1
|
Anastasaki C, Chatterjee J, Koleske JP, Gao Y, Bozeman SL, Kernan CM, Marco Y Marquez LI, Chen JK, Kelly CE, Blair CJ, Dietzen DJ, Kesterson RA, Gutmann DH. NF1 mutation-driven neuronal hyperexcitability sets a threshold for tumorigenesis and therapeutic targeting of murine optic glioma. Neuro Oncol 2024; 26:1496-1508. [PMID: 38607967 PMCID: PMC11300021 DOI: 10.1093/neuonc/noae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND With the recognition that noncancerous cells function as critical regulators of brain tumor growth, we recently demonstrated that neurons drive low-grade glioma initiation and progression. Using mouse models of neurofibromatosis type 1 (NF1)-associated optic pathway glioma (OPG), we showed that Nf1 mutation induces neuronal hyperexcitability and midkine expression, which activates an immune axis to support tumor growth, such that high-dose lamotrigine treatment reduces Nf1-OPG proliferation. Herein, we execute a series of complementary experiments to address several key knowledge gaps relevant to future clinical translation. METHODS We leverage a collection of Nf1-mutant mice that spontaneously develop OPGs to alter both germline and retinal neuron-specific midkine expression. Nf1-mutant mice harboring several different NF1 patient-derived germline mutations were employed to evaluate neuronal excitability and midkine expression. Two distinct Nf1-OPG preclinical mouse models were used to assess lamotrigine effects on tumor progression and growth in vivo. RESULTS We establish that neuronal midkine is both necessary and sufficient for Nf1-OPG growth, demonstrating an obligate relationship between germline Nf1 mutation, neuronal excitability, midkine production, and Nf1-OPG proliferation. We show anti-epileptic drug (lamotrigine) specificity in suppressing neuronal midkine production. Relevant to clinical translation, lamotrigine prevents Nf1-OPG progression and suppresses the growth of existing tumors for months following drug cessation. Importantly, lamotrigine abrogates tumor growth in two Nf1-OPG strains using pediatric epilepsy clinical dosing. CONCLUSIONS Together, these findings establish midkine and neuronal hyperexcitability as targetable drivers of Nf1-OPG growth and support the use of lamotrigine as a potential chemoprevention or chemotherapy agent for children with NF1-OPG.
Collapse
Affiliation(s)
- Corina Anastasaki
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jit Chatterjee
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua P Koleske
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yunqing Gao
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stephanie L Bozeman
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chloe M Kernan
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lara I Marco Y Marquez
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ji-Kang Chen
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Caitlin E Kelly
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Connor J Blair
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert A Kesterson
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - David H Gutmann
- Departments of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Pan Y, Hysinger JD, Yalçın B, Lennon JJ, Byun YG, Raghavan P, Schindler NF, Anastasaki C, Chatterjee J, Ni L, Xu H, Malacon K, Jahan SM, Ivec AE, Aghoghovwia BE, Mount CW, Nagaraja S, Scheaffer S, Attardi LD, Gutmann DH, Monje M. Nf1 mutation disrupts activity-dependent oligodendroglial plasticity and motor learning in mice. Nat Neurosci 2024; 27:1555-1564. [PMID: 38816530 PMCID: PMC11303248 DOI: 10.1038/s41593-024-01654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/18/2024] [Indexed: 06/01/2024]
Abstract
Neurogenetic disorders, such as neurofibromatosis type 1 (NF1), can cause cognitive and motor impairments, traditionally attributed to intrinsic neuronal defects such as disruption of synaptic function. Activity-regulated oligodendroglial plasticity also contributes to cognitive and motor functions by tuning neural circuit dynamics. However, the relevance of oligodendroglial plasticity to neurological dysfunction in NF1 is unclear. Here we explore the contribution of oligodendrocyte progenitor cells (OPCs) to pathological features of the NF1 syndrome in mice. Both male and female littermates (4-24 weeks of age) were used equally in this study. We demonstrate that mice with global or OPC-specific Nf1 heterozygosity exhibit defects in activity-dependent oligodendrogenesis and harbor focal OPC hyperdensities with disrupted homeostatic OPC territorial boundaries. These OPC hyperdensities develop in a cell-intrinsic Nf1 mutation-specific manner due to differential PI3K/AKT activation. OPC-specific Nf1 loss impairs oligodendroglial differentiation and abrogates the normal oligodendroglial response to neuronal activity, leading to impaired motor learning performance. Collectively, these findings show that Nf1 mutation delays oligodendroglial development and disrupts activity-dependent OPC function essential for normal motor learning in mice.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jared D Hysinger
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - James J Lennon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Preethi Raghavan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Nicole F Schindler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin M Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexis E Ivec
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Benjamin E Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher W Mount
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Surya Nagaraja
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Suzanne Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Chen Y, Yu J, Ge S, Jia R, Song X, Wang Y, Fan X. An Overview of Optic Pathway Glioma With Neurofibromatosis Type 1: Pathogenesis, Risk Factors, and Therapeutic Strategies. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 38837168 PMCID: PMC11160950 DOI: 10.1167/iovs.65.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
Optic pathway gliomas (OPGs) are most predominant pilocytic astrocytomas, which are typically diagnosed within the first decade of life. The majority of affected children with OPGs also present with neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome. OPGs in individuals with NF1 primarily affect the optic pathway and lead to visual disturbance. However, it is challenging to assess risk in asymptomatic patients without valid biomarkers. On the other hand, for symptomatic patients, there is still no effective treatment to prevent or recover vision loss. Therefore, this review summarizes current knowledge regarding the pathogenesis of NF1-associated OPGs (NF1-OPGs) from preclinical studies to seek potential prognostic markers and therapeutic targets. First, the loss of the NF1 gene activates 3 distinct Ras effector pathways, including the PI3K/AKT/mTOR pathway, the MEK/ERK pathway, and the cAMP pathway, which mediate glioma tumorigenesis. Meanwhile, non-neoplastic cells from the tumor microenvironment (microglia, T cells, neurons, etc.) also contribute to gliomagenesis via various soluble factors. Subsequently, we investigated potential genetic risk factors, molecularly targeted therapies, and neuroprotective strategies for tumor prevention and vision recovery. Last, potential directions and promising preclinical models of NF1-OPGs are presented for further research. On the whole, NF1-OPGs develop as a result of the interaction between glioma cells and the tumor microenvironment. Developing effective treatments require a better understanding of tumor molecular characteristics, as well as multistage interventions targeting both neoplastic cells and non-neoplastic cells.
Collapse
Affiliation(s)
- Ying Chen
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Jie Yu
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Yefei Wang
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
4
|
Miyagishima KJ, Qiao F, Stasheff SF, Nadal-Nicolás FM. Visual Deficits and Diagnostic and Therapeutic Strategies for Neurofibromatosis Type 1: Bridging Science and Patient-Centered Care. Vision (Basel) 2024; 8:31. [PMID: 38804352 PMCID: PMC11130890 DOI: 10.3390/vision8020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an inherited autosomal dominant disorder primarily affecting children and adolescents characterized by multisystemic clinical manifestations. Mutations in neurofibromin, the protein encoded by the Nf1 tumor suppressor gene, result in dysregulation of the RAS/MAPK pathway leading to uncontrolled cell growth and migration. Neurofibromin is highly expressed in several cell lineages including melanocytes, glial cells, neurons, and Schwann cells. Individuals with NF1 possess a genetic predisposition to central nervous system neoplasms, particularly gliomas affecting the visual pathway, known as optic pathway gliomas (OPGs). While OPGs are typically asymptomatic and benign, they can induce visual impairment in some patients. This review provides insight into the spectrum and visual outcomes of NF1, current diagnostic techniques and therapeutic interventions, and explores the influence of NF1-OPGS on visual abnormalities. We focus on recent advancements in preclinical animal models to elucidate the underlying mechanisms of NF1 pathology and therapies targeting NF1-OPGs. Overall, our review highlights the involvement of retinal ganglion cell dysfunction and degeneration in NF1 disease, and the need for further research to transform scientific laboratory discoveries to improved patient outcomes.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Fengyu Qiao
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| | - Steven F. Stasheff
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
- Center for Neuroscience and Behavioral Medicine, Gilbert Neurofibromatosis Institute, Children’s National Health System, Washington, DC 20010, USA
- Neurology Department, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Francisco M. Nadal-Nicolás
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.J.M.); (F.Q.); (S.F.S.)
