1
|
James K, Oluwole OG. Leveraging human-mouse studies to advance the genetics of hearing impairment in Africa. J Gene Med 2024; 26:e3714. [PMID: 38949079 DOI: 10.1002/jgm.3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/10/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, in this review, we investigate the potential of using genetic mouse models to identify genetic markers that can disrupt hearing thresholds in mice and then target the hearing-enriched orthologues and loci in humans. Currently, little is known about the real prevalence of genes that cause hearing impairment (HI) in Africa. Pre-screening mouse cell lines to identify orthologues of interest has the potential to improve the genetic diagnosis for HI in Africa to a significant percentage, for example, 10-20%. Furthermore, the functionality of a candidate gene derived from mouse screening with heterogeneous genetic backgrounds and multi-omic approaches can shed light on the molecular, genetic heterogeneity and plausible mode of inheritance of a gene in hearing-impaired individuals especially in the absence of large families to investigate.
Collapse
Affiliation(s)
- Kili James
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Oluwafemi G Oluwole
- Department of Pathology, Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biomedical Research Centre, Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Garg V, Geurten BRH. Diving deep: zebrafish models in motor neuron degeneration research. Front Neurosci 2024; 18:1424025. [PMID: 38966756 PMCID: PMC11222423 DOI: 10.3389/fnins.2024.1424025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
In the dynamic landscape of biomedical science, the pursuit of effective treatments for motor neuron disorders like hereditary spastic paraplegia (HSP), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) remains a key priority. Central to this endeavor is the development of robust animal models, with the zebrafish emerging as a prime candidate. Exhibiting embryonic transparency, a swift life cycle, and significant genetic and neuroanatomical congruencies with humans, zebrafish offer substantial potential for research. Despite the difference in locomotion-zebrafish undulate while humans use limbs, the zebrafish presents relevant phenotypic parallels to human motor control disorders, providing valuable insights into neurodegenerative diseases. This review explores the zebrafish's inherent traits and how they facilitate profound insights into the complex behavioral and cellular phenotypes associated with these disorders. Furthermore, we examine recent advancements in high-throughput drug screening using the zebrafish model, a promising avenue for identifying therapeutically potent compounds.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neurobiology, Georg-August-University Göttingen, Göttingen, Lower Saxony, Germany
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | | |
Collapse
|
3
|
de Souza GC, Malta MC, Santos MRS, Fontes MÍB, de Sousa Anjos JL, Ribeiro DP, Kok F, Figueiredo T. Novel ERLIN2 variant expands the phenotype of Spastic Paraplegia 18. Neurol Sci 2024; 45:2705-2710. [PMID: 38159148 DOI: 10.1007/s10072-023-07271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The Brazilian Northeast region is notable for its high prevalence of consanguineous marriages and isolated populations, which has led to a significant prevalence of rare genetic disorders. This study describes the clinical presentation of four affected individuals from the same family, comprising two siblings and their cousins, with ages ranging from 11 to 20 years. METHODS In a small and isolated community in Northeastern Brazil, affected individuals initially underwent a clinical assessment. Subsequently, written consent was obtained from their legal guardians, and an extensive clinical evaluation was conducted at a medical genetics center. Family data provided the basis for constructing the pedigree, and biological samples (blood or oral swabs) were collected from both affected and unaffected family members. Following informed consent from one patient, Whole Exome Sequencing (WES) was carried out, encompassing exome sequencing, assembly, genotyping, and annotation. A potentially deleterious variant was then singled out for further segregation analysis through Sanger Sequencing, involving both the proband and select family members. RESULTS AND CONCLUSION These individuals exhibit severe neurodevelopmental delays, encompassing symptoms such as spastic paraplegia, neuropathy, intellectual impairments, and language challenges. Through next-generation sequencing (NGS) techniques, a previously unreported homozygous variant within the ERLIN2 gene linked to spastic paraplegia 18 (SPG18) was identified across all four patients. Also, all patients displayed childhood cataract, expanding the known clinical spectrum of SPG18.
Collapse
Affiliation(s)
| | - Maria Carolina Malta
- Medical Genetics Sector, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Marshall Ítalo Barros Fontes
- Clinical Genetics Service, Medical Genetics Sector, Faculty of Medicine, University Hospital, Federal University of Alagoas, Maceió, Alagoas, Brazil
- Center of Health Sciences, Alagoas State University of Health Sciences-UNCISAL, Maceió, Alagoas, Brazil
| | - Juliana Lopes de Sousa Anjos
- Ophthalmology Sector, Faculty of Medicine, University Hospital, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Diego Patrício Ribeiro
- Ophthalmology Sector, Faculty of Medicine, University Hospital, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Fernando Kok
- Child Neurology Service, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
- Mendelics Genomic Analysis, São Paulo, SP, Brazil
| | - Thalita Figueiredo
- Medical Genetics Sector, Faculty of Medicine, Federal University of Alagoas, Maceió, Alagoas, Brazil.
