1
|
Lin C, Liu S, Ruan N, Chen J, Chen Y, Zhang Y, Zhang J. Cleft Palate Induced by Augmented Fibroblast Growth Factor-9 Signaling in Cranial Neural Crest Cells in Mice. Stem Cells Dev 2024; 33:562-573. [PMID: 39119818 DOI: 10.1089/scd.2024.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Although enhanced fibroblast growth factor (FGF) signaling has been demonstrated to be crucial in many cases of syndromic cleft palate caused by tongue malposition in humans, animal models that recapitulate this phenotype are limited, and the precise mechanisms remain elusive. Mutations in FGF9 with the effect of either loss- or gain-of-function effects have been identified to be associated with cleft palate in humans. Here, we generated a mouse model with a transgenic Fgf9 allele specifically activated in cranial neural crest cells, aiming to elucidate the gain-of-function effects of Fgf9 in palatogenesis. We observed cleft palate with 100% penetrance in mutant mice. Further analysis demonstrated that no inherent defects in the morphogenic competence of palatal shelves could be found, but a passively lifted tongue prevented the elevation of palatal shelves, leading to the cleft palate. This tongue malposition was induced by posterior spatial confinement that was exerted by temporomandibular joint (TMJ) dysplasia characterized by a reduction in Sox9+ progenitors within the condyle and a structural decrease in the posterior dimension of the lower jaw. Our findings highlight the critical role of excessive FGF signaling in disrupting spatial coordination during palate development and suggest a potential association between palatal shelf elevation and early TMJ development.
Collapse
Affiliation(s)
- Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Shiyu Liu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Ningsheng Ruan
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, P.R. China
| | - Jian Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, P.R. China
- Chinese Institute for Brain Research, Beijing, P.R. China
| |
Collapse
|
2
|
Rich M, Schroeder B, Manning C, Abbott MA. Prenatal diagnosis of Hartsfield syndrome with a novel genetic variant. Prenat Diagn 2023; 43:1671-1673. [PMID: 38013637 DOI: 10.1002/pd.6472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/29/2023]
Abstract
A G2P0, 24-year-old woman presented at 17 weeks 3 days gestation for a fetal anatomy scan. Ultrasound identified bilateral upper and lower extremity ectrodactyly, semilobar holoprosencephaly, midface hypoplasia, and cleft lip and palate. Amniocentesis for a chromosome microarray demonstrated no significant copy number changes. Whole exome sequencing was subsequently completed, which revealed a de novo, likely pathogenic variant in FGFR1, c.2044G>A (D682N), consistent with FGFR1-related Hartsfield syndrome. This case highlights the first presumed molecularly confirmed prenatal diagnosis of Hartsfield syndrome and identifies a new pathogenic variant.
Collapse
Affiliation(s)
- Matthew Rich
- Baystate Medical Center, Springfield, Massachusetts, USA
- UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Bradley Schroeder
- Baystate Medical Center, Springfield, Massachusetts, USA
- UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Courtney Manning
- Baystate Medical Center, Springfield, Massachusetts, USA
- UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Mary-Alice Abbott
- Baystate Medical Center, Springfield, Massachusetts, USA
- UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Malta M, AlMutiri R, Martin CS, Srour M. Holoprosencephaly: Review of Embryology, Clinical Phenotypes, Etiology and Management. CHILDREN 2023; 10:children10040647. [PMID: 37189898 DOI: 10.3390/children10040647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Holoprosencephaly (HPE) is the most common malformation of the prosencephalon in humans. It is characterized by a continuum of structural brain anomalies resulting from the failure of midline cleavage of the prosencephalon. The three classic subtypes of HPE are alobar, semilobar and lobar, although a few additional categories have been added to this original classification. The severity of the clinical phenotype is broad and usually mirrors the radiologic and associated facial features. The etiology of HPE includes both environmental and genetic factors. Disruption of sonic hedgehog (SHH) signaling is the main pathophysiologic mechanism underlying HPE. Aneuploidies, chromosomal copy number variants and monogenic disorders are identified in a large proportion of HPE patients. Despite the high postnatal mortality and the invariable presence of developmental delay, recent advances in diagnostic methods and improvements in patient management over the years have helped to increase survival rates. In this review, we provide an overview of the current knowledge related to HPE, and discuss the classification, clinical features, genetic and environmental etiologies and management.