| |
Collapse
|
5
|
Tang Y, Chatterjee J, Wagoner N, Bozeman S, Gutmann DH. Estrogen-induced glial IL-1β mediates extrinsic retinal ganglion cell vulnerability in murine Nf1 optic glioma. Ann Clin Transl Neurol 2024; 11:812-818. [PMID: 38229454 PMCID: PMC10963305 DOI: 10.1002/acn3.51995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
Optic pathway gliomas (OPGs) arising in children with neurofibromatosis type 1 (NF1) can cause retinal ganglion cell (RGC) dysfunction and vision loss, which occurs more frequently in girls. While our previous studies demonstrated that estrogen was partly responsible for this sexually dimorphic visual impairment, herein we elucidate the underlying mechanism. In contrast to their male counterparts, female Nf1OPG mice have increased expression of glial interleukin-1β (IL-1β), which is neurotoxic to RGCs in vitro. Importantly, both IL-1β neutralization and leuprolide-mediated estrogen suppression decrease IL-1β expression and ameliorate RGC dysfunction, providing preclinical proof-of-concept evidence supporting novel neuroprotective strategies for NF1-OPG-induced vision loss.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110USA
- Department of OphthalmologyWashington University School of MedicineSt. LouisMissouri63110USA
| | - Jit Chatterjee
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110USA
| | - Ngan Wagoner
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110USA
| | - Stephanie Bozeman
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110USA
| | - David H. Gutmann
- Department of NeurologyWashington University School of MedicineSt. LouisMissouri63110USA
| |
Collapse
|
6
|
Staedtke V, Anstett K, Bedwell D, Giovannini M, Keeling K, Kesterson R, Kim Y, Korf B, Leier A, McManus ML, Sarnoff H, Vitte J, Walker JA, Plotkin SR, Wallis D. Gene-targeted therapy for neurofibromatosis and schwannomatosis: The path to clinical trials. Clin Trials 2024; 21:51-66. [PMID: 37937606 DOI: 10.1177/17407745231207970] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Numerous successful gene-targeted therapies are arising for the treatment of a variety of rare diseases. At the same time, current treatment options for neurofibromatosis 1 and schwannomatosis are limited and do not directly address loss of gene/protein function. In addition, treatments have mostly focused on symptomatic tumors, but have failed to address multisystem involvement in these conditions. Gene-targeted therapies hold promise to address these limitations. However, despite intense interest over decades, multiple preclinical and clinical issues need to be resolved before they become a reality. The optimal approaches to gene-, mRNA-, or protein restoration and to delivery to the appropriate cell types remain elusive. Preclinical models that recapitulate manifestations of neurofibromatosis 1 and schwannomatosis need to be refined. The development of validated assays for measuring neurofibromin and merlin activity in animal and human tissues will be critical for early-stage trials, as will the selection of appropriate patients, based on their individual genotypes and risk/benefit balance. Once the safety of gene-targeted therapy for symptomatic tumors has been established, the possibility of addressing a wide range of symptoms, including non-tumor manifestations, should be explored. As preclinical efforts are underway, it will be essential to educate both clinicians and those affected by neurofibromatosis 1/schwannomatosis about the risks and benefits of gene-targeted therapy for these conditions.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Kara Anstett
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - David Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - Kim Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert Kesterson
- Department of Cancer Precision Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - YooRi Kim
- Gilbert Family Foundation, Detroit, MI, USA
| | - Bruce Korf
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Yvone GM, Breunig JJ. Pediatric low-grade glioma models: advances and ongoing challenges. Front Oncol 2024; 13:1346949. [PMID: 38318325 PMCID: PMC10839015 DOI: 10.3389/fonc.2023.1346949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
Collapse
Affiliation(s)
- Griselda Metta Yvone
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
9
|
Kuhrt LD, Motta E, Elmadany N, Weidling H, Fritsche-Guenther R, Efe IE, Cobb O, Chatterjee J, Boggs LG, Schnauß M, Diecke S, Semtner M, Anastasaki C, Gutmann DH, Kettenmann H. Neurofibromin 1 mutations impair the function of human induced pluripotent stem cell-derived microglia. Dis Model Mech 2023; 16:dmm049861. [PMID: 37990867 PMCID: PMC10740172 DOI: 10.1242/dmm.049861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by germline mutations in the neurofibromin 1 (NF1) gene. Children with NF1 are prone to the development of multiple nervous system abnormalities, including autism and brain tumors, which could reflect the effect of NF1 mutation on microglia function. Using heterozygous Nf1-mutant mice, we previously demonstrated that impaired purinergic signaling underlies deficits in microglia process extension and phagocytosis in situ. To determine whether these abnormalities are also observed in human microglia in the setting of NF1, we leveraged an engineered isogenic series of human induced pluripotent stem cells to generate human microglia-like (hiMGL) cells heterozygous for three different NF1 gene mutations found in patients with NF1. Whereas all NF1-mutant and isogenic control hiMGL cells expressed classical microglia markers and exhibited similar transcriptomes and cytokine/chemokine release profiles, only NF1-mutant hiMGL cells had defects in P2X receptor activation, phagocytosis and motility. Taken together, these findings indicate that heterozygous NF1 mutations impair a subset of the functional properties of human microglia, which could contribute to the neurological abnormalities seen in children with NF1.
Collapse
Affiliation(s)
- Leonard D. Kuhrt
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Motta
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Nirmeen Elmadany
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim (MCTN), University of Heidelberg, 68167 Mannheim, Germany
| | - Hannah Weidling
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH Metabolomics Platform, 13353 Berlin, Germany
| | - Ibrahim E. Efe
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucy G. Boggs
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Schnauß
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Klinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 518000
| |
Collapse
|
10
|
Milde T, Fangusaro J, Fisher MJ, Hawkins C, Rodriguez FJ, Tabori U, Witt O, Zhu Y, Gutmann DH. Optimizing preclinical pediatric low-grade glioma models for meaningful clinical translation. Neuro Oncol 2023; 25:1920-1931. [PMID: 37738646 PMCID: PMC10628935 DOI: 10.1093/neuonc/noad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.
Collapse
Affiliation(s)
- Till Milde
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Jason Fangusaro
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, Toronto, Canada
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Uri Tabori
- Department of Medical Biophysics, Institute of Medical Science and Paediatrics, University of Toronto, Toronto, Canada
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- KiTZ Clinical Trial Unit (ZIPO), Department of Pediatric Hematology, Oncology, Immunology and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Irshad K, Huang YK, Rodriguez P, Lo J, Aghoghovwia BE, Pan Y, Chang KC. The Neuroimmune Regulation and Potential Therapeutic Strategies of Optic Pathway Glioma. Brain Sci 2023; 13:1424. [PMID: 37891793 PMCID: PMC10605541 DOI: 10.3390/brainsci13101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yu-Kai Huang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Paul Rodriguez
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Jung Lo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Benjamin E. Aghoghovwia
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
| | - Yuan Pan
- Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.I.); (B.E.A.)
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kun-Che Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
12
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
13
|
Tang Y, Gutmann DH. Neurofibromatosis Type 1-Associated Optic Pathway Gliomas: Current Challenges and Future Prospects. Cancer Manag Res 2023; 15:667-681. [PMID: 37465080 PMCID: PMC10351533 DOI: 10.2147/cmar.s362678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 07/20/2023] Open
Abstract
Optic pathway glioma (OPG) occurs in as many as one-fifth of individuals with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Generally considered low-grade and slow growing, many children with NF1-OPGs remain asymptomatic. However, due to their location within the optic pathway, ~20-30% of those harboring NF1-OPGs will experience symptoms, including progressive vision loss, proptosis, diplopia, and precocious puberty. While treatment with conventional chemotherapy is largely effective at attenuating tumor growth, it is not clear whether there is much long-term recovery of visual function. Additionally, because these tumors predominantly affect young children, there are unique challenges to NF1-OPG diagnosis, monitoring, and longitudinal management. Over the past two decades, the employment of authenticated genetically engineered Nf1-OPG mouse models have provided key insights into the function of the NF1 protein, neurofibromin, as well as the molecular and cellular pathways that contribute to optic gliomagenesis. Findings from these studies have resulted in the identification of new molecular targets whose inhibition blocks murine Nf1-OPG growth in preclinical studies. Some of these promising compounds have now entered into early clinical trials. Future research focused on defining the determinants that underlie optic glioma initiation, expansion, and tumor-induced optic nerve injury will pave the way to personalized risk assessment strategies, improved tumor monitoring, and optimized treatment plans for children with NF1-OPG.
Collapse
Affiliation(s)
- Yunshuo Tang
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Spolia A, Angural A, Sharma V, Razdan S, Dhar MK, Mahajan A, Verma V, Pandita KK, Sharma S, Rai E. Cost-effective Whole Exome Sequencing discovers pathogenic variant causing Neurofibromatosis type 1 in a family from Jammu and Kashmir, India. Sci Rep 2023; 13:7852. [PMID: 37188759 DOI: 10.1038/s41598-023-34941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a multisystemic hereditary disorder associated with an increased risk of benign and malignant tumor formation predominantly on the skin, bone, and peripheral nervous system. It has been reported that out of all the NF1 cases, more than 95% cases develop the disease due to heterozygous loss-of-function variants in Neurofibromin (NF1) gene. However, identification of NF1 causative variants by presently recommended method of gene-targeted Sanger sequencing is challenging and cost-intensive due to the large size of the NF1gene with 60 exons spanning about 350 kb. Further, conducting the genetic studies is difficult in low resource regions and among families with the limited financial capabilities, restricting them from availing diagnostic as well as proper disease management measures. Here, we studied a three-generation family from Jammu and Kashmir state in India, with multiple affected family members showing clinical indications of NF1. We combinedly used two applications, Whole Exome Sequencing (WES) and Sanger sequencing, for this study and discovered a nonsense variant NM_000267.3:c.2041C>T (NP_000258.1:p.Arg681Ter*) in exon 18 of NF1 gene in a cost effective manner. In silico analyses further substantiated the pathogenicity of this novel variant. The study also emphasized on the role of Next Generation Sequencing (NGS) as a cost-effective method for the discovery of pathogenic variants in disorders with known phenotypes found in large sized candidate genes. The current study is the first study based on the genetic characterization of NF1 from Jammu and Kashmir-India, highlighting the importance of the described methodology adopted for the identification and understanding of the disease in low resource region. The early diagnosis of genetic disorders would open the door to appropriate genetic counseling, reducing the disease burden in the affected families and the general population at large.
Collapse
Affiliation(s)
- Akshi Spolia
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
| | - Arshia Angural
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
- Department of Medical Genetics, JSS Medical College and JSS Hospital, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
- NMC Genetics India Pvt Ltd, Gurugram, 122002, Haryana, India
| | - Sushil Razdan
- Bhagwati Nagar, House No.:7, 180016, Jammu and Kashmir, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Ankit Mahajan
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Vijeshwar Verma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India
| | - Kamal K Pandita
- Health Clinic, Swarn Vihar, Muthi, 181205, Jammu and Kashmir, India
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India.
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, 181143, India.
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Kakryal, Jammu and Kashmir, 182320, India.
| |
Collapse
|
15
|
Destabilizing NF1 variants act in a dominant negative manner through neurofibromin dimerization. Proc Natl Acad Sci U S A 2023; 120:e2208960120. [PMID: 36689660 PMCID: PMC9945959 DOI: 10.1073/pnas.2208960120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The majority of pathogenic mutations in the neurofibromatosis type I (NF1) gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.