| |
Collapse
|
4
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Martinello C, Panza E, Orlacchio A. Hereditary spastic paraplegias proteome: common pathways and pathogenetic mechanisms. Expert Rev Proteomics 2023; 20:171-188. [PMID: 37788157 DOI: 10.1080/14789450.2023.2260952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs) are a group of inherited neurodegenerative disorders characterized by progressive spasticity and weakness of the lower limbs. These conditions are caused by lesions in the neuronal pyramidal tract and exhibit clinical and genetic variability. Ongoing research focuses on understanding the underlying mechanisms of HSP onset, which ultimately lead to neuronal degeneration. Key molecular mechanisms involved include axonal transport, cytoskeleton dynamics, myelination abnormalities, membrane trafficking, organelle morphogenesis, ER homeostasis, mitochondrial dysfunction, and autophagy deregulation. AREAS COVERED This review aims to provide an overview of the shared pathogenetic mechanisms in various forms of HSPs. By examining disease-causing gene products and their associated functional pathways, this understanding could lead to the discovery of new therapeutic targets and the development of treatments to modify the progression of the disease. EXPERT OPINION Investigating gene functionality is crucial for identifying shared pathogenetic pathways underlying different HSP subtypes. Categorizing protein function and identifying pathways aids in finding biomarkers, predicting early onset, and guiding treatment for a better quality of life. Targeting shared mechanisms enables efficient and cost-effective therapies. Prospects involve identifying new disease-causing genes, refining molecular processes, and implementing findings in diagnosis, key for advancing HSP understanding and developing effective treatments.
Collapse
Affiliation(s)
- Chiara Martinello
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Emanuele Panza
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
- Unità di Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
6
|
Zhang JQ, Pan JQ, Wei ZY, Ren CY, Ru FX, Xia SY, He YS, Lin K, Chen JH. Brain Epitranscriptomic Analysis Revealed Altered A-to-I RNA Editing in Septic Patients. Front Genet 2022; 13:887001. [PMID: 35559016 PMCID: PMC9086164 DOI: 10.3389/fgene.2022.887001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Recent studies suggest that RNA editing is associated with impaired brain function and neurological and psychiatric disorders. However, the role of A-to-I RNA editing during sepsis-associated encephalopathy (SAE) remains unclear. In this study, we analyzed adenosine-to-inosine (A-to-I) RNA editing in postmortem brain tissues from septic patients and controls. A total of 3024 high-confidence A-to-I RNA editing sites were identified. In sepsis, there were fewer A-to-I RNA editing genes and editing sites than in controls. Among all A-to-I RNA editing sites, 42 genes showed significantly differential RNA editing, with 23 downregulated and 19 upregulated in sepsis compared to controls. Notably, more than 50% of these genes were highly expressed in the brain and potentially related to neurological diseases. Notably, cis-regulatory analysis showed that the level of RNA editing in six differentially edited genes was significantly correlated with the gene expression, including HAUS augmin-like complex subunit 2 (HAUS2), protein phosphatase 3 catalytic subunit beta (PPP3CB), hook microtubule tethering protein 3 (HOOK3), CUB and Sushi multiple domains 1 (CSMD1), methyltransferase-like 7A (METTL7A), and kinesin light chain 2 (KLC2). Furthermore, enrichment analysis showed that fewer gene functions and KEGG pathways were enriched by edited genes in sepsis compared to controls. These results revealed alteration of A-to-I RNA editing in the human brain associated with sepsis, thus providing an important basis for understanding its role in neuropathology in SAE.
Collapse
Affiliation(s)
- Jing-Qian Zhang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| | - Jia-Qi Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| | - Fu-Xia Ru
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China.,Jieyang People's Hospital, Jieyang, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| | | | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Joint Primate Research Center for Chronic Diseases, Wuxi School of Medicine, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Jiangnan University, Wuxi, China.,Jiangnan University Brain Institute, Wuxi, China
| |
Collapse
|
7
|
Mahungu AC, Monnakgotla N, Nel M, Heckmann JM. A review of the genetic spectrum of hereditary spastic paraplegias, inherited neuropathies and spinal muscular atrophies in Africans. Orphanet J Rare Dis 2022; 17:133. [PMID: 35331287 PMCID: PMC8944057 DOI: 10.1186/s13023-022-02280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genetic investigations of inherited neuromuscular disorders in Africans, have been neglected. We aimed to summarise the published data and comment on the genetic evidence related to inherited neuropathies (Charcot-Marie-Tooth disease (CMT)), hereditary spastic paraplegias (HSP) and spinal muscular atrophy (SMA) in Africans. Methods PubMed was searched for relevant articles and manual checking of references and review publications were performed for African-ancestry participants with relevant phenotypes and identified genetic variants. For each case report we extracted phenotype information, inheritance pattern, variant segregation and variant frequency in population controls (including up to date frequencies from the gnomAD database). Results For HSP, 23 reports were found spanning the years 2000–2019 of which 19 related to North Africans, with high consanguinity, and six included sub-Saharan Africans. For CMT, 19 reports spanning years 2002–2021, of which 16 related to North Africans and 3 to sub-Saharan Africans. Most genetic variants had not been previously reported. There were 12 reports spanning years 1999–2020 related to SMN1-SMA caused by homozygous exon 7 ± 8 deletion. Interestingly, the population frequency of heterozygous SMN1-exon 7 deletion mutations appeared 2 × lower in Africans compared to Europeans, in addition to differences in the architecture of the SMN2 locus which may impact SMN1-SMA prognosis. Conclusions Overall, genetic data on inherited neuromuscular diseases in sub-Saharan Africa, are sparse. If African patients with rare neuromuscular diseases are to benefit from the expansion in genomics capabilities and therapeutic advancements, then it is critical to document the mutational spectrum of inherited neuromuscular disease in Africa. Highlights Review of genetic variants reported in hereditary spastic paraplegia in Africans Review of genetic variants reported in genetic neuropathies in Africans Review of genetic underpinnings of spinal muscular atrophies in Africans Assessment of pathogenic evidence for candidate variants
Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02280-2.