Collapse
|
4
|
Mendelian inheritance revisited: dominance and recessiveness in medical genetics. Nat Rev Genet 2023:10.1038/s41576-023-00574-0. [PMID: 36806206 DOI: 10.1038/s41576-023-00574-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/22/2023]
Abstract
Understanding the consequences of genotype for phenotype (which ranges from molecule-level effects to whole-organism traits) is at the core of genetic diagnostics in medicine. Many measures of the deleteriousness of individual alleles exist, but these have limitations for predicting the clinical consequences. Various mechanisms can protect the organism from the adverse effects of functional variants, especially when the variant is paired with a wild type allele. Understanding why some alleles are harmful in the heterozygous state - representing dominant inheritance - but others only with the biallelic presence of pathogenic variants - representing recessive inheritance - is particularly important when faced with the deluge of rare genetic alterations identified by high throughput DNA sequencing. Both awareness of the specific quantitative and/or qualitative effects of individual variants and the elucidation of allelic and non-allelic interactions are essential to optimize genetic diagnosis and counselling.
Collapse
|
5
|
Reis PMP, Faber J, Rosa JSO, Bueno M, Barriviera M, Lia ÉN. Solitary Median Maxillary Central Incisor in Hartsfield Syndrome: A Case Report. Int J Clin Pediatr Dent 2023; 16:147-152. [PMID: 37020764 PMCID: PMC10067985 DOI: 10.5005/jp-journals-10005-2498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Hartsfield syndrome is a rare and unique clinical combination of ectrodactyly and holoprosencephaly (HPE) with or without cleft lip and palate, as well as various additional characteristics. Although several genes responsible for HPE and ectrodactyly have been identified, the genetic origin of Hartsfield syndrome remains unknown, as there are few reports in the literature. The objective of this case report is to present dentofacial abnormalities in an 11-year-old boy with Hartsfield syndrome, who presented mental retardation, hearing loss, bilateral hand and foot ectrodactyly, HPE, and solitary median maxillary central incisor (SMMCI) besides 12 dental ageneses. How to cite this article P Reis PM, Faber J, O Rosa JS, et al. Solitary Median Maxillary Central Incisor in Hartsfield Syndrome: A Case Report. Int J Clin Pediatr Dent 2023;16(1):147-152.
Collapse
Affiliation(s)
- Patricia MP Reis
- School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Jorge Faber
- School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Jéssica SO Rosa
- School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Mike Bueno
- Department of Imaging and Radiology, Faculdade São Leopoldo Mandic (SLMANDIC), Brasília, Distrito Federal, Brazil
| | | | - Érica N Lia
- School of Health Sciences, University of Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
7
|
Brain Organization and Human Diseases. Cells 2022; 11:cells11101642. [PMID: 35626679 PMCID: PMC9139716 DOI: 10.3390/cells11101642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The cortex is a highly organized structure that develops from the caudal regions of the segmented neural tube. Its spatial organization sets the stage for future functional arealization. Here, we suggest using a developmental perspective to describe and understand the etiology of common cortical malformations and their manifestation in the human brain.
Collapse
|
8
|
Harris E, Richardson R, Annavarapu S, Tellez J, Butteriss D, Hannon T, Splitt M. Mosaicism in Hartsfield syndrome. Eur J Med Genet 2022; 65:104491. [PMID: 35338003 DOI: 10.1016/j.ejmg.2022.104491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Hartsfield syndrome is a rare condition characterised by the co-occurrence of ectrodactyly and holoprosencephaly spectrum disorders; cleft lip and palate is a common associated feature. This is due to either monoallelic, or less commonly, biallelic variants in FGFR1 with a loss of function or dominant negative effect. To date 37 individuals have been reported, including two instances of germline mosaicism. We report a further family with Hartsfield syndrome due to a novel variant in FGFR1, with two affected fetuses, and somatic and germline mosaicism in the father detected on Sanger sequencing. The father had not come to medical attention prior to this finding. In light of our findings and those in the published literature, we suggest that mosaicism, either germline or germline and somatic, may be a relatively frequent finding, affecting 3 of 35 (9%) reported families, which has important implications for genetic counselling.