Collapse
|
16
|
Functional restoration of mouse Nf1 nonsense alleles in differentiated cultured neurons. J Hum Genet 2022; 67:661-668. [PMID: 35945271 DOI: 10.1038/s10038-022-01072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1), one of the most common autosomal dominant genetic disorders, is caused by mutations in the NF1 gene. NF1 patients have a wide variety of manifestations with a subset at high risk for the development of tumors in the central nervous system (CNS). Nonsense mutations that result in the synthesis of truncated NF1 protein (neurofibromin) are strongly associated with CNS tumors. Therapeutic nonsense suppression with small molecule drugs is a potentially powerful approach to restore the expression of genes harboring nonsense mutations. Ataluren is one such drug that has been shown to restore full-length functional protein in several models of nonsense mutation diseases, as well as in patients with nonsense mutation Duchenne muscular dystrophy. To test ataluren's potential applicability to NF1 nonsense mutations associated with CNS tumors, we generated a homozygous Nf1R683X/R683X-3X-FLAG mouse embryonic stem (mES) cell line which recapitulates an NF1 patient nonsense mutation (c.2041 C > T; p.Arg681X). We differentiated Nf1R683X/R683X-3X-FLAG mES cells into cortical neurons in vitro, treated the cells with ataluren, and demonstrated that ataluren can promote readthrough of the nonsense mutation at codon 683 of Nf1 mRNA in neural cells. The resulting full-length protein is able to reduce the cellular level of hyperactive phosphorylated ERK (pERK), a RAS effector normally suppressed by the NF1 protein.
Collapse
|
17
|
Leier A, Moore M, Liu H, Daniel M, Hyde AM, Messiaen L, Korf BR, Selvakumaran J, Ciszewski L, Lambert L, Foote J, Wallace MR, Kesterson RA, Dickson G, Popplewell L, Wallis D. Targeted exon skipping of NF1 exon 17 as a therapeutic for neurofibromatosis type I. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:261-278. [PMID: 35433111 PMCID: PMC8983316 DOI: 10.1016/j.omtn.2022.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
Abstract
We investigated the feasibility of utilizing an exon-skipping approach as a genotype-dependent therapeutic for neurofibromatosis type 1 (NF1) by determining which NF1 exons might be skipped while maintaining neurofibromin protein expression and GTPase activating protein (GAP)-related domain (GRD) function. Initial in silico analysis predicted exons that can be skipped with minimal loss of neurofibromin function, which was confirmed by in vitro assessments utilizing an Nf1 cDNA-based functional screening system. Skipping of exons 17 or 52 fit our criteria, as minimal effects on protein expression and GRD activity were noted. Antisense phosphorodiamidate morpholino oligomers (PMOs) were utilized to skip exon 17 in human cell lines with patient-specific pathogenic variants in exon 17, c.1885G>A, and c.1929delG. PMOs restored functional neurofibromin expression. To determine the in vivo significance of exon 17 skipping, we generated a homozygous deletion of exon 17 in a novel mouse model. Mice were viable and exhibited a normal lifespan. Initial studies did not reveal the presence of tumor development; however, altered nesting behavior and systemic lymphoid hyperplasia was noted in peripheral lymphoid organs. Alterations in T and B cell frequencies in the thymus and spleen were identified. Hence, exon skipping should be further investigated as a therapeutic approach for NF1 patients with pathogenic variants in exon 17, as homozygous deletion of exon 17 is consistent with at least partial function of neurofibromin.
Collapse
Affiliation(s)
- André Leier
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marc Moore
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Hui Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Daniel
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexis M. Hyde
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jamuna Selvakumaran
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Lukasz Ciszewski
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Laura Lambert
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Margaret R. Wallace
- Department of Molecular Genetics and Microbiology, and UF Health Cancer Center, University of Florida, Gainesville, FL 32611, USA
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - George Dickson
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Linda Popplewell
- Centre of Biomedical Science, Department of Biological Sciences, Royal Holloway - University of London, Egham, Surrey TW20 0EX, UK
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Anastasaki C, Mo J, Chen JK, Chatterjee J, Pan Y, Scheaffer SM, Cobb O, Monje M, Le LQ, Gutmann DH. Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat Commun 2022; 13:2785. [PMID: 35589737 PMCID: PMC9120229 DOI: 10.1038/s41467-022-30466-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal activity is emerging as a driver of central and peripheral nervous system cancers. Here, we examined neuronal physiology in mouse models of the tumor predisposition syndrome Neurofibromatosis-1 (NF1), with different propensities to develop nervous system cancers. We show that central and peripheral nervous system neurons from mice with tumor-causing Nf1 gene mutations exhibit hyperexcitability and increased secretion of activity-dependent tumor-promoting paracrine factors. We discovered a neurofibroma mitogen (COL1A2) produced by peripheral neurons in an activity-regulated manner, which increases NF1-deficient Schwann cell proliferation, establishing that neurofibromas are regulated by neuronal activity. In contrast, mice with the Arg1809Cys Nf1 mutation, found in NF1 patients lacking neurofibromas or optic gliomas, do not exhibit neuronal hyperexcitability or develop these NF1-associated tumors. The hyperexcitability of tumor-prone Nf1-mutant neurons results from reduced NF1-regulated hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function, such that neuronal excitability, activity-regulated paracrine factor production, and tumor progression are attenuated by HCN channel activation. Collectively, these findings reveal that NF1 mutations act at the level of neurons to modify tumor predisposition by increasing neuronal excitability and activity-regulated paracrine factor production. Neuronal activity is emerging as a driver of nervous system tumors. Here, the authors show in mouse models of Neurofibromatosis-1 (NF1) that Nf1 mutations differentially drive both central and peripheral nervous system tumor growth in mice through reduced hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Juan Mo
- Department of Dermatology, University of Texas, Southwestern, Dallas, TX, 75390, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas, Southwestern, Dallas, TX, 75390, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
De Andrade Costa A, Chatterjee J, Cobb O, Sanapala S, Scheaffer S, Guo X, Dahiya S, Gutmann DH. RNA sequence analysis reveals ITGAL/CD11A as a stromal regulator of murine low-grade glioma growth. Neuro Oncol 2022; 24:14-26. [PMID: 34043012 PMCID: PMC8730775 DOI: 10.1093/neuonc/noab130] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Emerging insights from numerous laboratories have revealed important roles for nonneoplastic cells in the development and progression of brain tumors. One of these nonneoplastic cellular constituents, glioma-associated microglia (GAM), represents a unique population of brain monocytes within the tumor microenvironment that have been reported to both promote and inhibit glioma proliferation. To elucidate the role of GAM in the setting of low-grade glioma (LGG), we leveraged RNA sequencing meta-analysis, genetically engineered mouse strains, and human biospecimens. METHODS Publicly available disease-associated microglia (DAM) RNA-seq datasets were used, followed by immunohistochemistry and RNAScope validation. CD11a-deficient mouse microglia were used for in vitro functional studies, while LGG growth in mice was assessed using anti-CD11a neutralizing antibody treatment of Neurofibromatosis type 1 (Nf1) optic glioma mice in vivo. RESULTS We identified Itgal/CD11a enrichment in GAM relative to other DAM populations, which was confirmed in several independently generated murine models of Nf1 optic glioma. Moreover, ITGAL/CD11A expression was similarly increased in human LGG (pilocytic astrocytoma) specimens from several different datasets, specifically in microglia from these tumors. Using CD11a-knockout mice, CD11a expression was shown to be critical for murine microglia CX3CL1 receptor (Cx3cr1) expression and CX3CL1-directed motility, as well as glioma mitogen (Ccl5) production. Consistent with an instructive role for CD11a+ microglia in stromal control of LGG growth, antibody-mediated CD11a inhibition reduced mouse Nf1 LGG growth in vivo. CONCLUSIONS Collectively, these findings establish ITGAL/CD11A as a critical microglia regulator of LGG biology relevant to future stroma-targeted brain tumor treatment strategies.
Collapse
Affiliation(s)
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpa Sanapala
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Suzanne Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofan Guo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
20
|
de Andrade Costa A, Chatterjee J, Cobb O, Cordell E, Chao A, Schaeffer S, Goldstein A, Dahiya S, Gutmann DH. Immune deconvolution and temporal mapping identifies stromal targets and developmental intervals for abrogating murine low-grade optic glioma formation. Neurooncol Adv 2022; 4:vdab194. [PMID: 35187488 PMCID: PMC8852255 DOI: 10.1093/noajnl/vdab194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brain tumor formation and progression are dictated by cooperative interactions between neoplastic and non-neoplastic cells. This stromal dependence is nicely illustrated by tumors arising in the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome, where children develop low-grade optic pathway gliomas (OPGs). Using several authenticated Nf1-OPG murine models, we previously demonstrated that murine Nf1-OPG growth is regulated by T cell function and microglia Ccl5 production, such that their inhibition reduces tumor proliferation in vivo. While these interactions are critical for established Nf1-OPG tumor growth, their importance in tumor formation has not been explored. METHODS A combination of bulk and single-cell RNA mouse optic nerve sequencing, immunohistochemistry, T cell assays, and pharmacologic and antibody-mediated inhibition methods were used in these experiments. RESULTS We show that T cells and microglia are the main non-neoplastic immune cell populations in both murine and human LGGs. Moreover, we demonstrate that CD8+ T cells, the predominant LGG-infiltrating lymphocyte population, are selectively recruited through increased Ccl2 receptor (Ccr4) expression in CD8+, but not CD4+, T cells, in a NF1/RAS-dependent manner. Finally, we identify the times during gliomagenesis when microglia Ccl5 production (3-6 weeks of age) and Ccl2-mediated T cell infiltration (7-10 weeks of age) occur, such that temporally-restricted Ccl2 or Ccl5 inhibition abrogates tumor formation >3.5 months following the cessation of treatment. CONCLUSIONS Collectively, these findings provide proof-of-concept demonstrations that targeting stromal support during early gliomagenesis durably blocks murine LGG formation.
Collapse
Affiliation(s)
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth Cordell
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astoria Chao
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Suzanne Schaeffer
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Goldstein
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Florent C, Beylerian M, Mairot K, Dambricourt L, André N, David T, Girard N, Audic F, Denis D. [Prognostic factors of neurofibromatosis type 1-associated optic pathway gliomas in children]. J Fr Ophtalmol 2021; 45:173-184. [PMID: 34972579 DOI: 10.1016/j.jfo.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Optic pathway glioma (OPG) is a classic complication of neurofibromatosis type 1 (NF1) and can impair visual function in children with this condition. The objective of this study is to describe clinical, paraclinical and prognostic characteristics of OPG associated with NF1. MATERIALS AND METHODS In this retrospective observational study of children followed for OPG associated with NF1 in a University Hospital, we analyzed the ophthalmological examination, brain and orbital imaging, management and the presence of associated endocrinopathy. RESULTS We examined 114 children with NF1, of which 26 (22.81%) presented with OPG. Mean ages at diagnosis of NF1 and OPG were 3.83 years and 6.23 years, respectively. Mean visual acuity was 20/24.4 for the worse eye and 20/23.1 for the better eye. The RNFL (retinal nerve fiber layer) was thinner in subjects than in age-matched controls (p <0.0001). Retrochiasmal location of the OPG (DodgeC) was associated with lower binocular visual acuity than other locations and <20/32 (p=0.028); 28.03% of OPG (5 girls and 1 boy) were treated with chemotherapy, and the others were monitored; 19.23% had an associated endocrinopathy. CONCLUSIONS OPG complicates 22.81% of NF1 cases in our series. Our study shows that retrochiasmal location of the glioma and female sex are poor prognostic factors. It also highlights the important role of OCT, since a decrease in RNFL is statistically associated with the presence of an OPG.