Collapse
Affiliation(s)
- Amokelani C Mahungu
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | | | - Melissa Nel
- Neurology Research Group, University of Cape Town Neuroscience Institute, Cape Town, South Africa
| | - Jeannine M Heckmann
- E8-74 Neurology, Department of Medicine, Groote Schuur Hospital and the University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. KLC4 shapes axon arbors during development and mediates adult behavior. eLife 2022; 11:74270. [PMID: 36222498 PMCID: PMC9596160 DOI: 10.7554/elife.74270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Korri H Burnett
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Jiaye He
- Morgridge Institute for ResearchMadisonUnited States,National Innovation Center for Advanced Medical DevicesShenzenChina
| | - Marcel W Jean-Pierre
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Martin Jarzyna
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States,Department of Biology and Psychology, Georg-August-UniversityGöttingenGermany
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
9
|
Elsayed LEO, Eltazi IZ, Ahmed AE, Stevanin G. Insights into Clinical, Genetic, and Pathological Aspects of Hereditary Spastic Paraplegias: A Comprehensive Overview. Front Mol Biosci 2021; 8:690899. [PMID: 34901147 PMCID: PMC8662366 DOI: 10.3389/fmolb.2021.690899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hereditary spastic paraplegias (HSP) are a heterogeneous group of motor neurodegenerative disorders that have the core clinical presentation of pyramidal syndrome which starts typically in the lower limbs. They can present as pure or complex forms with all classical modes of monogenic inheritance reported. To date, there are more than 100 loci/88 spastic paraplegia genes (SPG) involved in the pathogenesis of HSP. New patterns of inheritance are being increasingly identified in this era of huge advances in genetic and functional studies. A wide range of clinical symptoms and signs are now reported to complicate HSP with increasing overall complexity of the clinical presentations considered as HSP. This is especially true with the emergence of multiple HSP phenotypes that are situated in the borderline zone with other neurogenetic disorders. The genetic diagnostic approaches and the utilized techniques leave a diagnostic gap of 25% in the best studies. In this review, we summarize the known types of HSP with special focus on those in which spasticity is the principal clinical phenotype ("SPGn" designation). We discuss their modes of inheritance, clinical phenotypes, underlying genetics, and molecular pathways, providing some observations about therapeutic opportunities gained from animal models and functional studies. This review may pave the way for more analytic approaches that take into consideration the overall picture of HSP. It will shed light on subtle associations that can explain the occurrence of the disease and allow a better understanding of its observed variations. This should help in the identification of future biomarkers, predictors of disease onset and progression, and treatments for both better functional outcomes and quality of life.
Collapse
Affiliation(s)
- Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University [PNU], Riyadh, Saudi Arabia
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Ammar E. Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Giovanni Stevanin
- Institut du Cerveau – Paris Brain Institute - ICM, Sorbonne Université, INSERM, CNRS, APHP, Paris, France
- CNRS, INCIA, Université de Bordeaux, Bordeaux, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
10
|
Antón Z, Weijman JF, Williams C, Moody ERR, Mantell J, Yip YY, Cross JA, Williams TA, Steiner RA, Crump MP, Woolfson DN, Dodding MP. Molecular mechanism for kinesin-1 direct membrane recognition. SCIENCE ADVANCES 2021; 7:7/31/eabg6636. [PMID: 34321209 PMCID: PMC8318374 DOI: 10.1126/sciadv.abg6636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
The cargo-binding capabilities of cytoskeletal motor proteins have expanded during evolution through both gene duplication and alternative splicing. For the light chains of the kinesin-1 family of microtubule motors, this has resulted in an array of carboxyl-terminal domain sequences of unknown molecular function. Here, combining phylogenetic analyses with biophysical, biochemical, and cell biology approaches, we identify a highly conserved membrane-induced curvature-sensitive amphipathic helix within this region of a subset of long kinesin light-chain paralogs and splice isoforms. This helix mediates the direct binding of kinesin-1 to lipid membranes. Membrane binding requires specific anionic phospholipids, and it contributes to kinesin-1-dependent lysosome positioning, a canonical activity that, until now, has been attributed exclusively the recognition of organelle-associated cargo adaptor proteins. This leads us to propose a protein-lipid coincidence detection framework for kinesin-1-mediated organelle transport.