Collapse
Affiliation(s)
- Elizabeth Harris
- Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK.
| | - Ruth Richardson
- Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Srinivas Annavarapu
- Department of Pathology, Newcastle Upon Tyne Hospitals, Newcastle Upon Tyne, NE1 3BZ, UK
| | - James Tellez
- Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - David Butteriss
- Neuroradiology Department, Newcastle Upon Tyne Hospitals, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Therese Hannon
- Department of Obstetrics and Gynaecology, Newcastle Upon Tyne Hospitals, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, International Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
9
|
de Castro VF, Mattos D, de Carvalho FM, Cavalcanti DP, Duenas-Roque MM, Llerena J, Cosentino VR, Honjo RS, Leite JCL, Sanseverino MT, de Souza MPA, Bernardi P, Bolognese AM, Santana da Silva LC, Barbero P, Correia PS, Bueno LSM, Savastano CP, Orioli IM. New SHH and Known SIX3 Variants in a Series of Latin American Patients with Holoprosencephaly. Mol Syndromol 2021; 12:219-233. [PMID: 34421500 DOI: 10.1159/000515044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
Holoprosencephaly (HPE) is the failure of the embryonic forebrain to develop into 2 hemispheres promoting midline cerebral and facial defects. The wide phenotypic variability and causal heterogeneity make genetic counseling difficult. Heterozygous variants with incomplete penetrance and variable expressivity in the SHH, SIX3, ZIC2, and TGIF1 genes explain ∼25% of the known causes of nonchromosomal HPE. We studied these 4 genes and clinically described 27 Latin American families presenting with nonchromosomal HPE. Three new SHH variants and a third known SIX3 likely pathogenic variant found by Sanger sequencing explained 15% of our cases. Genotype-phenotype correlation in these 4 families and published families with identical or similar driver gene, mutated domain, conservation of residue in other species, and the type of variant explain the pathogenicity but not the phenotypic variability. Nine patients, including 2 with SHH pathogenic variants, presented benign variants of the SHH, SIX3, ZIC2, and TGIF1 genes with potential alteration of splicing, a causal proposition in need of further studies. Finding more families with the same SIX3 variant may allow further identification of genetic or environmental modifiers explaining its variable phenotypic expression.
Collapse
Affiliation(s)
- Viviane Freitas de Castro
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Daniel Mattos
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| | - Flavia Martinez de Carvalho
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Laboratorio Epidemiol. Malformações Congênitas, IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Milagros M Duenas-Roque
- ECLAMC at Servicio de Genética, Hospital Nacional Edgardo Rebagliati Martins/EsSalud, Lima, Peru
| | - Juan Llerena
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,ECLAMC at Centro de Genética Médica, IFF/FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | - Pricila Bernardi
- Núcleo de Genética Clínica, Departamento de Clínica Médica/UFSC, Florianópolis, Brazil
| | - Ana Maria Bolognese
- Departamento de Ortodontia, Faculdade de Odontologia/UFRJ, Rio de Janeiro, Brazil
| | - Luiz Carlos Santana da Silva
- Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil.,Laboratório de Erros Inatos de Metabolismo, Instituto de Ciências Biológicas/UFP, Belém, Brazil
| | - Pablo Barbero
- RENAC, Centro Nacional de Genética Médica Dr. Eduardo E. Castilla/MS, Buenos Aires, Argentina
| | | | | | | | - Iêda Maria Orioli
- ECLAMC at Departamento de Genética, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Genética Médica Populacional INAGEMP, Porto Alegre, Brazil
| |
Collapse
|
10
|
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development. Cells 2021; 10:cells10082063. [PMID: 34440832 PMCID: PMC8392544 DOI: 10.3390/cells10082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.