Collapse
Affiliation(s)
- C Florent
- Services Ophtalmologie du Pr-Denis, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France; Service Pédiatrie et Oncologie pédiatrique du Pr-Chambost, Hôpital Timone, 264 rue Saint Pierre, 13005 Marseille, France.
| | - M Beylerian
- Services Ophtalmologie du Pr-Denis, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France
| | - K Mairot
- Services Ophtalmologie du Pr-Denis, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France
| | - L Dambricourt
- Services Ophtalmologie du Pr-Denis, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France
| | - N André
- Service Pédiatrie et Oncologie pédiatrique du Pr-Chambost, Hôpital Timone, 264 rue Saint Pierre, 13005 Marseille, France
| | - T David
- Services Ophtalmologie du Pr-Denis, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France
| | - N Girard
- Service Neuroradiologie du Pr Girard, Hôpital Timone, 264 rue Saint Pierre, 13005 Marseille, France
| | - F Audic
- Service Pédiatrie spécialisée du Pr Chabrol, Hôpital Timone, 264 rue Saint Pierre, 13005 Marseille, France
| | - D Denis
- Services Ophtalmologie du Pr-Denis, Hôpital Nord, Chemin des Bourrely, 13015 Marseille, France
| |
Collapse
|
22
|
Awad EK, Moore M, Liu H, Ciszewski L, Lambert L, Korf BR, Popplewell L, Kesterson RA, Wallis D. Restoration of Normal NF1 Function with Antisense Morpholino Treatment of Recurrent Pathogenic Patient-Specific Variant c.1466A>G; p.Y489C. J Pers Med 2021; 11:jpm11121320. [PMID: 34945792 PMCID: PMC8705852 DOI: 10.3390/jpm11121320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with almost 3000 different disease-causing variants within the NF1 gene identified. Up to 44% of these variants cause splicing errors to occur within pre-mRNA. A recurrent variant in exon 13, c.1466A>G; p.Y489C (Y489C) results in the creation of an intragenic cryptic splice site, aberrant splicing, a 62 base pair deletion from the mRNA, and subsequent frameshift. We investigated the ability of phosphorodiamidate morpholino oligomers (PMOs) to mask this variant on the RNA level, thus restoring normal splicing. To model this variant, we have developed a human iPS cell line homozygous for the variant using CRISPR/Cas9. PMOs were designed to be 25 base pairs long, and to cover the mutation site so it could not be read by splicing machinery. Results from our in vitro testing showed restoration of normal splicing in the RNA and restoration of full length neurofibromin protein. In addition, we observe the restoration of neurofibromin functionality through GTP-Ras and pERK/ERK testing. The results from this study demonstrate the ability of a PMO to correct splicing errors in NF1 variants at the RNA level, which could open the door for splicing corrections for other variants in this and a variety of diseases.
Collapse
Affiliation(s)
- Elias K. Awad
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Marc Moore
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK; (M.M.); (L.C.); (L.P.)
| | - Hui Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Lukasz Ciszewski
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK; (M.M.); (L.C.); (L.P.)
| | - Laura Lambert
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Linda Popplewell
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK; (M.M.); (L.C.); (L.P.)
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.K.A.); (H.L.); (L.L.); (B.R.K.); (R.A.K.)
- Correspondence: ; Tel.: +1-205-934-2794; Fax: +1-205-975-4418
| |
Collapse
|
23
|
Optic pathway glioma and the sex association in neurofibromatosis type 1: a single-center study. Orphanet J Rare Dis 2021; 16:489. [PMID: 34809690 PMCID: PMC8607578 DOI: 10.1186/s13023-021-02121-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/06/2021] [Indexed: 01/22/2023] Open
Abstract
Background Low-grade optic pathway glioma (OPG) develops in 15–20% of children with neurofibromatosis type 1 (NF1). OPGs are symptomatic in 30–50% and one-third of these require treatment. A few studies have suggested female sex as a risk factor for visual impairment associated with NF1-OPG. This descriptive study investigated the correlation between NF1-OPG growth, sex and visual impairment. Method We based our cross-sectional study on a systematic, retrospective data collection in a NF1 cohort of children and adolescents below 21 years of age followed at Center for Rare Diseases, Aarhus University Hospital, Denmark. For each patient with OPG a medical chart review was performed including demographics, ophthalmological examinations and magnetic resonance imaging (MRI) of OPG. Results Of 176 patients with NF1 (85 females, 91 males), we identified 21 patients with OPG (11.9%) with a preponderance of females, p = 0.184. Eight females (62%) and one male (13%) had visual impairment at the last ophthalmological evaluation. Five out of 21 children with OPG (24%) underwent diagnostic MRI because of clinical findings at the ophthalmological screening. Nine children (43%) had symptoms suggestive of OPG and seven (33%) experienced no OPG-related symptoms before the diagnostic MRI. Of eight children diagnosed with OPG ≤ two years of age, one had visual impairment. Of 13 children diagnosed > two years of age, eight had visual impairment; in each group, four of the children were treated with chemotherapy. The study suggested no correlation between NF1-OPG growth and sex. Conclusion Our data suggest sex as a risk factor for visual impairment, while an OPG diagnose ≤ two years of age was a protective factor for visual impairment. Females with NF1-OPG had a higher prevalence of visual impairment outcome compared to males. Interestingly, our data also suggest a better response to treatment in children with OPG diagnosed ≤ two years of age compared to older children. The findings in our study suggest sex as a potential prognostic factor for visual impairment.
Collapse
|
24
|
Wang W, Wei CJ, Cui XW, Li YH, Gu YH, Gu B, Li QF, Wang ZC. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front Neurol 2021; 12:704639. [PMID: 34566848 PMCID: PMC8455870 DOI: 10.3389/fneur.2021.704639] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disorder that directly affects more than 1 in 3,000 individuals worldwide. It results from mutations of the NF1 gene and shows almost complete penetrance. NF1 patients show high phenotypic variabilities, including cafe-au-lait macules, freckling, or other neoplastic or non-neoplastic features. Understanding the underlying mechanisms of the diversities of clinical symptoms might contribute to the development of personalized healthcare for NF1 patients. Currently, studies have shown that the different types of mutations in the NF1 gene might correlate with this phenomenon. In addition, genetic modifiers are responsible for the different clinical features. In this review, we summarize different genetic mutations of the NF1 gene and related genetic modifiers. More importantly, we focus on the genotype–phenotype correlation. This review suggests a novel aspect to explain the underlying mechanisms of phenotypic heterogeneity of NF1 and provides suggestions for possible novel therapeutic targets to prevent or delay the onset and development of different manifestations of NF1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Coleman DM, Wang Y, Yang ML, Hunker KL, Birt I, Bergin IL, Li JZ, Stanley JC, Ganesh SK. Molecular genetic evaluation of Pediatric Renovascular hypertension due to renal artery stenosis and abdominal aortic Coarctation in Neurofibromatosis type 1. Hum Mol Genet 2021; 31:334-346. [PMID: 34476477 DOI: 10.1093/hmg/ddab241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
The etiology of renal artery stenosis (RAS) and abdominal aortic coarctation (AAC) causing the midaortic syndrome (MAS), often resulting in renovascular hypertension (RVH), remains ill-defined. Neurofibromatosis type 1 (NF-1) is frequently observed in children with RVH. Consecutive pediatric patients (N = 102) presenting with RVH secondary to RAS with and without concurrent AAC were prospectively enrolled in a clinical data base, and blood, saliva, and operative tissue when available, were collected. Among the 102 children were 13 having a concurrent clinical diagnosis of NF-1 (12.5%). Whole exome sequencing was performed for germline variant detection and RNASeq analysis of NF1, MAPK pathway genes, and MCP1 levels were undertaken in five NF-1 stenotic renal arteries, as well as control renal and mesenteric arteries from children with no known vasculopathy or NF-1. In 11 unrelated children with sequencing data, 11 NF1 genetic variants were identified, of which 10 had not been reported in gnomAD. Histologic analysis of NF-1 RAS specimens consistently revealed intimal thickening, disruption of the internal elastic lamina, and medial thinning. Analysis of transcript expression in arterial lesions documented an approximately 5-fold reduction in NF1 expression, confirming heterozygosity, MAPK pathway activation, and increased MCP1 expression. In summary, NF-1 related RVH in children is rare but often severe and progressive and as such, important to recognize. It is associated with histologic and molecular features consistent with an aggressive adverse vascular remodeling process. Further research is necessary to define the mechanisms underlying these findings.
Collapse
Affiliation(s)
- Dawn M Coleman
- Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yu Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristina L Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Isabelle Birt
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James C Stanley
- Vascular Surgery Section, Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Sun D, Xie XP, Zhang X, Wang Z, Sait SF, Iyer SV, Chen YJ, Brown R, Laks DR, Chipman ME, Shern JF, Parada LF. Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell 2021; 28:1397-1410.e4. [PMID: 34010628 PMCID: PMC8349880 DOI: 10.1016/j.stem.2021.04.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
NF1-associated malignant peripheral nerve sheath tumors (MPNSTs) are the major cause of mortality in neurofibromatosis. MPNSTs arise from benign peripheral nerve plexiform neurofibromas that originate in the embryonic neural crest cell lineage. Using reporter transgenes that label early neural crest lineage cells in multiple NF1 MPNST mouse models, we discover and characterize a rare MPNST cell population with stem-cell-like properties, including quiescence, that is essential for tumor initiation and relapse. Following isolation of these cells, we derive a cancer-stem-cell-specific gene expression signature that includes consensus embryonic neural crest genes and identify Nestin as a marker for the MPNST cell of origin. Combined targeting of cancer stem cells along with antimitotic chemotherapy yields effective tumor inhibition and prolongs survival. Enrichment of the cancer stem cell signature in cognate human tumors supports the generality and relevance of cancer stem cells to MPNST therapy development.