Collapse
Affiliation(s)
- Zuriñe Antón
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Johannes F Weijman
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Christopher Williams
- School of Chemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Edmund R R Moody
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Judith Mantell
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Yan Y Yip
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jessica A Cross
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TS, UK
| | - Tom A Williams
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Roberto A Steiner
- Randall Centre of Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matthew P Crump
- School of Chemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Derek N Woolfson
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
- School of Chemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark P Dodding
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
11
|
Martín M, Modenutti CP, Gil Rosas ML, Peyret V, Geysels RC, Bernal Barquero CE, Sobrero G, Muñoz L, Signorino M, Testa G, Miras MB, Masini-Repiso AM, Calcaterra NB, Coux G, Carrasco N, Martí MA, Nicola JP. A Novel SLC5A5 Variant Reveals the Crucial Role of Kinesin Light Chain 2 in Thyroid Hormonogenesis. J Clin Endocrinol Metab 2021; 106:1867-1881. [PMID: 33912899 PMCID: PMC8208674 DOI: 10.1210/clinem/dgab283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/17/2022]
Abstract
CONTEXT Iodide transport defect (ITD) (Online Mendelian Inheritance in Man No. 274400) is an uncommon cause of dyshormonogenic congenital hypothyroidism due to loss-of-function variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells. OBJECTIVE This work aims to determine the molecular basis of a patient's ITD clinical phenotype. METHODS The propositus was diagnosed with dyshormonogenic congenital hypothyroidism with minimal 99mTc-pertechnetate accumulation in a eutopic thyroid gland. The propositus SLC5A5 gene was sequenced. Functional in vitro characterization of the novel NIS variant was performed. RESULTS Sanger sequencing revealed a novel homozygous missense p.G561E NIS variant. Mechanistically, the G561E substitution reduces iodide uptake, because targeting of G561E NIS to the plasma membrane is reduced. Biochemical analyses revealed that G561E impairs the recognition of an adjacent tryptophan-acidic motif by the kinesin-1 subunit kinesin light chain 2 (KLC2), interfering with NIS maturation beyond the endoplasmic reticulum, and reducing iodide accumulation. Structural bioinformatic analysis suggests that G561E shifts the equilibrium of the unstructured tryptophan-acidic motif toward a more structured conformation unrecognizable to KLC2. Consistently, knockdown of Klc2 causes defective NIS maturation and consequently decreases iodide accumulation in rat thyroid cells. Morpholino knockdown of klc2 reduces thyroid hormone synthesis in zebrafish larvae leading to a hypothyroid state as revealed by expression profiling of key genes related to the hypothalamic-pituitary-thyroid axis. CONCLUSION We report a novel NIS pathogenic variant associated with dyshormonogenic congenital hypothyroidism. Detailed molecular characterization of G561E NIS uncovered the significance of KLC2 in thyroid physiology.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Carlos Pablo Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Mauco Lucas Gil Rosas
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000EZP Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, S2000EZP Rosario, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Gabriela Sobrero
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Liliana Muñoz
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Malvina Signorino
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Graciela Testa
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Mirta Beatriz Miras
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Nora Beatriz Calcaterra
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000EZP Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, S2000EZP Rosario, Argentina
| | - Gabriela Coux
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000EZP Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, S2000EZP Rosario, Argentina
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 06510 New Haven, Connecticut, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, 37232 Nashville, Tennessee, USA
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| |
Collapse
|
12
|
De Pace R, Britt DJ, Mercurio J, Foster AM, Djavaherian L, Hoffmann V, Abebe D, Bonifacino JS. Synaptic Vesicle Precursors and Lysosomes Are Transported by Different Mechanisms in the Axon of Mammalian Neurons. Cell Rep 2021; 31:107775. [PMID: 32553155 PMCID: PMC7478246 DOI: 10.1016/j.celrep.2020.107775] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
BORC is a multisubunit complex previously shown to promote coupling of mammalian lysosomes and C. elegans synaptic vesicle (SV) precursors (SVPs) to kinesins for anterograde transport of these organelles along microtubule tracks. We attempted to meld these observations into a unified model for axonal transport in mammalian neurons by testing two alternative hypotheses: (1) that SV and lysosomal proteins are co-transported within a single type of “lysosome-related vesicle” and (2) that SVPs and lysosomes are distinct organelles, but both depend on BORC for axonal transport. Analyses of various types of neurons from wild-type rats and mice, as well as from BORC-deficient mice, show that neither hypothesis is correct. We find that SVPs and lysosomes are transported separately, but only lysosomes depend on BORC for axonal transport in these neurons. These findings demonstrate that SVPs and lysosomes are distinct organelles that rely on different machineries for axonal transport in mammalian neurons. De Pace et al. show that lysosomes and synaptic vesicle precursors (SVPs) are distinct organelles that move separately from the soma to the axon in rat and mouse neurons. Moreover, they demonstrate that the BLOC-1-related complex (BORC) is required for the transport of lysosomes but not SVPs in mouse neurons.
Collapse
Affiliation(s)
- Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dylan J Britt
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey Mercurio
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arianne M Foster
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucas Djavaherian
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
14
|
Bazvand F, Keramatipour M, Riazi-Esfahani H, Mahmoudi A. SPOAN syndrome: a novel mutation and new ocular findings; a case report. BMC Neurol 2021; 21:24. [PMID: 33451298 PMCID: PMC7809849 DOI: 10.1186/s12883-021-02051-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background To report a novel mutation and new clinical findings in a case with SPOAN syndrome (spastic paraplegia, optic atrophy, neuropathy). Case presentation Clinical examination, genetic testing and electroretinography were used to study a 2-year-old child who was referred to our clinic with no visual attention and documented SPOAN syndrome. Fundoscopy revealed optic atrophy, diffuse retinal pigment mottling, severe vascular attenuation, and completely non-vascularized peripheral retina in both eyes. Full-field electroretinogram (ERG) revealed flat responses. Conclusions Severe retinopathy and flat full-field ERG responses can occur in SPOAN syndrome.