Collapse
|
11
|
Hong S, Hu P, Jang JH, Carrington B, Sood R, Berger SI, Roessler E, Muenke M. Functional analysis of Sonic Hedgehog variants associated with holoprosencephaly in humans using a CRISPR/Cas9 zebrafish model. Hum Mutat 2020; 41:2155-2166. [PMID: 32939873 DOI: 10.1002/humu.24119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 01/20/2023]
Abstract
Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Hee Jang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Children's National Hospital, Center for Genetic Medicine Research and Rare Disease Institute, Washington DC, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Nagai-Tanima M, Hong S, Hu P, Carrington B, Sood R, Roessler E, Muenke M. Rare hypomorphic human variation in the heptahelical domain of SMO contributes to holoprosencephaly phenotypes. Hum Mutat 2020; 41:2105-2118. [PMID: 32906187 DOI: 10.1002/humu.24103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/14/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital anomaly affecting the forebrain and face in humans and occurs as frequently as 1:250 conceptions or 1:10,000 livebirths. Sonic Hedgehog signaling molecule is one of the best characterized HPE genes that plays crucial roles in numerous developmental processes including midline neural patterning and craniofacial development. The Frizzled class G-protein coupled receptor Smoothened (SMO), whose signaling activity is tightly regulated, is the sole obligate transducer of Hedgehog-related signals. However, except for previous reports of somatic oncogenic driver mutations in human cancers (or mosaic tumors in rare syndromes), any potential disease-related role of SMO genetic variation in humans is largely unknown. To our knowledge, ours is the first report of a human hypomorphic variant revealed by functional testing of seven distinct nonsynonymous SMO variants derived from HPE molecular and clinical data. Here we describe several zebrafish bioassays developed and guided by a systems biology analysis. This analysis strategy, and detection of hypomorphic variation in human SMO, demonstrates the necessity of integrating the genomic variant findings in HPE probands with other components of the Hedgehog gene regulatory network in overall medical interpretations.
Collapse
Affiliation(s)
- Momoko Nagai-Tanima
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Blake Carrington
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Men M, Wang X, Wu J, Zeng W, Jiang F, Zheng R, Li JD. Prevalence and associated phenotypes of DUSP6, IL17RD and SPRY4 variants in a large Chinese cohort with isolated hypogonadotropic hypogonadism. J Med Genet 2020; 58:66-72. [PMID: 32389901 DOI: 10.1136/jmedgenet-2019-106786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/13/2020] [Accepted: 03/09/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND FGF8-FGFR1 signalling is involved in multiple biological processes, while impairment of this signalling is one of the main reasons for isolated hypogonadotropic hypogonadism (IHH). Recently, several negative modulators of FGF8-FGFR1 signalling were also found to be involved in IHH, including DUSP6, IL17RD, SPRY2 and SPRY4. The aim of this study was to investigate the genotypic and phenotypic spectra of these genes in a large cohort of Chinese patients with IHH. METHODS A total of 196 patients with IHH were enrolled in this study. Whole-exome sequencing was performed to identify variants, which was verified by PCR and Sanger sequencing. RESULTS Four heterozygous DUSP6 variants (p.S157I, p.R83Q, p.P188L and p.N355I) were found in six patients. Cryptorchidism, dental agenesis, syndactyly and blue colour blindness were commonly observed in patients with DUSP6 mutations. Six heterozygous IL17RD variants (p.P191L, p.G35V, p.S671L, p.A221T, p.I329M and p.I329V) were found in seven patients. Segregation analysis indicated that 100% (5/5) of probands inherited the IL17RD variants from their unaffected parents, and oligogenicity was found in 4/7 patients. One rare SPRY4 variant (p.T68S) was found in a female patient with Kallmann syndrome who also carried a PLXNA1 mutation. CONCLUSION Our study greatly enriched the genotypic and phenotypic spectra of DUSP6, IL17RD and SPRY4 in IHH. Mutations in DUSP6 alone seem sufficient to cause IHH in an autosomal dominant manner, whereas IL17RD or SPRY4 mutations may cause IHH phenotypes in synergy with variants in other IHH-associated genes.
