DOI: 10.1002/mgg3.1931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Venous malformations (VMs) are the most common vascular anomalies and have been associated with somatic variants in TEK. Current treatment of VM joint component might be challenging due to the size or location of some lesions or ineffective with recurrence of malformed veins. Targeted molecular therapies after identification of genetic defects might be an alternative. METHODS We report a case with intraarticular bleeding due to VM with a TEK pathogenic somatic variant treated with rapamycin. RESULTS A 26-year-old female patient was evaluated for right calf pain secondary to venous malformation of the right inferior limb with an intraarticular component in the right knee. Hemarthrosis and degenerative chondropathy of the knee were evidenced at MRA. Molecular diagnosis evidenced a pathogenic somatic TEK variant. Rapamycin was introduced to stop bleeding, with good tolerance and efficacy. CONCLUSION The TEK receptor signals through the PI3K/AKT/mTOR pathway and TEK mutations have been linked to AKT activation. As rapamycin acts against angiogenesis and reduces phosphorylated-AKT levels, targeted molecular therapy should be discussed as first-line therapy in patients with proven molecular diagnosis and diffuse VM inaccessible to conventional treatment.
Collapse
Affiliation(s)
- Salma Adham
- Service de Médecine Vasculaire, CHU Montpellier, Hôpital Saint Eloi, Montpellier, France.,UMR UA11 INSERM - UM IDESP Institut Desbrest d'Épidémiologie et de Santé Publique Campus Santé, IURC, Montpellier, France
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.,VASCA, VASCERN European Reference Centre, Brussels, Belgium
| | - Sandrine Mestre
- Service de Médecine Vasculaire, CHU Montpellier, Hôpital Saint Eloi, Montpellier, France.,UMR UA11 INSERM - UM IDESP Institut Desbrest d'Épidémiologie et de Santé Publique Campus Santé, IURC, Montpellier, France
| | - Monira Nou-Howaldt
- Service de Médecine Vasculaire, CHU Montpellier, Hôpital Saint Eloi, Montpellier, France
| | | | - Isabelle Quéré
- Service de Médecine Vasculaire, CHU Montpellier, Hôpital Saint Eloi, Montpellier, France.,UMR UA11 INSERM - UM IDESP Institut Desbrest d'Épidémiologie et de Santé Publique Campus Santé, IURC, Montpellier, France
| |
Collapse
|
21
|
Abstract
One in ten infants are born with a vascular birthmark each year. Some vascular birthmarks, such as infantile hemangiomas, are common, while vascular malformations, such as capillary, lymphatic, venous, and arteriovenous malformations, are less so. Diagnosing uncommon vascular birthmarks can be challenging, given the phenotypic heterogeneity and overlap amongst these lesions. Both sporadic and germline variants have been detected in various genes associated with vascular birthmarks. Identification of these genetic variants offers insight into both diagnosis and underlying molecular pathways and can be fundamental in the discovery of novel therapeutic approaches. The PIK3/AKT/mTOR and RAS/MEK/ERK signaling pathways, which mediate cell growth and angiogenesis, are activated secondary to genetic variations in vascular malformations. Somatic variants in TEK (TIE2) and PIK3CA cause venous malformations. Variants in PIK3CA also cause lymphatic malformations as well as a number of overgrowth syndromes associated with vascular anomalies. Variants in GNAQ and GNA11 have been identified in both so-called "congenital" hemangiomas and capillary malformations. RASA1 and EPHB4 variants are associated with capillary malformation-arteriovenous malformation syndrome. This review discusses the genetics of vascular birthmarks including the various phenotypes, genetic variants, pathogenesis, associated syndromes, and new diagnostic techniques.
Collapse
Affiliation(s)
- Priya Mahajan
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas
| | - Katie L Bergstrom
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas
| | - Thuy L Phung
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Denise W Metry
- Department of Dermatology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas.
| |
Collapse
|
22
|
Sun Z, Kemp SS, Lin PK, Aguera KN, Davis GE. Endothelial k-RasV12 Expression Induces Capillary Deficiency Attributable to Marked Tube Network Expansion Coupled to Reduced Pericytes and Basement Membranes. Arterioscler Thromb Vasc Biol 2022; 42:205-222. [PMID: 34879709 PMCID: PMC8792373 DOI: 10.1161/atvbaha.121.316798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE We sought to determine how endothelial cell (EC) expression of the activating k-Ras (kirsten rat sarcoma 2 viral oncogene homolog) mutation, k-RasV12, affects their ability to form lumens and tubes and interact with pericytes during capillary assembly Approach and Results: Using defined bioassays where human ECs undergo observable tubulogenesis, sprouting behavior, pericyte recruitment to EC-lined tubes, and pericyte-induced EC basement membrane deposition, we assessed the impact of EC k-RasV12 expression on these critical processes that are necessary for proper capillary network formation. This mutation, which is frequently seen in human ECs within brain arteriovenous malformations, was found to markedly accentuate EC lumen formation mechanisms, with strongly accelerated intracellular vacuole formation, vacuole fusion, and lumen expansion and with reduced sprouting behavior, leading to excessively widened tube networks compared with control ECs. These abnormal tubes demonstrate strong reductions in pericyte recruitment and pericyte-induced EC basement membranes compared with controls, with deficiencies in fibronectin, collagen type IV, and perlecan deposition. Analyses of signaling during tube formation from these k-RasV12 ECs reveals strong enhancement of Src (Src proto-oncogene, non-receptor tyrosine kinase), Pak2 (P21 [RAC1 (Rac family small GTPase 1)] activated kinase 2), b-Raf (v-raf murine sarcoma viral oncogene homolog B1), Erk (extracellular signal-related kinase), and Akt (AK strain transforming) activation and increased expression of PKCε (protein kinase C epsilon), MT1-MMP (membrane-type 1 matrix metalloproteinase), acetylated tubulin and CDCP1 (CUB domain-containing protein 1; most are known EC lumen regulators). Pharmacological blockade of MT1-MMP, Src, Pak, Raf, Mek (mitogen-activated protein kinase) kinases, Cdc42 (cell division cycle 42)/Rac1, and Notch markedly interferes with lumen and tube formation from these ECs. CONCLUSIONS Overall, this novel work demonstrates that EC expression of k-RasV12 disrupts capillary assembly due to markedly excessive lumen formation coupled with strongly reduced pericyte recruitment and basement membrane deposition, which are critical pathogenic features predisposing the vasculature to develop arteriovenous malformations.