Collapse
Affiliation(s)
- Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Xuanhua P Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Zilai Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sameer Farouk Sait
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Swathi V Iyer
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu-Jung Chen
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rebecca Brown
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dan R Laks
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mollie E Chipman
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
27
|
Brossier NM, Thondapu S, Cobb OM, Dahiya S, Gutmann DH. Temporal, spatial, and genetic constraints contribute to the patterning and penetrance of murine neurofibromatosis-1 optic glioma. Neuro Oncol 2021; 23:625-637. [PMID: 33080011 DOI: 10.1093/neuonc/noaa237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Brain tumors are the most common solid tumors of childhood, but little is understood about the factors that influence their development. Pediatric low-grade gliomas in particular display unique temporal and spatial localization associated with different genetic mutations (eg, BRAF genomic alterations, mutations in the neurofibromatosis type 1 [NF1] gene) for reasons that remain unclear. NF1 low-grade gliomas typically arise in the optic pathway of young children as optic pathway gliomas (OPGs), likely from a cell of origin that resides within the third ventricular zone (TVZ). However, the factors that contribute to their distinct temporal patterning and penetrance have not been adequately explored. METHODS TVZ neuroglial progenitor cells (NPCs) were analyzed over the course of mouse brain development. Progenitors isolated by fluorescence-activated cell sorting (FACS) were assessed for functional and molecular differences. The impact of different germline Nf1 mutations on TVZ NPC properties was analyzed using genetically engineered mice. RESULTS We identify 3 individual factors that could each contribute to Nf1 optic glioma temporal patterning and penetrance. First, there are 3 functionally and molecularly distinct populations of mouse TVZ NPCs, one of which ("M" cells) exhibits the highest clonogenic incidence, proliferation, and abundance during embryogenesis. Second, TVZ NPC proliferation dramatically decreases after birth. Third, germline Nf1 mutations differentially increase TVZ NPC proliferation during embryogenesis. CONCLUSIONS The unique temporal patterning and penetrance of Nf1 optic glioma reflects the combined effects of TVZ NPC population composition, time-dependent changes in progenitor proliferation, and the differential impact of the germline Nf1 mutation on TVZ NPC expansion.
Collapse
Affiliation(s)
- Nicole M Brossier
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Sharanya Thondapu
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Olivia M Cobb
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology, Washington University School of Medicine, St Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
28
|
Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 2021; 22:773-784. [PMID: 32055852 PMCID: PMC7283027 DOI: 10.1093/neuonc/noaa036] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gliomas are the most common primary central nervous system tumors occurring in children and adults with neurofibromatosis type 1 (NF1). Over the past decade, discoveries of the molecular basis of low-grade gliomas (LGGs) have led to new approaches for diagnosis and treatments. However, these new understandings have not been fully applied to the management of NF1-associated gliomas. A consensus panel consisting of experts in NF1 and gliomas was convened to review the current molecular knowledge of NF1-associated low-grade “transformed” and high-grade gliomas; insights gained from mouse models of NF1-LGGs; challenges in diagnosing and treating older patients with NF1-associated gliomas; and advances in molecularly targeted treatment and potential immunologic treatment of these tumors. Next steps are recommended to advance the management and outcomes for NF1-associated gliomas.
Collapse
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Washington, DC, USA.,Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Antonio Iavarone
- Departments of Neurology and Pathology Institute for Cancer Genetics Columbia University Medical Center, New York, New York, USA
| | - David T W Jones
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Jaishri O Blakeley
- Departments of Neurology; Oncology; Neurosurgery, Baltimore, Maryland, USA
| | - Eric Bouffet
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael J Fisher
- Department of Pediatric Oncology; Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eugene Hwang
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Cynthia Hawkins
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lindsay Kilburn
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Tobey MacDonald
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan M Pfister
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Brian Rood
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Fausto J Rodriguez
- Pathology; The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Uri Tabori
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Jason Fangusaro
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen A Johnston
- Center for Innovations in Medicine; Biodesign Institute; Arizona State University, Tempe, Arizona, USA
| | - David H Gutmann
- Department of Neurology; Washington University, St Louis, Missouri, USA
| |
Collapse
|
29
|
Rahn RM, Weichselbaum CT, Gutmann DH, Dougherty JD, Maloney SE. Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders. J Neurodev Disord 2021; 13:10. [PMID: 33743598 PMCID: PMC7980331 DOI: 10.1186/s11689-021-09359-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Motor deficits such as abnormal gait are an underappreciated yet characteristic phenotype of many neurodevelopmental disorders (NDDs), including Williams Syndrome (WS) and Neurofibromatosis Type 1 (NF1). Compared to cognitive phenotypes, gait phenotypes are readily and comparably assessed in both humans and model organisms and are controlled by well-defined CNS circuits. Discovery of a common gait phenotype between NDDs might suggest shared cellular and molecular deficits and highlight simple outcome variables to potentially quantify longitudinal treatment efficacy in NDDs. METHODS We characterized gait using the DigiGait assay in two different murine NDD models: the complete deletion (CD) mouse, which models hemizygous loss of the complete WS locus, and the Nf1+/R681X mouse, which models a NF1 patient-derived heterozygous germline NF1 mutation. Longitudinal data were collected across four developmental time points (postnatal days 21-30) and one early adulthood time point. RESULTS Compared to wildtype littermate controls, both models displayed markedly similar spatial, temporal, and postural gait abnormalities during development. Developing CD mice also displayed significant decreases in variability metrics. Multiple gait abnormalities observed across development in the Nf1+/R681X mice persisted into early adulthood, including increased stride length and decreased stride frequency, while developmental abnormalities in the CD model largely resolved by adulthood. CONCLUSIONS These findings suggest that the subcomponents of gait affected in NDDs show overlap between disorders as well as some disorder-specific features, which may change over the course of development. Our incorporation of spatial, temporal, and postural gait measures also provides a template for gait characterization in other NDD models and a platform to examining circuits or longitudinal therapeutics.
Collapse
Affiliation(s)
- Rachel M Rahn
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Claire T Weichselbaum
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - David H Gutmann
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA. .,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
30
|
Guo X, Pan Y, Gutmann DH. Genetic and genomic alterations differentially dictate low-grade glioma growth through cancer stem cell-specific chemokine recruitment of T cells and microglia. Neuro Oncol 2020; 21:1250-1262. [PMID: 31111915 DOI: 10.1093/neuonc/noz080] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND One of the clinical hallmarks of low-grade gliomas (LGGs) arising in children with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is significant clinical variability with respect to tumor growth, associated neurologic deficits, and response to therapy. Numerous factors could contribute to this clinical heterogeneity, including the tumor cell of origin, the specific germline NF1 gene mutation, and the coexistence of additional genomic alterations. Since human specimens are rarely acquired, and have proven difficult to maintain in vitro or as xenografts in vivo, we have developed a series of Nf1 mutant optic glioma mouse strains representing each of these contributing factors. METHODS Optic glioma stem cells (o-GSCs) were generated from this collection of Nf1 genetically engineered mice, and analyzed for their intrinsic growth properties, as well as the production of chemokines that could differentially attract T cells and microglia. RESULTS The observed differences in Nf1 optic glioma growth are not the result of cell autonomous growth properties of o-GSCs, but rather the unique patterns of o-GSC chemokine expression, which differentially attract T cells and microglia. This immune profile collectively dictates the levels of chemokine C-C ligand 5 (Ccl5) expression, the key stromal factor that drives murine Nf1 optic glioma growth. CONCLUSIONS These findings reveal that genetic and genomic alterations create murine LGG biological heterogeneity through the differential recruitment of T cells and microglia by o-GSC-produced chemokines, which ultimately determine the expression of stromal factors that drive tumor growth.
Collapse
Affiliation(s)
- Xiaofan Guo
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Yuan Pan
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
31
|
Wei CJ, Gu SC, Ren JY, Gu YH, Xu XW, Chou X, Lian X, Huang X, Li HZ, Gao YS, Gu B, Zan T, Wang ZC, Li QF. The impact of host immune cells on the development of neurofibromatosis type 1: The abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol Adv 2020; 1:vdz037. [PMID: 32642666 PMCID: PMC7212924 DOI: 10.1093/noajnl/vdz037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThe immune system plays an essential role in the development of tumors, which has been demonstrated in multiple types of cancers. Consistent with this, immunotherapies with targets that disrupt these mechanisms and turn the immune system against developing cancers have been proven effective. In neurofibromatosis type 1 (NF1), an autosomal dominant genetic disorder, the understanding of the complex interactions of the immune system is incomplete despite the discovery of the pivotal role of immune cells in the tumor microenvironment. Individuals with NF1 show a loss of the NF1 gene in nonneoplastic cells, including immune cells, and the aberrant immune system exhibits intriguing interactions with NF1. This review aims to provide an update on recent studies showing the bilateral influences of NF1 mutations on immune cells and how the abnormal immune system promotes the development of NF1 and NF1-related tumors. We then discuss the immune receptors major histocompatibility complex class I and II and the PD-L1 mechanism that shield NF1 from immunosurveillance and enable the immune escape of tumor tissues. Clarification of the latest understanding of the mechanisms underlying the effects of the abnormal immune system on promoting the development of NF1 will indicate potential future directions for further studies and new immunotherapies.
Collapse
Affiliation(s)
- Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Shu-Chen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang-Wen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Chou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiang Lian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hai-Zhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ya-Shan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Corresponding Authors: Zhichao Wang, MD, MPH and Qing-Feng Li, MD, PhD, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China (; )
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Corresponding Authors: Zhichao Wang, MD, MPH and Qing-Feng Li, MD, PhD, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, People’s Republic of China (; )
| |
Collapse
|
32
|
Muskens IS, Zhang C, de Smith AJ, Biegel JA, Walsh KM, Wiemels JL. Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2020; 21:1376-1388. [PMID: 31247102 PMCID: PMC6827836 DOI: 10.1093/neuonc/noz108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Central nervous system (CNS) tumors are the second most common type of cancer among children. Depending on histopathology, anatomic location, and genomic factors, specific subgroups of brain tumors have some of the highest cancer-related mortality rates or result in considerable lifelong morbidity. Pediatric CNS tumors often occur in patients with genetic predisposition, at times revealing underlying cancer predisposition syndromes. Advances in next-generation sequencing (NGS) have resulted in the identification of an increasing number of cancer predisposition genes. In this review, the literature on genetic predisposition to pediatric CNS tumors is evaluated with a discussion of potential future targets for NGS and clinical implications. Furthermore, we explore potential strategies for enhancing the understanding of genetic predisposition of pediatric CNS tumors, including evaluation of non-European populations, pan-genomic approaches, and large collaborative studies.