Collapse
Affiliation(s)
- Meichao Men
- Health Management Center, Xiangya Hospital Central South University, Changsha, Hunan, China.,Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Xinying Wang
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jiayu Wu
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wang Zeng
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Fang Jiang
- Central South University School of Life Sciences, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Ruizhi Zheng
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jia-Da Li
- Central South University School of Life Sciences, Changsha, Hunan, China .,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
14
|
Kobayashi S, Tanigawa J, Kondo H, Nabatame S, Maruoka A, Sho H, Tanikawa K, Inui R, Otsuki M, Shimomura I, Ozono K, Hashimoto K. Endocrinological Features of Hartsfield Syndrome in an Adult Patient With a Novel Mutation of FGFR1. J Endocr Soc 2020; 4:bvaa041. [PMID: 32373773 PMCID: PMC7192098 DOI: 10.1210/jendso/bvaa041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022] Open
Abstract
Hartsfield syndrome (HS: OMIM 615465) is a rare congenital disease associated with a mutation of the fibroblast growth factor receptor 1 gene (FGFR1) with the main features of holoprosencephaly and ectrodactyly. Patients with HS also present with endocrinological deficits, such as isolated hypogonadotropic hypogonadism and central diabetes insipidus. Although there are several studies on infancy/childhood history, there is no study of infant/childhood/adolescent/young adult HS natural history and endocrinological findings. Here, we report a male patient with HS associated with a novel de novo FGFR1 mutation (c. 1868A > C). The endocrinological profile was evaluated at ages 1 and 31 years. This long-term follow-up study highlights functional changes in the posterior pituitary gland and features of bone metabolism disorder. We also describe the anterior pituitary function. To our knowledge this is the first description of the natural history of an HS patient through birth to young adult age. Although the HS infants reported in the literature develop central diabetes insipidus, little is known about the serial changes in pituitary gland function during growth in HS patients. In this study we describe an adult patient with HS who showed improvement of hypernatremia during early adulthood. In addition, we emphasize the importance of prevention and treatment of osteoporosis in HS.
Collapse
Affiliation(s)
- Sachiko Kobayashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Daini Osaka Police Hospital, Karasugatsuji, Ten-noji, Osaka, Japan
| | - Junpei Tanigawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Hidehito Kondo
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
- Department of Pediatrics, Kyoto Daiichi Red Cross Hospital, Honmachi, Higashiyama-ku, Kyoto, Japan
| | - Shin Nabatame
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Azusa Maruoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Daini Osaka Police Hospital, Karasugatsuji, Ten-noji, Osaka, Japan
| | - Hiroyuki Sho
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Daini Osaka Police Hospital, Karasugatsuji, Ten-noji, Osaka, Japan
| | - Kazuko Tanikawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Daini Osaka Police Hospital, Karasugatsuji, Ten-noji, Osaka, Japan
| | - Ryoko Inui
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Daini Osaka Police Hospital, Karasugatsuji, Ten-noji, Osaka, Japan
| | - Michio Otsuki
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Kunihiko Hashimoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Daini Osaka Police Hospital, Karasugatsuji, Ten-noji, Osaka, Japan
| |
Collapse
|
15
|
Loss-of-Function Variants in PPP1R12A: From Isolated Sex Reversal to Holoprosencephaly Spectrum and Urogenital Malformations. Am J Hum Genet 2020; 106:121-128. [PMID: 31883643 DOI: 10.1016/j.ajhg.2019.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 02/01/2023] Open
Abstract
In two independent ongoing next-generation sequencing projects for individuals with holoprosencephaly and individuals with disorders of sex development, and through international research collaboration, we identified twelve individuals with de novo loss-of-function (LoF) variants in protein phosphatase 1, regulatory subunit 12a (PPP1R12A), an important developmental gene involved in cell migration, adhesion, and morphogenesis. This gene has not been previously reported in association with human disease, and it has intolerance to LoF as illustrated by a very low observed-to-expected ratio of LoF variants in gnomAD. Of the twelve individuals, midline brain malformations were found in five, urogenital anomalies in nine, and a combination of both phenotypes in two. Other congenital anomalies identified included omphalocele, jejunal, and ileal atresia with aberrant mesenteric blood supply, and syndactyly. Six individuals had stop gain variants, five had a deletion or duplication resulting in a frameshift, and one had a canonical splice acceptor site loss. Murine and human in situ hybridization and immunostaining revealed PPP1R12A expression in the prosencephalic neural folds and protein localization in the lower urinary tract at critical periods for forebrain division and urogenital development. Based on these clinical and molecular findings, we propose the association of PPP1R12A pathogenic variants with a congenital malformations syndrome affecting the embryogenesis of the brain and genitourinary systems and including disorders of sex development.