Collapse
Affiliation(s)
- Zheying Sun
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Scott S. Kemp
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - Kalia N. Aguera
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
23
|
Wang S, Zhou Z, Li J, Wang Y, Li H, Lv R, Xu G, Zhang J, Bi J, Huo R. Identification of ACTA2 as a Key Contributor to Venous Malformation. Front Cell Dev Biol 2021; 9:755409. [PMID: 34858981 PMCID: PMC8630574 DOI: 10.3389/fcell.2021.755409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Proteomics and high connotation functional gene screening (HCS) were used to screen key functional genes that play important roles in the pathogenesis of venous malformation. Furthermore, this study was conducted to analyze and explore their possible functions, establish a gene mutation zebrafish model, and perform a preliminary study to explore their possible pathogenic mechanisms in venous malformation. Methods: Pathological and normal tissues from patients with disseminated venous malformation were selected for Tandem Mass Tag (TMT) proteomics analysis to identify proteins that were differentially expressed. Based on bioinformatics analysis, 20 proteins with significant differential expression were selected for HCS to find key driver genes and characterize the expression of these genes in patients with venous malformations. In vitro experiments were then performed using human microvascular endothelial cells (HMEC-1). A gene mutant zebrafish model was also constructed for in vivo experiments to explore gene functions and pathogenic mechanisms. Results: The TMT results showed a total of 71 proteins that were differentially expressed as required, with five of them upregulated and 66 downregulated. Based on bioinformatics and proteomics results, five highly expressed genes and 15 poorly expressed genes were selected for functional screening by RNAi technology. HCS screening identified ACTA2 as the driver gene. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the expression of ACTA2 in the pathological tissues of patients with venous malformations and in control tissues, and the experimental results showed a significantly lower expression of ACTA2 in venous malformation tissues (P < 0.05). Cell assays on the human microvascular endothelial cells (HMEC-1) model showed that cell proliferation, migration, invasion, and angiogenic ability were all significantly increased in the ACTA2 over-expression group (P < 0.05), and that overexpression of ACTA2 could improve the inhibitory effect on vascular endothelial cell proliferation. We constructed an ACTA2-knockdown zebrafish model and found that the knockdown of ACTA2 resulted in defective vascular development, disruption of vascular integrity, and malformation of micro vein development in zebrafish. Further qPCR assays revealed that the knockdown of ACTA2 inhibited the Dll4/notch1 signaling pathway, Ephrin-B2 signaling pathway, and vascular integrity-related molecules and activated the Hedgehog signaling pathway. Conclusion: This study revealed that ACTA2 deficiency is an important factor in the pathogenesis of venous malformation, resulting in the disruption of vascular integrity and malformed vascular development. ACTA2 can be used as a potential biomarker for the treatment and prognosis of venous malformations.
Collapse
Affiliation(s)
- Song Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zifu Zhou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongwen Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Renrong Lv
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangqi Xu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianhai Bi
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
24
|
Venous Malformations in Childhood: Clinical, Histopathological and Genetics Update. Dermatopathology (Basel) 2021; 8:477-493. [PMID: 34698142 PMCID: PMC8544485 DOI: 10.3390/dermatopathology8040050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023] Open
Abstract
Our knowledge in vascular anomalies has grown tremendously in the past decade with the identification of key molecular pathways and genetic mutations that drive the development of vascular tumors and vascular malformations. This has led us to better understand the pathogenesis of vascular lesions, refine their diagnosis and update their classification while also exploring the opportunity for a targeted molecular treatment. This paper aims to provide an overview of venous malformations (VM) in childhood. Specific entities include common VMs, cutaneo-mucosal VM, blue rubber bleb nevus syndrome or Bean syndrome, glomuvenous malformation, cerebral cavernous malformation, familial intraosseous vascular malformation and verrucous venous malformation. The clinicopathological features and the molecular basis of each entity are reviewed.
Collapse
|
25
|
Sudduth CL, Konczyk DJ, Smits PJ, Eng W, Al-Ibraheemi A, Upton J, Greene AK. Bockenheimer Disease is Associated With a TEK Variant. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006119. [PMID: 34649969 PMCID: PMC8751421 DOI: 10.1101/mcs.a006119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
Bockenheimer disease is a venous malformation involving all tissues of an extremity. Patients have significant morbidity and treatment is palliative. The purpose of this study was to identify the cause of Bockenheimer disease to develop pharmacotherapy for the condition. Paraffin-embedded tissue from 9 individuals with Bockenheimer disease obtained during a clinically-indicated operation underwent DNA extraction. Droplet digital PCR (ddPCR) was used to screen for variants most commonly associated with sporadic venous malformations [TEK (NM_000459.5:c.2740C>T; p.Leu914Phe), PIK3CA (NM_006218.4:c.1624G>A; p.Glu542Lys and NM_006218.4:c.3140A>G; p.His1047Arg)]. ddPCR detected a TEK L914F variant in all 9 patients (variant allele fraction 2%-13%). PIK3CA E542K and H1047R variants were not identified in the specimens. Sanger sequencing and restriction enzyme digestion confirmed variants identified by ddPCR. A pathogenic variant in the endothelial cell tyrosine kinase receptor TEK is associated with Bockenheimer disease. Pharmacotherapy targeting the TEK signaling pathway might benefit patients with the condition.
Collapse
Affiliation(s)
| | | | | | - Whitney Eng
- Boston Children's Hospital, Harvard Medical School
| | | | | | | |
Collapse
|
26
|
Zhu J, Tang Z, Ren J, Geng J, Guo F, Xu Z, Jia J, Chen L, Jia Y. Downregulation of microRNA-21 contributes to decreased collagen expression in venous malformations via transforming growth factor-β/Smad3/microRNA-21 signaling feedback loop. J Vasc Surg Venous Lymphat Disord 2021; 10:469-481.e2. [PMID: 34506963 DOI: 10.1016/j.jvsv.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Venous malformations (VMs) are the most frequent vascular malformations and are characterized by dilated and tortuous veins with a dysregulated vascular extracellular matrix. The purpose of the present study was to investigate the potential involvement of microRNA-21 (miR-21), a multifunctional microRNA tightly associated with extracellular matrix regulation, in the pathogenesis of VMs. METHODS The expression of miR-21, collagen I, III, and IV, transforming growth factor-β (TGF-β), and Smad3 (mothers against decapentaplegic homolog 3) was evaluated in VMs and normal skin tissue using in situ hybridization, immunohistochemistry, Masson trichrome staining, and real-time polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were used to explore the underlying mechanisms. RESULTS miR-21 expression was markedly decreased in the VM specimens compared with normal skin, in parallel with downregulation of collagen I, III, and IV and the TGF-β/Smad3 pathway in VMs. Moreover, our data demonstrated that miR-21 positively regulated the expression of collagens in HUVECs and showed a positive association with the TGF-β/Smad3 pathway in the VM tissues. In addition, miR-21 was found to mediate TGF-β-induced upregulation of collagens in HUVECs. Our data have indicated that miR-21 and the TGF-β/Smad3 pathway could form a positive feedback loop to synergistically regulate endothelial collagen synthesis. In addition, TGF-β/Smad3/miR-21 feedback loop signaling was upregulated in bleomycin-treated HUVECs and VM specimens, which was accompanied by increased collagen deposition. CONCLUSIONS To the best of our knowledge, the present study has, for the first time, revealed downregulation of miR-21 in VMs, which might contribute to decreased collagen expression via the TGF-β/Smad3/miR-21 signaling feedback loop. These findings provide new information on the pathogenesis of VMs and might facilitate the development of new therapies for VMs.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zirong Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinhuan Geng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
27
|
Li Y, Yang J, Huang Y, Ge S, Song X, Jia R, Wang Y. Cellular heterogeneity and immune microenvironment revealed by single-cell transcriptome in venous malformation and cavernous venous malformation. J Mol Cell Cardiol 2021; 162:130-143. [PMID: 34536440 DOI: 10.1016/j.yjmcc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
Venous malformation (VM) and cavernous venous malformation (CVM) are two types of vascular malformations. Even if the two diseases are similar in appearance and imaging, the distinct cellular components and signaling pathways between them might help distinguish the two from a molecular perspective. Here, we performed single-cell profiling of 35,245 cells from two VM samples and three CVM samples, with a focus on endothelial cells (ECs), smooth muscle cells (SMCs) and immune microenvironment (IME). Clustering analysis based on differential gene expression unveiled 11 specific cell types, and determined CVM had more SMCs. Re-clustering of ECs and SMCs indicated CVM was dominated by arterial components, while VM is dominated by venous components. Gene set variation analysis suggested the activation of inflammation-related pathways in VM ECs, and upregulation of myogenesis pathway in CVM SMCs. In IME analysis, immune cells were identified to accounted for nearly 30% of the total cell number, including macrophages, monocytes, NK cells, T cells and B cells. Notably, more macrophages and monocytes were discovered in VM, indicating innate immune responses might be more closely related to VM pathogenesis. In addition, angiogenesis pathway was highlighted among the significant pathways of macrophages & monocytes between CVM and VM. In VM, VEGFA was highly expressed in macrophages & monocytes, while its receptors were all abundantly present in ECs. The close interaction of VEGFA on macrophages with its receptors on ECs was also predicted by CellPhoneDB analysis. Our results document cellular composition, significant pathways, and critical IME in CVM and VM development.