Collapse
Affiliation(s)
- Fatemeh Bazvand
- Farabi eye hospital, Eye research center, Tehran University of Medical Science, Farabi Eye Hospital, Qazvin square, South Kargar Street, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Riazi-Esfahani
- Farabi eye hospital, Eye research center, Tehran University of Medical Science, Farabi Eye Hospital, Qazvin square, South Kargar Street, Tehran, Iran
| | - Alireza Mahmoudi
- Farabi eye hospital, Eye research center, Tehran University of Medical Science, Farabi Eye Hospital, Qazvin square, South Kargar Street, Tehran, Iran.
| |
Collapse
|
15
|
Zhao Y, Feng Z, Zou Y, Liu Y. The E3 Ubiquitin Ligase SYVN1 Ubiquitinates Atlastins to Remodel the Endoplasmic Reticulum Network. iScience 2020; 23:101494. [PMID: 32916628 PMCID: PMC7490852 DOI: 10.1016/j.isci.2020.101494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/01/2020] [Accepted: 08/19/2020] [Indexed: 01/05/2023] Open
Abstract
Atlastin (ATL) is a class of dynamin-like GTPases shaping endoplasmic reticulum (ER) by mediating homotypic membrane fusion. Defect of ATLs leads to abnormal ER structure and hereditary spastic paraplegia (HSP), a neurodegenerative disease with progressive spasticity. How ATLs are regulated to maintain the ER dynamics is not clear. Here, we found that SYVN1, an E3 ubiquitin ligase on the ER membrane, regulates ER shape and COPII exporting by mediating ubiquitination on ATLs, especially ATL1. ATL1 is ubiquitinated by SYVN1 strongly on K285 and mildly on K287. Ubiquitination on ATL1 does not result in protein degradation but inhibits ATL1 GTPase activity. SYVN1 overexpression compensates the excessive ER network fusion caused by ATL1 overexpression. Accordingly, the role of SYVN1 and ATL1 in regulating ER morphology is also recapitulated in Caenorhabditis elegans. Taken together, our study reveals a different role of SYVN1 in ER remodeling through mediating ubiquitination on ATLs.
Collapse
Affiliation(s)
- Yupeng Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Kalantari S, Filges I. 'Kinesinopathies': emerging role of the kinesin family member genes in birth defects. J Med Genet 2020; 57:797-807. [PMID: 32430361 PMCID: PMC7691813 DOI: 10.1136/jmedgenet-2019-106769] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022]
Abstract
Motor kinesins are a family of evolutionary conserved proteins involved in intracellular trafficking of various cargoes, first described in the context of axonal transport. They were discovered to have a key importance in cell-cycle dynamics and progression, including chromosomal condensation and alignment, spindle formation and cytokinesis, as well as ciliogenesis and cilia function. Recent evidence suggests that impairment of kinesins is associated with a variety of human diseases consistent with their functions and evolutionary conservation. Through the advent of gene identification using genome-wide sequencing approaches, their role in monogenic disorders now emerges, particularly for birth defects, in isolated as well as multiple congenital anomalies. We can observe recurrent phenotypical themes such as microcephaly, certain brain anomalies, and anomalies of the kidney and urinary tract, as well as syndromic phenotypes reminiscent of ciliopathies. Together with the molecular and functional data, we suggest understanding these ‘kinesinopathies’ as a recognisable entity with potential value for research approaches and clinical care.
Collapse
Affiliation(s)
- Silvia Kalantari
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Isabel Filges
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel and University of Basel, Basel, Switzerland .,Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Naef V, Mero S, Fichi G, D'Amore A, Ogi A, Gemignani F, Santorelli FM, Marchese M. Swimming in Deep Water: Zebrafish Modeling of Complicated Forms of Hereditary Spastic Paraplegia and Spastic Ataxia. Front Neurosci 2019; 13:1311. [PMID: 31920481 PMCID: PMC6914767 DOI: 10.3389/fnins.2019.01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) and hereditary ataxia (HA) are two groups of disorders characterized, respectively, by progressive dysfunction or degeneration of the pyramidal tracts (HSP) and of the Purkinje cells and spinocerebellar tracts (HA). Although HSP and HA are generally shown to have distinct clinical-genetic profiles, in several cases the clinical presentation, the causative genes, and the cellular pathways and mechanisms involved overlap between the two forms. Genetic analyses in humans in combination with in vitro and in vivo studies using model systems have greatly expanded our knowledge of spinocerebellar degenerative disorders. In this review, we focus on the zebrafish (Danio rerio), a vertebrate model widely used in biomedical research since its overall nervous system organization is similar to that of humans. A critical analysis of the literature suggests that zebrafish could serve as a powerful experimental tool for molecular and genetic dissection of both HA and HSP. The zebrafish, found to be very useful for demonstrating the causal relationship between defect and mutation, also offers a useful platform to exploit for the development of therapies.