Collapse
Affiliation(s)
- Ivo S Muskens
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chenan Zhang
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Adam J de Smith
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jaclyn A Biegel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California
| | - Kyle M Walsh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California.,Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| |
Collapse
|
33
|
Leier A, Bedwell DM, Chen AT, Dickson G, Keeling KM, Kesterson RA, Korf BR, Marquez Lago TT, Müller UF, Popplewell L, Zhou J, Wallis D. Mutation-Directed Therapeutics for Neurofibromatosis Type I. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:739-753. [PMID: 32408052 PMCID: PMC7225739 DOI: 10.1016/j.omtn.2020.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Significant advances in biotechnology have led to the development of a number of different mutation-directed therapies. Some of these techniques have matured to a level that has allowed testing in clinical trials, but few have made it to approval by drug-regulatory bodies for the treatment of specific diseases. While there are still various hurdles to be overcome, recent success stories have proven the potential power of mutation-directed therapies and have fueled the hope of finding therapeutics for other genetic disorders. In this review, we summarize the state-of-the-art of various therapeutic approaches and assess their applicability to the genetic disorder neurofibromatosis type I (NF1). NF1 is caused by the loss of function of neurofibromin, a tumor suppressor and downregulator of the Ras signaling pathway. The condition is characterized by a variety of phenotypes and includes symptoms such as skin spots, nervous system tumors, skeletal dysplasia, and others. Hence, depending on the patient, therapeutics may need to target different tissues and cell types. While we also discuss the delivery of therapeutics, in particular via viral vectors and nanoparticles, our main focus is on therapeutic techniques that reconstitute functional neurofibromin, most notably cDNA replacement, CRISPR-based DNA repair, RNA repair, antisense oligonucleotide therapeutics including exon skipping, and nonsense suppression.
Collapse
Affiliation(s)
- Andre Leier
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David M Bedwell
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ann T Chen
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - George Dickson
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Kim M Keeling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Linda Popplewell
- Centre of Biomedical Sciences, Department of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
34
|
Anastasaki C, Wegscheid ML, Hartigan K, Papke JB, Kopp ND, Chen J, Cobb O, Dougherty JD, Gutmann DH. Human iPSC-Derived Neurons and Cerebral Organoids Establish Differential Effects of Germline NF1 Gene Mutations. Stem Cell Reports 2020; 14:541-550. [PMID: 32243842 PMCID: PMC7160375 DOI: 10.1016/j.stemcr.2020.03.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/11/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common neurodevelopmental disorder caused by a spectrum of distinct germline NF1 gene mutations, traditionally viewed as equivalent loss-of-function alleles. To specifically address the issue of mutational equivalency in a disease with considerable clinical heterogeneity, we engineered seven isogenic human induced pluripotent stem cell lines, each with a different NF1 patient NF1 mutation, to identify potential differential effects of NF1 mutations on human central nervous system cells and tissues. Although all mutations increased proliferation and RAS activity in 2D neural progenitor cells (NPCs) and astrocytes, we observed striking differences between NF1 mutations on 2D NPC dopamine levels, and 3D NPC proliferation, apoptosis, and neuronal differentiation in developing cerebral organoids. Together, these findings demonstrate differential effects of NF1 gene mutations at the cellular and tissue levels, suggesting that the germline NF1 gene mutation is one factor that underlies clinical variability.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Michelle L Wegscheid
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Kelly Hartigan
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jason B Papke
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Nathan D Kopp
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jiayang Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol 2020; 139:625-641. [PMID: 30963251 DOI: 10.1007/s00401-019-02002-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis 1 (NF1) is an autosomal dominant genetic disorder that presents with variable phenotypes as a result of mutations in the neurofibromatosis type 1 (NF1) gene and subsequently, abnormal function of the protein product, neurofibromin. Patients with NF1 are at increased risk for central nervous system (CNS) manifestations including structural, functional, and neoplastic disease. The mechanisms underlying the varied manifestations of NF1 are incompletely understood, but the loss of functional neurofibromin, resulting in sustained activation of the oncoprotein RAS, is responsible for tumorigenesis throughout the body, including the CNS. Much of our understanding of NF1-related CNS manifestations is from a combination of data from animal models and natural history studies of people with NF1 and CNS disease. Data from animal models suggest the importance of both Nf1 mutations and somatic genetic alterations, such as Tp53 loss, for development of neoplasms, as well as the role of the timing of the acquisition of such alterations on the variability of CNS manifestations. A variety of non-neoplastic structural (macrocephaly, hydrocephalus, aqueductal stenosis, and vasculopathy) and functional (epilepsy, impaired cognition, attention deficits, and autism spectrum disorder) abnormalities occur with variable frequency in individuals with NF1. In addition, there is increasing evidence that similar appearing CNS neoplasms in people with and without the NF1 syndrome are due to distinct oncogenic pathways. Gliomas in people with NF1 show alterations in the RAS/MAPK pathway, generally in the absence of BRAF alterations (common to sporadic pilocytic astrocytomas) or IDH or histone H3 mutations (common to diffuse gliomas subsets). A subset of low-grade astrocytomas in these patients remain difficult to classify using standard criteria, and occasionally demonstrate morphologic features resembling subependymal giant cell astrocytomas that afflict patients with tuberous sclerosis complex ("SEGA-like astrocytomas"). There is also emerging evidence that NF1-associated high-grade astrocytomas have frequent co-existing alterations such as ATRX mutations and an alternative lengthening of telomeres (ALT) phenotype responsible for unique biologic properties. Ongoing efforts are seeking to improve diagnostic accuracy for CNS neoplasms in the setting of NF1 versus sporadic tumors. In addition, MEK inhibitors, which act on the RAS/MAPK pathway, continue to be studied as rational targets for the treatment of NF1-associated tumors, including CNS tumors.
Collapse
|
36
|
Yu-Ju Wu C, Chen CH, Lin CY, Feng LY, Lin YC, Wei KC, Huang CY, Fang JY, Chen PY. CCL5 of glioma-associated microglia/macrophages regulates glioma migration and invasion via calcium-dependent matrix metalloproteinase 2. Neuro Oncol 2020; 22:253-266. [PMID: 31593589 PMCID: PMC7032635 DOI: 10.1093/neuonc/noz189] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Glioma-associated microglia/macrophages (GAMs) comprise macrophages of peripheral origin and brain-intrinsic microglia, which support tumor progression. Chemokine C-C ligand 5 (CCL5) is an inflammatory mediator produced by immune cells and is involved in tumor growth and migration in several cancers, including glioma. However, the mechanisms detailing how CCL5 facilitates glioma invasion remain largely unresolved. METHODS Glioma migration and invasion were determined by wound healing, transwell assay, and 3D µ-slide chemotaxis assay. The expression levels of CCL5, CD68, matrix metalloproteinase 2 (MMP2), phosphorylated Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), p-Akt, and phosphorylated proline-rich tyrosine kinase 2 were determined by cytokine array, quantitative PCR, western blot, or immunohistochemistry. Zymography and intracellular calcium assays were used to analyze MMP2 activity and intracellular calcium levels, respectively. RESULTS CCL5 modulated the migratory and invasive activities of human glioma cells in association with MMP2 expression. In response to CCL5, glioma cells underwent a synchronized increase in intracellular calcium levels and p-CaMKII and p-Akt expression levels. CCL5-directed glioma invasion and increases in MMP2 were suppressed after inhibition of p-CaMKII. Glioma cells tended to migrate toward GAM-conditioned media activated by granulocyte-macrophage colony-stimulating factor (GM-CSF) in which CCL5 was abundant. This homing effect was associated with MMP2 upregulation, and could be ameliorated either by controlling intracellular and extracellular calcium levels or by CCL5 antagonism. Clinical results also revealed the associations between CCL5 and GAM activation. CONCLUSION Our results suggest that modulation of glioma CaMKII may restrict the effect of CCL5 on glioma invasion and could be a potential therapeutic target for alleviating glioma growth.
Collapse
Affiliation(s)
- Caren Yu-Ju Wu
- Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chia-Hua Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Ying Feng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-You Fang
- Graduate Institute of Biomedical Sciences, Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
37
|
Bai L, Lee Y, Hsu CT, Williams JA, Cavanaugh D, Zheng X, Stein C, Haynes P, Wang H, Gutmann DH, Sehgal A. A Conserved Circadian Function for the Neurofibromatosis 1 Gene. Cell Rep 2019; 22:3416-3426. [PMID: 29590612 PMCID: PMC5898822 DOI: 10.1016/j.celrep.2018.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/21/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Loss of the Neurofibromatosis 1 (Nf1) protein, neurofibromin, in Drosophila disrupts circadian rhythms of locomotor activity without impairing central clock function, suggesting effects downstream of the clock. However, the relevant cellular mechanisms are not known. Leveraging the discovery of output circuits for locomotor rhythms, we dissected cellular actions of neurofibromin in recently identified substrates. Herein, we show that neurofibromin affects the levels and cycling of calcium in multiple circadian peptidergic neurons. A prominent site of action is the pars intercerebralis (PI), the fly equivalent of the hypothalamus, with cell-autonomous effects of Nf1 in PI cells that secrete DH44. Nf1 interacts genetically with peptide signaling to affect circadian behavior. We extended these studies to mammals to demonstrate that mouse astrocytes exhibit a 24-hr rhythm of calcium levels, which is also attenuated by lack of neurofibromin. These findings establish a conserved role for neurofibromin in intracellular signaling rhythms within the nervous system.