Collapse
Affiliation(s)
- Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jie Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yazhuo Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yefei Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| |
Collapse
|
28
|
Skaaraas GHES, Melbye C, Puchades MA, Leung DSY, Jacobsen Ø, Rao SB, Ottersen OP, Leergaard TB, Torp R. Cerebral Amyloid Angiopathy in a Mouse Model of Alzheimer's Disease Associates with Upregulated Angiopoietin and Downregulated Hypoxia-Inducible Factor. J Alzheimers Dis 2021; 83:1651-1663. [PMID: 34459401 PMCID: PMC8609707 DOI: 10.3233/jad-210571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: Vascular pathology is a common feature in patients with advanced Alzheimer’s disease, with cerebral amyloid angiopathy (CAA) and microvascular changes commonly observed at autopsies and in genetic mouse models. However, despite a plethora of studies addressing the possible impact of CAA on brain vasculature, results have remained contradictory, showing reduced, unchanged, or even increased capillary densities in human and rodent brains overexpressing amyloid-β in Alzheimer’s disease and Down’s syndrome. Objective: We asked if CAA is associated with changes in angiogenetic factors or receptors and if so, whether this would translate into morphological alterations in pericyte coverage and vessel density. Methods: We utilized the transgenic mice carrying the Arctic (E693G) and Swedish (KM670/6701NL) amyloid precursor protein which develop severe CAA in addition to parenchymal plaques. Results: The main finding of the present study was that CAA in Tg-ArcSwe mice is associated with upregulated angiopoietin and downregulated hypoxia-inducible factor. In the same mice, we combined immunohistochemistry and electron microscopy to quantify the extent of CAA and investigate to which degree vessels associated with amyloid plaques were pathologically affected. We found that despite a severe amount of CAA and alterations in several angiogenetic factors in Tg-ArcSwe mice, this was not translated into significant morphological alterations like changes in pericyte coverage or vessel density. Conclusion: Our data suggest that CAA does not impact vascular density but might affect capillary turnover by causing changes in the expression levels of angiogenetic factors.
Collapse
Affiliation(s)
| | - Christoffer Melbye
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Doreen Siu Yi Leung
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Shreyas B Rao
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ole Petter Ottersen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Reidun Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Bell LM, Holm A, Matysiak U, Driever W, Rößler J, Schanze D, Wieland I, Niemeyer CM, Zenker M, Kapp FG. Functional assessment of two variants of unknown significance in TEK by endothelium-specific expression in zebrafish embryos. Hum Mol Genet 2021; 31:10-17. [PMID: 34254124 DOI: 10.1093/hmg/ddab196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular malformations are most often caused by somatic mutations of the PI3K/mTOR and the RAS signaling pathways, which can be identified in the affected tissue. Venous malformations commonly harbor PIK3CA and TEK mutations, whereas arteriovenous malformations are usually caused by BRAF, RAS, or MAP2K1 mutations. Correct identification of the underlying mutation is of increasing importance, since targeted treatments are becoming more and more relevant, especially in patients with extensive vascular malformations. However, variants of unknown significance are often identified and their pathogenicity and response to targeted therapy cannot be precisely predicted. Here we show, that zebrafish embryos can be used to rapidly assess the pathogenicity of novel variants of unknown significance in TEK, encoding for the receptor TIE2, present on endothelial cells of venous malformations. Endothelium-specific overexpression of TEK mutations leads to robust induction of venous malformations whereas MAP2K1 mutations cause arteriovenous malformations in our zebrafish model. TEK mutations are often found as double mutations in cis; using our model, we show that double mutations have an additive effect in inducing venous malformations compared to the respective single variants. The clinically established mTOR-inhibitor sirolimus (rapamycin) efficiently abrogates the development of venous malformations in this zebrafish model. In summary, endothelium-specific overexpression of patient-derived TEK variants in the zebrafish model allows assessment of their pathogenic significance as well as testing of candidate drugs in a personalized and mutation-specific approach.