Collapse
Affiliation(s)
- Valentina Naef
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| | - Serena Mero
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Gianluca Fichi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Struttura Complessa Toscana Sud (Sede Grosseto), Istituto Zooprofilattico Sperimentale del Lazio e Toscana M. Aleandri, Grosseto, Italy
| | - Angelica D'Amore
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy.,Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Asahi Ogi
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy.,Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | | | - Maria Marchese
- Neurobiology and Molecular Medicine, IRCCS Stella Maris, Pisa, Italy
| |
Collapse
|
18
|
Galvão CRC, Cavalcante PMA, Olinda R, Graciani Z, Zatz M, Kok F, Santos S, Lancman S. Motor impairment in a rare form of spastic paraplegia (Spoan syndrome): a 10-year follow-up. BMC Neurol 2019; 19:256. [PMID: 31656170 PMCID: PMC6816190 DOI: 10.1186/s12883-019-1465-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/13/2019] [Indexed: 11/29/2022] Open
Abstract
Background Spastic paraplegia, optic atrophy and neuropathy (Spoan syndrome) is an autosomal recessive disease with approximately 70 cases recorded in Brazil and Egypt. Methods This is a prospective longitudinal study performed with 47 patients affected with Spoan syndrome of seven communities of Rio Grande do Norte (Brazil) to investigate changes in motor function based on comparative data obtained from a 10-year follow-up. Results The mean age of the participants was 47.21 ± 12.42 years old, and the mean age at loss of ambulation and hand function were 10.78 ± 5.55 and 33.58 ± 17.47 years old, respectively. Spearman’s correlation analysis between the score on the Modified Barthel Index and the investigated variables evidenced statistical significance for age (p < 0.001) and right- and left-hand grip strength (p = 0.042 and p = 0.021, respectively). Statistical significance was not evidenced for the remainder of the variables, including age at onset of symptoms (p = 0.634), age at loss of ambulation (p = 0.664) and age at loss of hand function (p = 0.118). Conclusions Our analysis allows asserting that the participants exhibited slight dependence until age 35. The greatest losses occurred from ages 35 to 41, and starting at 50, practically all patients become completely dependent. These findings are relevant for determining the prognosis as well as suitable treatment, rehabilitation and assistive technology for these individuals.
Collapse
Affiliation(s)
- Cláudia R C Galvão
- Department of Occupational Therapy, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Ricardo Olinda
- Department of Statistics, State University of Paraíba, Campina Grande, Brazil
| | - Zodja Graciani
- Department of Physical Therapy, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Fernando Kok
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Silvana Santos
- Community Genetics Group, State University of Paraíba, Rua das Baraúnas 351, Campina Grande, Paraíba, Brazil.
| | - Selma Lancman
- Rehabilitation Sciences Program, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Peluzzo TM, Bonadia LC, Donatti A, Molck MC, Jardim LB, Marques W, Lopes-Cendes IT, França MC. Frequency and Genetic Profile of Compound Heterozygous Friedreich's Ataxia Patients-the Brazilian Experience. THE CEREBELLUM 2019; 18:1143-1146. [PMID: 31243663 DOI: 10.1007/s12311-019-01055-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Friedreich ataxia (FRDA) is the most common autosomal recessive ataxia in Caucasian populations. It is caused by a homozygous GAA expansion in the first intron of the frataxin gene (FXN) (OMIM: 606829) in 96% of the affected individuals. The remaining patients have a GAA expansion in one allele and a point mutation in the other. Little is known about compound heterozygous patients outside Europe and North America. We have thus designed a study to determine the frequency and mutational profile of these patients in Brazil. To accomplish that, we recruited all patients with ataxia and at least one expanded GAA allele at FXN from 3 national reference centers. We identified those subjects with a single expansion and proceeded with further genetic testing (Sanger sequencing and CGH arrays) for those. There were 143 unrelated patients (128 families), five of which had a single expanded allele. We identified point mutations in three out of these five (3/128 = 2.34%). Two patients had the c.157delC variant, whereas one individual had the novel variant c.482+1G>T. These results indicate that FXN point mutations are rare, but exist in Brazilian patients with FRDA. This has obvious implications for diagnostic testing and genetic counseling.
Collapse
Affiliation(s)
- Thiago Mazzo Peluzzo
- Department of Medical Genetics and Genomic Medicine, School of Medicine, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitaria "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - Luciana Cardoso Bonadia
- Department of Medical Genetics and Genomic Medicine, School of Medicine, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitaria "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medicine, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitaria "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - Miriam Coelho Molck
- Department of Medical Genetics and Genomic Medicine, School of Medicine, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitaria "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - Laura Bannach Jardim
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Wilson Marques
- Department of Neurosciences and Behavior Sciences, Ribeirão Preto School of Medicine, University of São Paulo (HCFMRP-USP), Campus Universitário s/n Monte Alegre, Ribeirão Preto, SP, 14048-900, Brazil
| | - Iscia Teresinha Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medicine, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitaria "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - Marcondes C França
- Department of Neurology, School of Medicine, University of Campinas - UNICAMP, Rua Tessália Vieira de Camargo, 126, Cidade Universitaria "Zeferino Vaz", Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
20
|
Ingham NJ, Pearson SA, Vancollie VE, Rook V, Lewis MA, Chen J, Buniello A, Martelletti E, Preite L, Lam CC, Weiss FD, Powis Z, Suwannarat P, Lelliott CJ, Dawson SJ, White JK, Steel KP. Mouse screen reveals multiple new genes underlying mouse and human hearing loss. PLoS Biol 2019; 17:e3000194. [PMID: 30973865 PMCID: PMC6459510 DOI: 10.1371/journal.pbio.3000194] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 11/23/2022] Open
Abstract
Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.