Collapse
Affiliation(s)
- Lei Bai
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yool Lee
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cynthia T Hsu
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julie A Williams
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Cavanaugh
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, Loyola University, Chicago, IL, USA
| | - Xiangzhong Zheng
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Bloomington Stock Center, Indiana University, Bloomington, IN, USA
| | - Carly Stein
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula Haynes
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Han Wang
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; School of Law, University of California, Los Angeles, Los Angeles, CA, USA
| | - David H Gutmann
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Neurology, Washington University, St. Louis, MO, USA
| | - Amita Sehgal
- Penn Chronobiology, Howard Hughes Medical Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
39
|
Affinity Purification of NF1 Protein-Protein Interactors Identifies Keratins and Neurofibromin Itself as Binding Partners. Genes (Basel) 2019; 10:genes10090650. [PMID: 31466283 PMCID: PMC6770187 DOI: 10.3390/genes10090650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is caused by pathogenic variants in the NF1 gene encoding neurofibromin. Definition of NF1 protein–protein interactions (PPIs) has been difficult and lacks replication, making it challenging to define binding partners that modulate its function. We created a novel tandem affinity purification (TAP) tag cloned in frame to the 3’ end of the full-length murine Nf1 cDNA (mNf1). We show that this cDNA is functional and expresses neurofibromin, His-Tag, and can correct p-ERK/ERK ratios in NF1 null HEK293 cells. We used this affinity tag to purify binding partners with Strep-Tactin®XT beads and subsequently, identified them via mass spectrometry (MS). We found the tagged mNf1 can affinity purify human neurofibromin and vice versa, indicating that neurofibromin oligomerizes. We identify 21 additional proteins with high confidence of interaction with neurofibromin. After Metacore network analysis of these 21 proteins, eight appear within the same network, primarily keratins regulated by estrogen receptors. Previously, we have shown that neurofibromin levels negatively regulate keratin expression. Here, we show through pharmacological inhibition that this is independent of Ras signaling, as the inhibitors, selumetinib and rapamycin, do not alter keratin expression. Further characterization of neurofibromin oligomerization and binding partners could aid in discovering new neurofibromin functions outside of Ras regulation, leading to novel drug targets.
Collapse
|
40
|
Anastasaki C, Gao F, Gutmann DH. Commentary: Identification of Mutation Regions on NF1 Responsible for High- and Low-Risk Development of Optic Pathway Glioma in Neurofibromatosis Type I. Front Genet 2019; 10:115. [PMID: 30881378 PMCID: PMC6405421 DOI: 10.3389/fgene.2019.00115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/31/2019] [Indexed: 12/01/2022] Open
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
41
|
Xiao H, Yuan L, Xu H, Yang Z, Huang F, Song Z, Yang Y, Zeng C, Deng H. Novel and Recurring Disease-Causing NF1 Variants in Two Chinese Families with Neurofibromatosis Type 1. J Mol Neurosci 2018; 65:557-563. [DOI: 10.1007/s12031-018-1128-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
|
42
|
Pan Y, Duron C, Bush EC, Ma Y, Sims PA, Gutmann DH, Radunskaya A, Hardin J. Graph complexity analysis identifies an ETV5 tumor-specific network in human and murine low-grade glioma. PLoS One 2018; 13:e0190001. [PMID: 29787563 PMCID: PMC5963759 DOI: 10.1371/journal.pone.0190001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/06/2017] [Indexed: 01/10/2023] Open
Abstract
Conventional differential expression analyses have been successfully employed to identify genes whose levels change across experimental conditions. One limitation of this approach is the inability to discover central regulators that control gene expression networks. In addition, while methods for identifying central nodes in a network are widely implemented, the bioinformatics validation process and the theoretical error estimates that reflect the uncertainty in each step of the analysis are rarely considered. Using the betweenness centrality measure, we identified Etv5 as a potential tissue-level regulator in murine neurofibromatosis type 1 (Nf1) low-grade brain tumors (optic gliomas). As such, the expression of Etv5 and Etv5 target genes were increased in multiple independently-generated mouse optic glioma models relative to non-neoplastic (normal healthy) optic nerves, as well as in the cognate human tumors (pilocytic astrocytoma) relative to normal human brain. Importantly, differential Etv5 and Etv5 network expression was not directly the result of Nf1 gene dysfunction in specific cell types, but rather reflects a property of the tumor as an aggregate tissue. Moreover, this differential Etv5 expression was independently validated at the RNA and protein levels. Taken together, the combined use of network analysis, differential RNA expression findings, and experimental validation highlights the potential of the computational network approach to provide new insights into tumor biology.
Collapse
Affiliation(s)
- Yuan Pan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina Duron
- Department of Mathematics, Claremont Graduate University, Claremont, California, United Strates of America
| | - Erin C. Bush
- Departments of Systems Biology and of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter A. Sims
- Departments of Systems Biology and of Biochemistry & Molecular Biophysics, Columbia University Medical Center, New York, New York, United States of America
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ami Radunskaya
- Department of Mathematics, Pomona College, Claremont, California, United States of America
| | - Johanna Hardin
- Department of Mathematics, Pomona College, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Freret ME, Gutmann DH. Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1. J Neurosci Res 2018; 97:45-56. [PMID: 29704429 DOI: 10.1002/jnr.24250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common cancer predisposition syndrome caused by mutations in the NF1 gene. The NF1-encoded protein (neurofibromin) is an inhibitor of the oncoprotein RAS and controls cell growth and survival. Individuals with NF1 are prone to developing low-grade tumors of the optic nerves, chiasm, tracts, and radiations, termed optic pathway gliomas (OPGs), which can cause vision loss. A paucity of surgical tumor specimens and of patient-derived xenografts for investigative studies has limited our understanding of human NF1-associated OPG (NF1-OPG). However, mice genetically engineered to harbor Nf1 gene mutations develop optic gliomas that share many features of their human counterparts. These genetically engineered mouse (GEM) strains have provided important insights into the cellular and molecular determinants that underlie mouse Nf1 optic glioma development, maintenance, and associated vision loss, with relevance by extension to human NF1-OPG disease. Herein, we review our current understanding of NF1-OPG pathobiology and describe the mechanisms responsible for tumor initiation, growth, and associated vision loss in Nf1 GEM models. We also discuss how Nf1 GEM and other preclinical models can be deployed to identify and evaluate molecularly targeted therapies for OPG, particularly as they pertain to future strategies aimed at preventing or improving tumor-associated vision loss in children with NF1.
Collapse
Affiliation(s)
- Morgan E Freret
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
44
|
The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation. Oncotarget 2018; 8:47206-47215. [PMID: 28525381 PMCID: PMC5564557 DOI: 10.18632/oncotarget.17589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Low-grade gliomas are one of the most common brain tumors in children, where they frequently form within the optic pathway (optic pathway gliomas; OPGs). Since many OPGs occur in the context of the Neurofibromatosis Type 1 (NF1) cancer predisposition syndrome, we have previously employed Nf1 genetically-engineered mouse (GEM) strains to study the pathogenesis of these low-grade glial neoplasms. In the light of the finding that human and mouse low-grade gliomas are composed of Olig2+ cells and that Olig2+ oligodendrocyte precursor cells (OPCs) give rise to murine high-grade gliomas, we sought to determine whether Olig2+ OPCs could be tumor-initiating cells for Nf1 optic glioma. Similar to the GFAP-Cre transgenic strain previously employed to generate Nf1 optic gliomas, Olig2+ cells also give rise to astrocytes in the murine optic nerve in vivo. However, in contrast to the GFAP-Cre strain where somatic Nf1 inactivation in embryonic neural progenitor/stem cells (Nf1flox/mut; GFAP-Cre mice) results in optic gliomas by 3 months of age in vivo, mice with Nf1 gene inactivation in Olig2+ OPCs (Nf1flox/mut; Olig2-Cre mice) do not form optic gliomas until 6 months of age. These distinct patterns of glioma latency do not reflect differences in the timing or brain location of somatic Nf1 loss. Instead, they most likely reflect the cell of origin, as somatic Nf1 loss in CD133+ neural progenitor/stem cells during late embryogenesis results in optic gliomas at 3 months of age. Collectively, these data demonstrate that the cell of origin dictates the time to tumorigenesis in murine optic glioma.
Collapse
|
45
|
Wallis D, Li K, Lui H, Hu K, Chen MJ, Li J, Kang J, Das S, Korf BR, Kesterson RA. Neurofibromin (NF1) genetic variant structure-function analyses using a full-length mouse cDNA. Hum Mutat 2018. [PMID: 29522274 DOI: 10.1002/humu.23421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurofibromatosis type 1 (NF1) is caused by pathogenic variants or mutations in the NF1 gene that encodes neurofibromin. We describe here a new approach to determining the functional consequences of NF1 genetic variants. We established a heterologous cell culture expression system using a full-length mouse Nf1 cDNA (mNf1) and human cell lines. We demonstrate that the full-length murine cDNA produces a > 250 kDa neurofibromin protein that is capable of modulating Ras signaling. We created mutant cDNAs representing NF1 patient variants with different clinically relevant phenotypes, and assessed their ability to produce mature neurofibromin and restore Nf1 activity in NF1-/- cells. These cDNAs represent variants in multiple protein domains and various types of clinically relevant predicted variants. This approach will help advance research on neurofibromin structure and function, determine pathogenicity for missense variants, and allow for the development of activity assays and variant-directed therapeutics.
Collapse
Affiliation(s)
- Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Kairong Li
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Hui Lui
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Ke Hu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Mei-Jan Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jing Li
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Jungsoon Kang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Shamik Das
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
46
|
Toonen JA, Ma Y, Gutmann DH. Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction. Neuro Oncol 2018; 19:808-819. [PMID: 28039362 DOI: 10.1093/neuonc/now267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Optic gliomas arising in the neurofibromatosis type 1 (NF1) cancer predisposition syndrome cause reduced visual acuity in 30%-50% of affected children. Since human specimens are rare, genetically engineered mouse (GEM) models have been successfully employed for preclinical therapeutic discovery and validation. However, the sequence of cellular and molecular events that culminate in retinal dysfunction and vision loss has not been fully defined relevant to potential neuroprotective treatment strategies. Methods Nf1flox/mut GFAP-Cre (FMC) mice and age-matched Nf1flox/flox (FF) controls were euthanized at defined intervals from 2 weeks to 24 weeks of age. Optic nerve volumes were measured, and optic nerves/retinae analyzed by immunohistochemistry. Optical coherence tomography (OCT) was performed on anesthetized mice. FMC mice were treated with lovastatin from 12 to 16 weeks of age. Results The earliest event in tumorigenesis was a persistent elevation in proliferation (4 wk), which preceded sustained microglia numbers and incremental increases in S100+ glial cells. Microglia activation, as evidenced by increased interleukin (IL)-1β expression and morphologic changes, coincided with axonal injury and retinal ganglion cell (RGC) apoptosis (6 wk). RGC loss and retinal nerve fiber layer (RNFL) thinning then ensued (9 wk), as revealed by direct measurements and live-animal OCT. Lovastatin administration at 12 weeks prevented further RGC loss and RNFL thinning both immediately and 8 weeks after treatment completion. Conclusion By defining the chronology of the cellular and molecular events associated with optic glioma pathogenesis, we demonstrate critical periods for neuroprotective intervention and visual preservation, as well as establish OCT as an accurate biomarker of RGC loss.