Collapse
Affiliation(s)
- Lorenz M Bell
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,VASCERN VASCA European Reference Centre
| | - Annegret Holm
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,VASCERN VASCA European Reference Centre
| | - Uta Matysiak
- Pediatric Genetics Section, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, CIBSS and BIOSS - Centres for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Jochen Rößler
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,Division of Pediatric Hematology and Oncology, University Children's Hospital Bern, 3010 Bern, Switzerland.,VASCERN VASCA European Reference Centre
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,VASCERN VASCA European Reference Centre
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.,VASCERN VASCA European Reference Centre
| |
Collapse
|
30
|
Canaud G, Hammill AM, Adams D, Vikkula M, Keppler-Noreuil KM. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. Orphanet J Rare Dis 2021; 16:306. [PMID: 34238334 PMCID: PMC8268514 DOI: 10.1186/s13023-021-01929-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND PIK3CA-related disorders include vascular malformations and overgrowth of various tissues that are caused by postzygotic, somatic variants in the gene encoding phosphatidylinositol-3-kinase (PI3K) catalytic subunit alpha. These mutations result in activation of the PI3K/AKT/mTOR signaling pathway. The goals of this review are to provide education on the underlying mechanism of disease for this group of rare conditions and to summarize recent advancements in the understanding of, as well as current and emerging treatment options for PIK3CA-related disorders. MAIN BODY PIK3CA-related disorders include PIK3CA-related overgrowth spectrum (PROS), PIK3CA-related vascular malformations, and PIK3CA-related nonvascular lesions. Somatic activating mutations (predominantly in hotspots in the helical and kinase domains of PIK3CA, but also in other domains), lead to hyperactivation of the PI3K signaling pathway, which results in abnormal tissue growth. Diagnosis is complicated by the variability and overlap in phenotypes associated with PIK3CA-related disorders and should be performed by clinicians with the required expertise along with coordinated care from a multidisciplinary team. Although tissue mosaicism presents challenges for confirmation of PIK3CA mutations, next-generation sequencing and tissue selection have improved detection. Clinical improvement, radiological response, and patient-reported outcomes are typically used to assess treatment response in clinical studies of patients with PIK3CA-related disorders, but objective assessment of treatment response is difficult using imaging (due to the heterogeneous nature of these disorders, superimposed upon patient growth and development). Despite their limitations, patient-reported outcome tools may be best suited to gauge patient improvement. New therapeutic options are needed to provide an alternative or supplement to standard approaches such as surgery and sclerotherapy. Currently, there are no systemic agents that have regulatory approval for these disorders, but the mTOR inhibitor sirolimus has been used for several years in clinical trials and off label to address symptoms. There are also other agents under investigation for PIK3CA-related disorders that act as inhibitors to target different components of the PI3K signaling pathway including AKT (miransertib) and PI3K alpha (alpelisib). CONCLUSION Management of patients with PIK3CA-related disorders requires a multidisciplinary approach. Further results from ongoing clinical studies of agents targeting the PI3K pathway are highly anticipated.
Collapse
Affiliation(s)
- Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, INSERM U1151, Assistance Publique-Hôpitaux de Paris, Université de Paris, 149 rue de Sèvres, 75105, Paris, France.
| | - Adrienne M Hammill
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Denise Adams
- Division of Oncology, Comprehensive Vascular Anomalies Program, Children's Hospital of Philadelphia, Perelman School of Medicine and the University of Pennsylvania, Philadelphia, PA, USA
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint Luc, University of Louvain, Brussels, Belgium.,VASCERN VASCA European Reference Centre, Bichat-Claude Bernard Hospital, Paris, France.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Kim M Keppler-Noreuil
- Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
31
|
Abstract
Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.
Collapse
Affiliation(s)
- Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.)
| | - Emmanuel Seront
- Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,University of Louvain, Brussels, Belgium (M.V.).,University of Louvain, Brussels, Belgium (M.V.).,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium (M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| |
Collapse
|
32
|
Markovic JN, Shortell CK. Venous malformations. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 62:456-466. [PMID: 34105926 DOI: 10.23736/s0021-9509.21.11911-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The often inexorable growth and expansion of congenital vascular malformations can result in substantial morbidity and, in some cases, premature death of these patients. Despite this, patients suffering from such lesions are often erroneously diagnosed and/or inadequately treated, due to a lack of expertise among primary care practitioners as well as specialists. Venous malformations are the most common type of congenital vascular malformations. Over the last two decades management of these lesions has significantly improved, predominantly due to the introduction and implementation of multidisciplinary team concept as well as improvement in diagnostic and treatment modalities. Relatively recently genetic studies are providing more insights into underlying pathophysiological mechanisms responsible for the development and progression of venous malformations and pharmacotherapy is becoming extensively evaluated for safety and efficacy in the treatment of these often challenging vascular lesions.
Collapse
Affiliation(s)
- Jovan N Markovic
- Department of Surgery, Division of Vascular Surgery, Duke University School of Medicine, Durham, NC, USA -
| | - Cynthia K Shortell
- Department of Surgery, Division of Vascular Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
33
|
Venous Malformations and Blood Coagulation in Children. CHILDREN-BASEL 2021; 8:children8040312. [PMID: 33924092 PMCID: PMC8074292 DOI: 10.3390/children8040312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022]
Abstract
Introduction: Venous malformations (VMs) are congenital low-flow lesions with a wide spectrum of clinical manifestations. An increasing number of studies link VMs to coagulation abnormalities, especially to elevated D-dimer and decreased fibrinogen. This condition, termed localized intravascular coagulopathy (LIC), may pose a risk for hemostatic complications. However, detailed data on the laboratory variables for coagulation and fibrinolytic activity in VM patients are limited. We addressed this question by systematically analyzing the coagulation parameters in pediatric VM patients. Methods: We included 62 patients (median age 11.9 years) with detailed laboratory tests for coagulation and fibrinolytic activity at a clinically steady phase. We assessed clinical and imaging features of VMs and their correlations with coagulation and fibrinolysis variables using patient records and MRI. Results: D-dimer was elevated in 39% and FXIII decreased in 20% of the patients, as a sign of LIC. Elevated D-dimer and decreased FXIII were associated with large size, deep location, and diffuse and multifocal VMs. FVIII was elevated in 17% of the patients and was associated with small VM size, superficial and confined location, discrete morphology, and less pain. Surprisingly, antithrombin was elevated in 55% of the patients but without associations with clinical or other laboratory variables. Conclusions: LIC was common in pediatric patients with VMs. Our results provide a basis for when evaluating the risks of hemostatic complications in children with VMs. Further research is warranted to explore the mechanisms behind coagulation disturbances and their relation to clinical complications.
Collapse
|
34
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
35
|
Narsinh KH, Gautam A, Baker A, Cooke DL, Dowd CF. Vascular anomalies: Classification and management. HANDBOOK OF CLINICAL NEUROLOGY 2021; 176:345-360. [PMID: 33272404 DOI: 10.1016/b978-0-444-64034-5.00003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular anomalies are broadly classified into two major categories: vascular tumors and vascular malformations. Most vascular anomalies are caused by sporadic mosaic gene mutations, and recent genetic studies have advanced our understanding of the molecular pathways involved in their pathogenesis. These findings have suggested new therapeutic approaches to vascular anomalies, focusing on their pathogenetic mechanism. This chapter seeks to integrate an improved molecular understanding within the updated classification system of the International Society for Study of Vascular Anomalies. We emphasize the genetic, radiologic, and interventional aspects of diagnosis and management in hopes of allowing improved multidisciplinary collaboration surrounding these complex and interesting anomalies.