Collapse
Affiliation(s)
- Neil J Ingham
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | | | - Victoria Rook
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Morag A Lewis
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jing Chen
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Annalisa Buniello
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Elisa Martelletti
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Lorenzo Preite
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chi Chung Lam
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Felix D Weiss
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Zӧe Powis
- Department of Emerging Genetics Medicine, Ambry Genetics, Aliso Viejo, California, United States of America
| | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, Maryland, United States of America
| | | | - Sally J Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| | | | - Karen P Steel
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Citrigno L, Magariello A, Pugliese P, Di Palma G, Conforti FL, Petrone A, Muglia M. Kinesins in neurological inherited diseases: a novel motor-domain mutation in KIF5A gene in a patient from Southern Italy affected by hereditary spastic paraplegia. Acta Neurol Belg 2018; 118:643-646. [PMID: 30411208 DOI: 10.1007/s13760-018-1039-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022]
Abstract
Kinesins are a family of proteins for anterograde transport of the molecules from the neuronal cell body and their impairment has been widely associated with neurodegeneration of the motor neurons. KIF5A gene causes autosomal dominant spastic paraplegia 10, a neurological disorder characterized by spasticity and weakness of the lower limbs (SPG10). We carried out a screening of KIF5A gene in 50 subjects affected by HSP negative to diagnostic test for SPG4, ATL1 and REEP1. We identified a novel variation p.Ile255Met in a 58-year-old man who developed progressive gait disturbance due to spastic paraparesis complicated by axonal neuropathy.
Collapse
Affiliation(s)
- L Citrigno
- Institute of Neurological Sciences, National Research Council, 87050, Mangone (Cosenza), Italy
| | - A Magariello
- Institute of Neurological Sciences, National Research Council, 87050, Mangone (Cosenza), Italy
| | - P Pugliese
- Neurology Unit, Annunziata Hospital, Cosenza, Italy
| | - G Di Palma
- Institute of Neurological Sciences, National Research Council, 87050, Mangone (Cosenza), Italy
| | - F L Conforti
- Institute of Neurological Sciences, National Research Council, 87050, Mangone (Cosenza), Italy
| | - A Petrone
- Neurology Unit, Annunziata Hospital, Cosenza, Italy
| | - M Muglia
- Institute of Neurological Sciences, National Research Council, 87050, Mangone (Cosenza), Italy.
| |
Collapse
|
22
|
Origin and age of the causative mutations in KLC2, IMPA1, MED25 and WNT7A unravelled through Brazilian admixed populations. Sci Rep 2018; 8:16552. [PMID: 30410084 PMCID: PMC6224410 DOI: 10.1038/s41598-018-35022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
The mutation age and local ancestry of chromosomal segments harbouring mutations associated with autosomal recessive (AR) disorders in Brazilian admixed populations remain unknown; additionally, inbreeding levels for these affected individuals continue to be estimated based on genealogical information. Here, we calculated inbreeding levels using a runs of homozygosity approach, mutation age and local ancestry to infer the origin of each chromosomal segments containing disorder-causing mutations in KLC2, IMPA1, MED25 and WNT7A. Genotyped data were generated from 18 patients affected by AR diseases and combined to the 1000 genome project (1KGP) and Simons genome diversity project (SGDP) databases to infer local ancestry. We found a major European contribution for mutated haplotypes with recent mutation age and inbreeding values found only in Native American and Middle East individuals. These results contribute to identifying the origin of and to understanding how these diseases are maintained and spread in Brazilian and world populations.