Collapse
Affiliation(s)
- Joseph A Toonen
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| | - Yu Ma
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine (WUSM), St Louis, Missouri, USA
| |
Collapse
|
47
|
Khatua S, Gutmann DH, Packer RJ. Neurofibromatosis type 1 and optic pathway glioma: Molecular interplay and therapeutic insights. Pediatr Blood Cancer 2018; 65. [PMID: 29049847 DOI: 10.1002/pbc.26838] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Children with neurofibromatosis type 1 (NF1) are predisposed to develop central nervous system neoplasms, the most common of which are low-grade gliomas (LGGs). The absence of human NF1 associated LGG-derived cell lines, coupled with an inability to generate patient-derived xenograft models, represents barriers to profile molecularly targeted therapies for these tumors. Thus, genetically engineered mouse models have been identified to evaluate the interplay between Nf1-deficient tumor cells and nonneoplastic stromal cells to evaluate potential therapies for these neoplasms. Future treatments might also consider targeting the nonneoplastic cells in NF1-LGGs to reduce tumor growth and neurologic morbidity in affected children.
Collapse
Affiliation(s)
- Soumen Khatua
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
48
|
Koczkowska M, Chen Y, Callens T, Gomes A, Sharp A, Johnson S, Hsiao MC, Chen Z, Balasubramanian M, Barnett CP, Becker TA, Ben-Shachar S, Bertola DR, Blakeley JO, Burkitt-Wright EMM, Callaway A, Crenshaw M, Cunha KS, Cunningham M, D'Agostino MD, Dahan K, De Luca A, Destrée A, Dhamija R, Eoli M, Evans DGR, Galvin-Parton P, George-Abraham JK, Gripp KW, Guevara-Campos J, Hanchard NA, Hernández-Chico C, Immken L, Janssens S, Jones KJ, Keena BA, Kochhar A, Liebelt J, Martir-Negron A, Mahoney MJ, Maystadt I, McDougall C, McEntagart M, Mendelsohn N, Miller DT, Mortier G, Morton J, Pappas J, Plotkin SR, Pond D, Rosenbaum K, Rubin K, Russell L, Rutledge LS, Saletti V, Schonberg R, Schreiber A, Seidel M, Siqveland E, Stockton DW, Trevisson E, Ullrich NJ, Upadhyaya M, van Minkelen R, Verhelst H, Wallace MR, Yap YS, Zackai E, Zonana J, Zurcher V, Claes K, Martin Y, Korf BR, Legius E, Messiaen LM. Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848. Am J Hum Genet 2018; 102:69-87. [PMID: 29290338 PMCID: PMC5777934 DOI: 10.1016/j.ajhg.2017.12.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
Collapse
Affiliation(s)
- Magdalena Koczkowska
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tom Callens
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alicia Gomes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Angela Sharp
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sherrell Johnson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Meng-Chang Hsiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zhenbin Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, UK
| | | | - Troy A Becker
- Medical Genetics, John Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Shay Ben-Shachar
- The Genetic Institute, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel-Aviv 6997801, Israel
| | - Debora R Bertola
- Department of Pediatrics, University of São Paulo, São Paulo 05403-000, Brazil
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Emma M M Burkitt-Wright
- Genomic Medicine, Division of Evolution and Genomic Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Alison Callaway
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Melissa Crenshaw
- Medical Genetics, John Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Karin S Cunha
- Department of Pathology, School of Medicine, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | - Mitch Cunningham
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Maria D D'Agostino
- Department of Medical Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Karin Dahan
- Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies 6041, Belgium
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo 71013, Italy
| | - Anne Destrée
- Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies 6041, Belgium
| | - Radhika Dhamija
- Department of Clinical Genomics and Neurology, Mayo Clinic, Phoenix, AZ 85259, USA
| | - Marica Eoli
- Unit of Molecular Neuro-Oncology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan 20133, Italy
| | - D Gareth R Evans
- Genomic Medicine, Division of Evolution and Genomic Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | | | | | - Karen W Gripp
- Division of Medical Genetics, Al DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jose Guevara-Campos
- Pediatrics Service, Felipe Guevara Rojas Hospital, University of Oriente, El Tigre-Anzoátegui, Venezuela 6034, Spain
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Concepcion Hernández-Chico
- Department of Genetics, Hospital Universitario Ramón y Cayal, Institute of Health Research (IRYCIS), Madrid 28034, Spain and Center for Biomedical Research-Network of Rare Diseases (CIBERER)
| | - LaDonna Immken
- Dell Children's Medical Center of Central Texas, Austin, TX 78723, USA
| | - Sandra Janssens
- Center for Medical Genetics, Ghent University Hospital, Ghent 9000, Belgium
| | - Kristi J Jones
- Department of Clinical Genetics, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Beth A Keena
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Aaina Kochhar
- Department of Genetics, Valley Children's Healthcare, Madera, CA 93636, USA
| | - Jan Liebelt
- Women's and Children's Hospital/SA Pathology, North Adelaide, SA 5006, Australia
| | - Arelis Martir-Negron
- Division of Clinical Genetics, Center for Genomic Medicine, Miami Cancer Institute, Miami, FL 33176, USA
| | | | - Isabelle Maystadt
- Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies 6041, Belgium
| | - Carey McDougall
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Meriel McEntagart
- St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Nancy Mendelsohn
- Genomics Medicine Program, Children's Hospital Minnesota, Minneapolis, MN 55404, USA
| | - David T Miller
- Multidisciplinary Neurofibromatosis Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp 2650, Belgium
| | - Jenny Morton
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - John Pappas
- Department of Pediatrics, Clinical Genetic Services, NYU School of Medicine, New York, NY 10016, USA
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dinel Pond
- Genomics Medicine Program, Children's Hospital Minnesota, Minneapolis, MN 55404, USA
| | - Kenneth Rosenbaum
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC 20010, USA
| | - Karol Rubin
- University of Minnesota Health, Minneapolis, MN 55404, USA
| | - Laura Russell
- Department of Medical Genetics, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Lane S Rutledge
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Veronica Saletti
- Developmental Neurology Unit, IRCCS Foundation, Carlo Besta Neurological Institute, Milan 20133, Italy
| | - Rhonda Schonberg
- Division of Genetics and Metabolism, Children's National Health System, Washington, DC 20010, USA
| | - Allison Schreiber
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meredith Seidel
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elizabeth Siqveland
- Genomics Medicine Program, Children's Hospital Minnesota, Minneapolis, MN 55404, USA
| | - David W Stockton
- Division of Genetic, Genomic and Metabolic Disorders, Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI 48201, USA
| | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy and Italy Istituto di Ricerca Pediatria, IRP, Città della Speranza, Padova 35128, Italy
| | - Nicole J Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - Rick van Minkelen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GE, the Netherlands
| | - Helene Verhelst
- Department of Paediatrics, Division of Paediatric Neurology, Ghent University Hospital, Ghent 9000, Belgium
| | - Margaret R Wallace
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; Faculty of Health Sciences, School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan Zonana
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kathleen Claes
- Center for Medical Genetics, Ghent University Hospital, Ghent 9000, Belgium
| | - Yolanda Martin
- Department of Genetics, Hospital Universitario Ramón y Cayal, Institute of Health Research (IRYCIS), Madrid 28034, Spain and Center for Biomedical Research-Network of Rare Diseases (CIBERER)
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Eric Legius
- Department of Human Genetics, KU Leuven - University of Leuven, Leuven 3000, Belgium
| | - Ludwine M Messiaen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
49
|
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common brain tumor predisposition syndromes, in which affected children are prone to the development of low-grade gliomas. While NF1-associated gliomas can be found in several brain regions, the majority arise in the optic nerves, chiasm, tracts, and radiations (optic pathway gliomas; OPGs). Owing to their location, 35-50% of affected children present with reduced visual acuity. Unfortunately, despite tumor stabilization following chemotherapy, vision does not improve in most children. For this reasons, more effective therapies are being sought that reflect a deeper understanding of the NF1 gene and the use of authenticated Nf1 genetically-engineered mouse strains. The implementation of these models for drug discovery and validation has galvanized molecularly-targeted clinical trials in children with NF1-OPG. Future research focused on defining the cellular and molecular factors that underlie optic glioma development and progression also has the potential to provide personalized risk assessment strategies for this pediatric population.
Collapse
Affiliation(s)
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
50
|
Monroe CL, Dahiya S, Gutmann DH. Dissecting Clinical Heterogeneity in Neurofibromatosis Type 1. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:53-74. [PMID: 28135565 DOI: 10.1146/annurev-pathol-052016-100228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common neurogenetic disorder in which affected children and adults are predisposed to the development of benign and malignant nervous system tumors. Caused by a germline mutation in the NF1 tumor suppressor gene, individuals with NF1 are prone to optic gliomas, malignant gliomas, neurofibromas, and malignant peripheral nerve sheath tumors, as well as behavioral, cognitive, motor, bone, cardiac, and pigmentary abnormalities. Although NF1 is a classic monogenic syndrome, the clinical features of the disorder and their impact on patient morbidity are variable, even within individuals who bear the same germline NF1 gene mutation. As such, NF1 affords unique opportunities to define the factors that contribute to disease heterogeneity and to develop therapies personalized to a given individual (precision medicine). This review highlights the clinical features of NF1 and the use of genetically engineered mouse models to define the molecular and cellular pathogenesis of NF1-associated nervous system tumors.
Collapse
Affiliation(s)
- Courtney L Monroe
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Sonika Dahiya
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110;
| |
Collapse
|