Collapse
Affiliation(s)
- Kazim H Narsinh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Ayushi Gautam
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Amanda Baker
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Daniel L Cooke
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Christopher F Dowd
- Departments of Radiology and Biomedical Imaging, Neurological Surgery, Neurology, and Anesthesia and Perioperative Care, University of California San Francisco, School of Medicine, San Francisco, CA, United States.
| |
Collapse
|
36
|
Budge EJ, Khalil Allam MA, Mechie I, Scully M, Agu O, Lim CS. Venous malformations: Coagulopathy control and treatment methods. Phlebology 2020; 36:361-374. [PMID: 33283636 DOI: 10.1177/0268355520972918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Venous malformations (VMs) are ectatic channels which arise as a result of vascular dysmorphogenesis, commonly caused by activating mutations in the endothelial tyrosine kinase receptor (TIE2)/phosphatidylinositol 3-kinase (PI3Kinase) pathway. With a prevalence of 1% in the general population, and a diverse clinical presentation depending on site, size and tissue involvement, their treatment requires a personalised and multidisciplinary approach. Larger lesions are complicated by local intravascular coagulopathy (LIC) causing haemorrhagic and/or thrombotic complications which can progress to disseminated intravascular coagulopathy (DIC). METHODS We performed a literature review using a PubMed® search and identified 15 articles to include. References of these texts were examined to further expand the literature review.Principle findings: Several treatment options have been explored, including compression, sclerotherapy, laser therapy, cryoablation and surgery in addition to the management of LIC with low-molecular-weight-heparin (LMWH) and other anticoagulants. Targeted molecular therapies acting on the phosphatidylinositol 3-kinase (PI3Kinase)/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway are newly emerging. CONCLUSION Despite a wealth of literature, larger, multi-centric, randomised and prospective trails are required to offer further clarification on the therapeutic management of coagulopathy control and to provide symptomatic benefit to patients with VMs. There should be efforts to provide long term follow up and to use standardised risk stratification tools and quality of life (QOL) questionnaires to aid comparison of agents and treatment protocols.
Collapse
Affiliation(s)
- Eleanor J Budge
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | | | - Imogen Mechie
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Marie Scully
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK.,Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Obi Agu
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK.,Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Chung Sim Lim
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK.,Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
37
|
Genetic landscape of common venous malformations in the head and neck. J Vasc Surg Venous Lymphat Disord 2020; 9:1007-1016.e7. [PMID: 33248299 DOI: 10.1016/j.jvsv.2020.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Common venous malformations (VMs) are a frequent sporadic subtype of vascular malformations. Given the TEK and PIK3CA mutations identified, this study aims to investigate the genetic landscape of VMs in the head and neck. METHODS Patients from published sequencing studies related to common VMs were reviewed. Detailed data regarding clinical characteristics, sequencing strategies, and mutation frequency were synthesized. Lesion distribution of common VMs in the head and neck were further retrospectively analyzed by the pathologic database of the Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital. For the frequently affected sites in the head and neck, patients were selected for targeted sequencing with a designed vascular malformation-related gene panel or whole exome sequencing. Detected variants were analyzed by classical bioinformatic algorithms (SIFT23, PolyPhen-2 HDIV, LRT, MutationTaster, Mutation Assessor, and GERP++). To confirm the expression pattern of particular candidate gene, specimens were examined histochemically. Gene ontology enrichment analysis and a protein-protein interaction network were also constructed. RESULTS Three hundred patients from eight sequencing studies related to common VMs were reviewed. The total prevalence rates of TEK and PIK3CA mutations were 41.3% and 26.7%, respectively. The most frequent TEK/PIK3CA mutations were TEK-L914F/PIK3CA-H1047R. TEK/PIK3CA mutations existed in 70.3% and 2.7% of VMs in the head and neck. In retrospective data from 649 patients carrying cervicofacial VMs at Shanghai Ninth Hospital, the most frequent sites were the maxillofacial region (lips, cheek, parotid-masseteric region, submandibular region) and the oral and oropharyngeal region (buccal mucosa, tongue). Targeted sequencing for 14 frequent lesions detected TEK variants in three patients (21.4%), but no PIK3CA mutations. On whole exome sequencing of two patients without TEK/PIK3CA mutations, CDH11 was the only shared deleteriously mutated gene. Bioinformatic analyses of CDH11 implied that genes involved in cellular adhesion and junctions formed a significant portion. CONCLUSIONS Common VMs of the head and neck have a unique genetic landscape. Novel CDH11 and TEK variants imply that pathogenesis is mediated by the regulatory relationship between endothelial cells and extracellular components.
Collapse
|
38
|
Paolacci S, Mattassi RE, Marceddu G, Manara E, Zulian A, Guerri G, De Antoni L, Arduino C, Cavalca D, Bertelli M. Somatic Variant Analysis Identifies Targets for Tailored Therapies in Patients with Vascular Malformations. J Clin Med 2020; 9:jcm9113387. [PMID: 33105631 PMCID: PMC7690376 DOI: 10.3390/jcm9113387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular malformations include various disorders characterized by morphological, structural and/or functional alterations of blood and lymph vessels. Most are sporadic, due to somatic mutations. Here, we report a cohort of patients with sporadic and/or unifocal vascular malformations, in whom we carried out next generation sequencing analysis of a panel of genes associated with vascular malformations. The 115 patients analyzed were from different clinical centres. In 37 patients (32%), we found pathogenic mutations: most of these were gain-of-function mutations in PIK3CA (18%, 21/115) and TEK (13/115, 11%). We also found mutations in GNAQ, CCM2 and PTEN. Identifying pathogenic variants in patients with vascular malformations can help improve management, particularly in cases with activating mutations that cause an increase in cell proliferation. Personalized pharmacological treatment, if possible, is now considered preferable to surgery and can help prevent recurrences, i.e., long-term complications of residual malformation or regrowth of tumors. For instance, rapamycin is currently being investigated for the treatment of various vascular malformations associated with hyperactivation of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway.
Collapse
Affiliation(s)
- Stefano Paolacci
- MAGI’S LAB, Via delle Maioliche, 57/D, 38068 Rovereto, TN, Italy; (A.Z.); (G.G.); (M.B.)
- Correspondence: ; Tel.: +39-046-442-0795
| | - Raul Ettore Mattassi
- Center for Vascular Malformations “Stefan Belov”, Clinical Institute Humanitas “Mater Domini”, Via Gerenzano, 2, 21053 Castellanza, VA, Italy;
| | - Giuseppe Marceddu
- MAGI EUREGIO, Via Maso della Pieve, 60/A, 39100 Bolzano, Italy; (G.M.); (E.M.); (L.D.A.)
| | - Elena Manara
- MAGI EUREGIO, Via Maso della Pieve, 60/A, 39100 Bolzano, Italy; (G.M.); (E.M.); (L.D.A.)
| | - Alessandra Zulian
- MAGI’S LAB, Via delle Maioliche, 57/D, 38068 Rovereto, TN, Italy; (A.Z.); (G.G.); (M.B.)
| | - Giulia Guerri
- MAGI’S LAB, Via delle Maioliche, 57/D, 38068 Rovereto, TN, Italy; (A.Z.); (G.G.); (M.B.)
| | - Luca De Antoni
- MAGI EUREGIO, Via Maso della Pieve, 60/A, 39100 Bolzano, Italy; (G.M.); (E.M.); (L.D.A.)
| | - Carlo Arduino
- Medical Genetics Unit, City of Health and Science, Corso Bramante, 88, 10126 Turin, Italy;
| | - Daniela Cavalca
- Laser Surgery Operating Unit, Plastic Surgery Department, San Rocco Clinical Institute, Via dei Sabbioni, 24, 25050 Ome, BS, Italy;
| | - Matteo Bertelli
- MAGI’S LAB, Via delle Maioliche, 57/D, 38068 Rovereto, TN, Italy; (A.Z.); (G.G.); (M.B.)