Collapse
|
23
|
Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavaçana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M. Pericytes Extend Survival of ALS SOD1 Mice and Induce the Expression of Antioxidant Enzymes in the Murine Model and in IPSCs Derived Neuronal Cells from an ALS Patient. Stem Cell Rev Rep 2018; 13:686-698. [PMID: 28710685 DOI: 10.1007/s12015-017-9752-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is one of the most common adult-onset motor neuron disease causing a progressive, rapid and irreversible degeneration of motor neurons in the cortex, brain stem and spinal cord. No effective treatment is available and cell therapy clinical trials are currently being tested in ALS affected patients. It is well known that in ALS patients, approximately 50% of pericytes from the spinal cord barrier are lost. In the central nervous system, pericytes act in the formation and maintenance of the blood-brain barrier, a natural defense that slows the progression of symptoms in neurodegenerative diseases. Here we evaluated, for the first time, the therapeutic effect of human pericytes in vivo in SOD1 mice and in vitro in motor neurons and other neuronal cells derived from one ALS patient. Pericytes and mesenchymal stromal cells (MSCs) were derived from the same adipose tissue sample and were administered to SOD1 mice intraperitoneally. The effect of the two treatments was compared. Treatment with pericytes extended significantly animals survival in SOD1 males, but not in females that usually have a milder phenotype with higher survival rates. No significant differences were observed in the survival of mice treated with MSCs. Gene expression analysis in brain and spinal cord of end-stage animals showed that treatment with pericytes can stimulate the host antioxidant system. Additionally, pericytes induced the expression of SOD1 and CAT in motor neurons and other neuronal cells derived from one ALS patient carrying a mutation in FUS. Overall, treatment with pericytes was more effective than treatment with MSCs. Our results encourage further investigations and suggest that pericytes may be a good option for ALS treatment in the future. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Giuliana Castello Coatti
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Miriam Frangini
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Marcos C Valadares
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Juliana Plat Gomes
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Natalia O Lima
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Natale Cavaçana
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Amanda F Assoni
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Mayra V Pelatti
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Alexander Birbrair
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, University Federal of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Julio M Singer
- Department of Statistics, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | | | - Lucia Inês Macedo-Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Merari F R Ferrari
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of Sao Paulo (USP), Rua do Matāo 106, São Paulo, SP, CEP 05508-030, Brazil.
| |
Collapse
|
24
|
BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci U S A 2017; 114:E2955-E2964. [PMID: 28320970 DOI: 10.1073/pnas.1616363114] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The ability of lysosomes to move within the cytoplasm is important for many cellular functions. This ability is particularly critical in neurons, which comprise vast, highly differentiated domains such as the axon and dendrites. The mechanisms that control lysosome movement in these domains, however, remain poorly understood. Here we show that an ensemble of BORC, Arl8, SKIP, and kinesin-1, previously shown to mediate centrifugal transport of lysosomes in nonneuronal cells, specifically drives lysosome transport into the axon, and not the dendrites, in cultured rat hippocampal neurons. This transport is essential for maintenance of axonal growth-cone dynamics and autophagosome turnover. Our findings illustrate how a general mechanism for lysosome dispersal in nonneuronal cells is adapted to drive polarized transport in neurons, and emphasize the importance of this mechanism for critical axonal processes.
Collapse
|
25
|
Tariq H, Naz S. TFG associated hereditary spastic paraplegia: an addition to the phenotypic spectrum. Neurogenetics 2017; 18:105-109. [DOI: 10.1007/s10048-017-0508-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/14/2017] [Indexed: 01/15/2023]
|
26
|
Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J Cell Sci 2016; 129:4329-4339. [PMID: 27799357 DOI: 10.1242/jcs.196287] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysosomes have been classically considered terminal degradative organelles, but in recent years they have been found to participate in many other cellular processes, including killing of intracellular pathogens, antigen presentation, plasma membrane repair, cell adhesion and migration, tumor invasion and metastasis, apoptotic cell death, metabolic signaling and gene regulation. In addition, lysosome dysfunction has been shown to underlie not only rare lysosome storage disorders but also more common diseases, such as cancer and neurodegeneration. The involvement of lysosomes in most of these processes is now known to depend on the ability of lysosomes to move throughout the cytoplasm. Here, we review recent findings on the mechanisms that mediate the motility and positioning of lysosomes, and the importance of lysosome dynamics for cell physiology and pathology.
Collapse
Affiliation(s)
- Jing Pu
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tal Keren-Kaplan
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Zatz M, Passos-Bueno MR, Vainzof M. Neuromuscular disorders: genes, genetic counseling and therapeutic trials. Genet Mol Biol 2016; 39:339-48. [PMID: 27575431 PMCID: PMC5004840 DOI: 10.1590/1678-4685-gmb-2016-0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Neuromuscular disorders (NMD) are a heterogeneous group of genetic conditions, with autosomal dominant, recessive, or X-linked inheritance. They are characterized by progressive muscle degeneration and weakness. Here, we are presenting our major contributions to the field during the past 30 years. We have mapped and identified several novel genes responsible for NMD. Genotype-phenotype correlations studies enhanced our comprehension on the effect of gene mutations on related proteins and their impact on clinical findings. The search for modifier factors allowed the identification of a novel "protective"; variant which may have important implication on therapeutic developments. Molecular diagnosis was introduced in the 1980s and new technologies have been incorporated since then. Next generation sequencing greatly improved our capacity to identify disease-causing mutations with important benefits for research and prevention through genetic counseling of patients' families. Stem cells researches, from and for patients, have been used as tools to study human genetic diseases mechanisms and for therapies development. The clinical effect of preclinical trials in mice and canine models for muscular dystrophies are under investigation. Finally, the integration of our researches and genetic services with our post-graduation program resulted in a significant output of new geneticists, spreading out this expertise to our large country.
Collapse
Affiliation(s)
- Mayana Zatz
- Human Genome and Research Center (HUG-CELL), Instituto de
Biociências, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Maria Rita Passos-Bueno
- Human Genome and Research Center (HUG-CELL), Instituto de
Biociências, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Mariz Vainzof
- Human Genome and Research Center (HUG-CELL), Instituto de
Biociências, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|