- MAGI EUREGIO, Via Maso della Pieve, 60/A, 39100 Bolzano, Italy; (G.M.); (E.M.); (L.D.A.)
- EBTNA–LAB, Via delle Maioliche, 57/G, 38068 Rovereto, TN, Italy
| |
Collapse
|
39
|
Abstract
Vascular malformations are inborn errors of vascular morphogenesis and consist of localized networks of abnormal blood and/or lymphatic vessels with weak endothelial cell proliferation. They have historically been managed by surgery and sclerotherapy. Extensive insight into the genetic origin and molecular mechanism of development has been accumulated over the last 20 years. Since the discovery of the first somatic mutations in a vascular anomaly 10 years ago, it is now recognized that they are perhaps all caused by inherited or somatic mutations in genes that hyperactivate two major intracellular signaling pathways: the RAS/MAPK/ERK and/or the phosphatidylinositol 3 kinase (PIK3)/protein kinase B/mammalian target of rapamycin (mTOR) pathway. Several targeted molecular inhibitors of these pathways have been developed, mostly for the treatment of cancers that harbor mutations in the same pathways. The mTOR inhibitor sirolimus is the most studied compound for the treatment of venous, lymphatic, and complex malformations. Disease responses of vascular malformations to sirolimus have now been reported in several studies in terms of clinical changes, quality of life, functional and radiological outcomes, and safety. Other targeted treatment strategies, such as the PIK3CA inhibitor alpelisib for PIK3CA-mutated vascular malformations, are also emerging. Repurposing of cancer drugs has become a major focus in this rapidly evolving field.
Collapse
|
40
|
Abstract
Venous malformations include a spectrum of slow-flow malformations that together are the most common forms of vascular anomalies. Care of these patients requires a multi-disciplinary approach. Goals of care are to ameliorate symptoms and to preserve function. Use of therapeutic compression garments remains the mainstay of therapy. There are new and promising therapies over the last few years that will be invaluable tools for optimal care of this complex patient population. Advances in medical therapy through inhibition of the mTOR/PI3K/AKT pathway with Sirolimus and more proximal targeted drugs along with advances in sclerotherapy techniques are promising for the long-term improvement and amelioration of symptoms in patients with venous malformations.
Collapse
Affiliation(s)
- Jo Cooke-Barber
- Division of General and Thoracic Pediatric Surgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH 45229, United States
| | - Sara Kreimer
- Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Rd., Palo Alto, CA 94304, United States
| | - Manish Patel
- Division of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH 45229, United States
| | - Roshni Dasgupta
- Division of General and Thoracic Pediatric Surgery, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Ave, Cincinnati, OH 45229, United States
| | - Michael Jeng
- Department of Pediatrics, Stanford University School of Medicine, 1000 Welch Rd., Palo Alto, CA 94304, United States.
| |
Collapse
|
41
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
42
|
Yin J, Qin Z, Wu K, Zhu Y, Hu L, Kong X. Rare Germline GLMN Variants Identified from Blue Rubber Bleb Nevus Syndrome Might Impact mTOR Signaling. Comb Chem High Throughput Screen 2020; 22:675-682. [PMID: 31793416 DOI: 10.2174/1386207322666191203110042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Blue rubber bleb nevus syndrome (BRBN) or Bean syndrome is a rare Venous Malformation (VM)-associated disorder, which mostly affects the skin and gastrointestinal tract in early childhood. Somatic mutations in TEK have been identified from BRBN patients; however, the etiology of TEK mutation-negative patients of BRBN need further investigation. METHODS Two unrelated sporadic BRBNs and one sporadic VM were firstly screened for any rare nonsilent mutation in TEK by Sanger sequencing and subsequently applied to whole-exome sequencing to identify underlying disease causative variants. Overexpression assay and immunoblotting were used to evaluate the functional effect of the candidate disease causative variants. RESULTS In the VM case, we identified the known causative somatic mutation in the TEK gene c.2740C>T (p.Leu914Phe). In the BRBN patients, we identified two rare germline variants in GLMN gene c.761C>G (p.Pro254Arg) and c.1630G>T(p.Glu544*). The GLMN-P254R-expressing and GLMN-E544X-expressing HUVECs exhibited increased phosphorylation of mTOR-Ser-2448 in comparison with GLMN-WTexpressing HUVECs in vitro. CONCLUSION Our results demonstrated that rare germline variants in GLMN might contribute to the pathogenesis of BRBN. Moreover, abnormal mTOR signaling might be the pathogenesis mechanism underlying the dysfunction of GLMN protein.
Collapse
Affiliation(s)
- Jie Yin
- State Key Laboratory for Medical Genetics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SITUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | | | - Kai Wu
- State Key Laboratory for Medical Genetics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SITUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Yufei Zhu
- State Key Laboratory for Medical Genetics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SITUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Landian Hu
- State Key Laboratory for Medical Genetics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SITUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Xiangyin Kong
- State Key Laboratory for Medical Genetics, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SITUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200031, China
| |
Collapse
|
43
|
Si Y, Huang J, Li X, Fu Y, Xu R, Du Y, Cheng J, Jiang H. AKT/FOXO1 axis links cross-talking of endothelial cell and pericyte in TIE2-mutated venous malformations. Cell Commun Signal 2020; 18:139. [PMID: 32867785 PMCID: PMC7457504 DOI: 10.1186/s12964-020-00606-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/29/2020] [Indexed: 01/19/2023] Open
Abstract
Background Venous malformations (VMs), most of which associated with activating mutations in the endothelial cells (ECs) tyrosine kinase receptor TIE2, are characterized by dilated and immature veins with scarce smooth muscle cells (SMCs) coverage. However, the underlying mechanism of interaction between ECs and SMCs responsible for VMs has not been fully understood. Methods Here, we screened 5 patients with TIE2-L914F mutation who were diagnosed with VMs by SNP sequencing, and we compared the expression of platelet-derived growth factor beta (PDGFB) and α-SMA in TIE2 mutant veins and normal veins by immunohistochemistry. In vitro, we generated TIE2-L914F-expressing human umbilical vein endothelial cells (HUVECs) and performed BrdU, CCK-8, transwell and tube formation experiments on none-transfected and transfected ECs. Then we investigated the effects of rapamycin (RAPA) on cellular characteristics. Next we established a co-culture system and investigated the role of AKT/FOXO1/PDGFB in regulating cross-talking of mutant ECs and SMCs. Results VMs with TIE2-L914F mutation showed lower expression of PDGFB and α-SMA than normal veins. TIE2 mutant ECs revealed enhanced cell viability and motility, and decreased tube formation, whereas these phenotypes could be reversed by rapamycin. Mechanically, RAPA ameliorated the physiological function of mutant ECs by inhibiting AKT-mTOR pathway, but also facilitated the nuclear location of FOXO1 and the expression of PDGFB in mutant ECs, and then improved paracrine interactions between ECs and SMCs. Moreover, TIE2 mutant ECs strongly accelerated the transition of SMCs from contractile phenotype to synthetic phenotype, whereas RAPA could prevent the phenotype transition of SMCs. Conclusions Our data demonstrate a previously unknown mechanistic linkage of AKT-mTOR/FOXO1 pathway between mutant ECs and SMCs in modulating venous dysmorphogenesis, and AKT/FOXO1 axis might be a potential therapeutic target for the recovery of TIE2-mutation causing VMs. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Yameng Si
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiadong Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiang Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, Jiangsu Province, China. .,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
44
|
MET somatic activating mutations are responsible for lymphovenous malformation and can be identified using cell-free DNA next generation sequencing liquid biopsy. J Vasc Surg Venous Lymphat Disord 2020; 9:740-744. [PMID: 32858245 DOI: 10.1016/j.jvsv.2020.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/17/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Germline mutations of either the endothelial cell-specific tyrosine kinase receptor TIE2 or the glomulin (GLMN) gene are responsible for rare inherited venous malformations. Both genes affect the hepatocyte growth factor receptor c-Met, inducing vascular smooth muscle cell migration. Germline mutations of hepatocyte growth factor are responsible for lymphatic malformations, leading to lymphedema. The molecular alteration leading to the abnormal mixed vascular anomaly defined as lymphovenous malformation has remained unknown. METHODS A group of 4 patients with lymphovenous malformations were selected. Plasma was obtained from both peripheral and efferent vein samples at the vascular malformation site for cell-free DNA extraction. When possible, we analyzed tissue biopsy samples from the vascular lesion. RESULTS We have demonstrated that in all four patients, an activating MET mutation was present. In three of the four patients, the same pathogenic activating mutation, T1010I, was identified. The mutation was found at the tissue level for the patient with tissue samples available, confirming its causative role in the lymphovenous malformations. CONCLUSIONS In the present study, we have demonstrated that cell-free DNA next generation sequencing liquid biopsy is able to identify the MET mutations in affected tissues. Although a wider cohort of patients is necessary to confirm its causative role in lymphovenous malformations, these data suggest that lymphovenous malformations could result from postzygotic somatic mutations in genes that are key regulators of lymphatic development. The noninvasiveness of the method avoids any risk of bleeding and can be easily performed in children. We are confident that the present pioneering results have provided a viable alternative in the future for lymphovenous malformation diagnosis, allowing for subsequent therapy tailored to the genetic defect.
Collapse
|
45
|
Han YY, Sun LM, Yuan SM. Localized intravascular coagulation in venous malformations: A system review. Phlebology 2020; 36:38-42. [PMID: 32731789 DOI: 10.1177/0268355520946211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Venous malformation is one of the slow-flow vascular malformations. Dysfunction of coagulation often occurs in most venous malformations, especially the diffuse and multifocal lesions, referred to as localized intravascular coagulopathy. It is characterized by the elevation of D-dimers and fibrin degradation products, low levels of fibrinogen, FV, FVIII, FXIII, and antithrombin III, and sometimes minor-to-moderate thrombocytopenia. Here we reviewed the clinical manifestations, pathogenesis, diagnosis, and treatment of localized intravascular coagulopathy in venous malformations.
Collapse
Affiliation(s)
- Yu-Yu Han
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Southeast University, Jiangsu, China
| | - Li-Ming Sun
- Department of Plastic Surgery, Jinling Hospital, Nanjing, School of Clinical Medicine, Bengbu Medical College, Jiangsu, China
| | - Si-Ming Yuan
- Department of Plastic Surgery, Jinling Hospital, School of Medicine, Southeast University, Jiangsu, China
| |
Collapse
|
46
|
Pang C, Lim CS, Brookes J, Tsui J, Hamilton G. Emerging importance of molecular pathogenesis of vascular malformations in clinical practice and classifications. Vasc Med 2020; 25:364-377. [PMID: 32568624 DOI: 10.1177/1358863x20918941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular malformations occur during early vascular development resulting in abnormally formed vessels that can manifest as arterial, venous, capillary or lymphatic lesions, or in combination, and include local tissue overdevelopment. Vascular malformations are largely caused by sporadic somatic gene mutations. This article aims to review and discuss current molecular signaling pathways and therapeutic targets for vascular malformations and to classify vascular malformations according to the molecular pathways involved. A literature review was performed using Embase and Medline. Different MeSH terms were combined for the search strategy, with the aim of encompassing all studies describing the classification, pathogenesis, and treatment of vascular malformations. Major pathways involved in the pathogenesis of vascular malformations are vascular endothelial growth factor (VEGF), Ras/Raf/MEK/ERK, angiopoietin-TIE2, transforming growth factor beta (TGF-β), and PI3K/AKT/mTOR. These pathways are involved in controlling cellular growth, apoptosis, differentiation, and proliferation, and play a central role in endothelial cell signaling and angiogenesis. Many vascular malformations share similar aberrant molecular signaling pathways with cancers and inflammatory disorders. Therefore, selective anticancer agents and immunosuppressants may be beneficial in treating vascular malformations of specific mutations. The current classification systems of vascular malformations, including the International Society of the Study of Vascular Anomalies (ISSVA) classification, are primarily observational and clinical, and are not based on the molecular pathways involved in the pathogenesis of the condition. Several molecular pathways with potential therapeutic targets have been demonstrated to contribute to the development of various vascular anomalies. Classifying vascular malformations based on their molecular pathogenesis may improve treatment by determining the underlying nature of the condition and their potential therapeutic target.
Collapse
Affiliation(s)
- Calver Pang
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom
| | - Chung Sim Lim
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom.,NIHR, University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Jocelyn Brookes
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Interventional Radiology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Janice Tsui
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom.,NIHR, University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - George Hamilton
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, United Kingdom.,Department of Surgical Biotechnology, Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom
| |
Collapse
|
47
|
Zhu J, Shao M, Guo F, Ren J, Tang Z, Geng J, Xu Z, Jia J, Chen L, Jia Y. Downregulation of lysyl oxidase in venous malformations: Association with vascular destabilization and sclerotherapy. J Dermatol 2020; 47:518-526. [PMID: 32162383 DOI: 10.1111/1346-8138.15297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/09/2020] [Indexed: 12/15/2022]
Abstract
Venous malformations (VM) are localized defects in vascular morphogenesis manifested by dilated venous channels with reduced perivascular cell coverage. As a vital enzyme for extracellular matrix (ECM) deposition, lysyl oxidase (LOX) plays important roles in vascular development and diseases. However, the expression and significance of LOX are unknown in VM. Herein, 22 VM specimens and eight samples of normal skin tissues were evaluated immunohistochemically for the expression of LOX, α-smooth muscle cell actin (α-SMA) and transforming growth factor-β (TGF-β). In vitro studies on human umbilical vein endothelial cells (HUVEC) were employed for determining potential mechanisms. Our results showed that LOX expression was significantly reduced in VM compared with normal skin tissues, in parallel with attenuated perivascular α-SMA+ cell coverage and TGF-β downregulation in VM. Further correlation analysis indicated that LOX expression was positively correlated with perivascular α-SMA+ cell coverage and TGF-β expression in VM. Moreover, marked elevation of LOX, TGF-β and α-SMA was observed in bleomycin-treated VM samples. Furthermore, our in vitro data demonstrated that both recombinant TGF-β and bleomycin induced obvious increase of LOX expression and activity and a concomitant increase in ECM components in HUVEC, which could be reversed by LOX inhibition. To our best knowledge, this study revealed for the first time the downregulation of LOX in VM and its correlation with vascular destabilization and TGF-β-induced endothelial ECM deposition. Moreover, our results highlighted that LOX may be implicated in the sclerotherapy of VM and holds promise as a therapeutic target.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Shao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangang Ren
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zirong Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinhuan Geng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Li X, Cai Y, Goines J, Pastura P, Brichta L, Lane A, Le Cras TD, Boscolo E. Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation. Arterioscler Thromb Vasc Biol 2020; 39:496-512. [PMID: 30626204 PMCID: PMC6392210 DOI: 10.1161/atvbaha.118.312315] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective- Venous malformations (VMs) arise from developmental defects of the vasculature and are characterized by massively enlarged and tortuous venous channels. VMs grow commensurately leading to deformity, obstruction of vital structures, bleeding, and pain. Most VMs are associated with the activating mutation L914F in the endothelial cell (EC) tyrosine kinase receptor TIE2. Therapeutic options for VM are limited and ineffective while therapy with the mammalian target of rapamycin inhibitor rapamycin shows moderate efficacy. Here, we investigated novel therapeutic targets promoting VM regression. Approach and Results- We performed an unbiased screen of Food and Drug Administration-approved drugs in human umbilical vein ECs expressing the TIE2-L914F mutation (HUVEC-TIE2-L914F). Three ABL (Abelson) kinase inhibitors prevented cell proliferation of HUVEC-TIE2-L914F. Moreover, c-ABL, common target of these inhibitors, was highly phosphorylated in HUVEC-TIE2-L914F and VM patient-derived ECs with activating TIE2 mutations. Knockdown of c-ABL/ARG in HUVEC-TIE2-L914F reduced cell proliferation and vascularity of murine VM. Combination treatment with the ABL kinase inhibitor ponatinib and rapamycin caused VM regression in a xenograft model based on injection of HUVEC-TIE2-L914F. A reduced dose of this drug combination was effective in this VM murine model with minimal side effects. The drug combination was antiproliferative, enhanced cell apoptosis and vascular channel regression both in vivo and in a 3-dimensional fibrin gel assay. Conclusions- This is the first report of a combination therapy with ponatinib and rapamycin promoting regression of VM. Mechanistically, the drug combination enhanced AKT inhibition compared with single drug treatment and reduced PLCγ (phospholipase C) and ERK (extracellular signal-regulated kinase) activity.
Collapse
Affiliation(s)
- Xian Li
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Yuqi Cai
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Jillian Goines
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Patricia Pastura
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH
| | - Lars Brichta
- Chemistry Rx Compounding and Specialty Pharmacy, Philadelphia, PA (L.B.)
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency (A.L.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Timothy D Le Cras
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Elisa Boscolo
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| |
Collapse
|
49
|
McNulty SN, Evenson MJ, Corliss MM, Love-Gregory LD, Schroeder MC, Cao Y, Lee YS, Drolet BA, Neidich JA, Cottrell CE, Heusel JW. Diagnostic Utility of Next-Generation Sequencing for Disorders of Somatic Mosaicism: A Five-Year Cumulative Cohort. Am J Hum Genet 2019; 105:734-746. [PMID: 31585106 DOI: 10.1016/j.ajhg.2019.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Disorders of somatic mosaicism (DoSM) are a diverse group of syndromic and non-syndromic conditions caused by mosaic variants in genes that regulate cell survival and proliferation. Despite overlap in gene space and technical requirements, few clinical labs specialize in DoSM compared to oncology. We adapted a high-sensitivity next-generation sequencing cancer assay for DoSM in 2014. Some 343 individuals have been tested over the past 5 years, 58% of which had pathogenic and likely pathogenic (P/LP) findings, for a total of 206 P/LP variants in 22 genes. Parameters associated with the high diagnostic yield were: (1) deep sequencing (∼2,000× coverage), (2) a broad gene set, and (3) testing affected tissues. Fresh and formalin-fixed paraffin embedded tissues performed equivalently for identification of P/LP variants (62% and 71% of individuals, respectively). Comparing cultured fibroblasts to skin biopsies suggested that culturing might boost the allelic fraction of variants that confer a growth advantage, specifically gain-of-function variants in PIK3CA. Buccal swabs showed high diagnostic sensitivity in case subjects where disease phenotypes manifested in the head or brain. Peripheral blood was useful as an unaffected comparator tissue to determine somatic versus constitutional origin but had poor diagnostic sensitivity. Descriptions of all tested individuals, specimens, and P/LP variants included in this cohort are available to further the study of the DoSM population.
Collapse
|
50
|
Constitutive Active Mutant TIE2 Induces Enlarged Vascular Lumen Formation with Loss of Apico-basal Polarity and Pericyte Recruitment. Sci Rep 2019; 9:12352. [PMID: 31451744 PMCID: PMC6710257 DOI: 10.1038/s41598-019-48854-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Abnormalities in controlling key aspects of angiogenesis including vascular cell migration, lumen formation and vessel maturation are hallmarks of vascular anomalies including venous malformation (VM). Gain-of-function mutations in the tyrosine kinase receptor TIE2 can cause VM and induce a ligand-independent hyperactivation of TIE2. Despite these important findings, the TIE2-dependent mechanisms triggering enlarged vascular lesions are not well understood. Herein we studied TIE2 p.L914F, the most frequent mutation identified in VM patients. We report that endothelial cells harboring a TIE2-L914F mutation display abnormal cell migration due to a loss of front-rear polarity as demonstrated by a non-polarized Golgi apparatus. Utilizing a three-dimensional fibrin-matrix based model we show that TIE2-L914F mutant cells form enlarged lumens mimicking vascular lesions present in VM patients, independently of exogenous growth factors. Moreover, these abnormal vascular channels demonstrate a dysregulated expression pattern of apico-basal polarity markers Podocalyxin and Collagen IV. Furthermore, in this system we recapitulated another pathological feature of VM, the paucity of pericytes around ectatic veins. The presented data emphasize the value of this in vitro model as a powerful tool for the discovery of cellular and molecular signals contributing to abnormal vascular development and subsequent identification of novel therapeutic approaches.
Collapse
|