Collapse
|
16
|
Neocleous V, Fanis P, Toumba M, Tanteles GA, Schiza M, Cinarli F, Nicolaides NC, Oulas A, Spyrou GM, Mantzoros CS, Vlachakis D, Skordis N, Phylactou LA. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front Endocrinol (Lausanne) 2020; 11:626. [PMID: 32982993 PMCID: PMC7485345 DOI: 10.3389/fendo.2020.00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, IASIS Hospital, Paphos, Cyprus
| | - George A. Tanteles
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Melpo Schiza
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Feride Cinarli
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nicolas C. Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Childrens Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George's, University of London Medical School at the University of Nicosia, Nicosia, Cyprus
- *Correspondence: Nicos Skordis
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Leonidas A. Phylactou
| |
Collapse
|
17
|
Men M, Wu J, Zhao Y, Xing X, Jiang F, Zheng R, Li JD. Genotypic and phenotypic spectra of FGFR1, FGF8, and FGF17 mutations in a Chinese cohort with idiopathic hypogonadotropic hypogonadism. Fertil Steril 2019; 113:158-166. [PMID: 31748124 DOI: 10.1016/j.fertnstert.2019.08.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To analyze the prevalence of FGFR1, FGF8, and FGF17 mutations in a Chinese cohort with idiopathic hypogonadotropic hypogonadism (IHH) and to characterize the clinical presentations and therapeutic outcomes of IHH patients with FGFR1, FGF8, and FGF17 mutations. DESIGN Retrospective cohort. SETTING University hospital. PATIENT(S) A total of 145 IHH probands (125 men and 20 women) were recruited for this study. INTERVENTIONS(S) Hormone assays. MAIN OUTCOME MEASURE(S) Whole-exome sequencing, polymerase chain reaction-Sanger sequencing, in silico functional prediction. RESULT(S) Six novel mutations (p.154_158del, p.E496Rfs*12, p.W190X, p.S134D, p.W10X, and c.1552 + 3insT) in FGFR1, two novel mutations (p.E176K and p.R184C) in FGF8, three novel mutations (p.48_52del, p.P120L, and p.K191R) in FGF17, and five reported mutations (p.W289X, p.G237S, p.V102I, p.R250Q, and p.T340M) in FGFR1 were identified in 18 IHH patients. The functional consequences of all mutations were analyzed in silico. In addition to hypogonadotropic hypogonadism, 44.4% (8/18) patients exhibited other clinical deformities, including dental agenesis (3/18, 16.7%), hearing loss (3/18, 16.7%), and hand malformation (2/18, 11.1%). hCG/hMG therapy was effective in promoting sexual development in IHH patients with FGFR1, FGF8, and FGF17 mutations. CONCLUSION(S) We extended the mutational spectrum of FGFR1, FGF8, and FGF17 in IHH patients. The prevalence of FGFR1, FGF8, and FGF17 mutations in IHH was 12.4%. hCG/hMG therapy was effective to acquire fertility for patients with FGFR1, FGF8, and FGF17 mutations but has a risk of transmitting the mutations and IHH to the next generation.
Collapse
Affiliation(s)
- Meichao Men
- Health Management Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China; School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Jiayu Wu
- School of Life Sciences, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, People's Republic of China
| | - Yaguang Zhao
- School of Life Sciences, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, People's Republic of China
| | - Xiaoliang Xing
- School of Life Sciences, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, People's Republic of China
| | - Fang Jiang
- School of Life Sciences, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, People's Republic of China
| | - Ruizhi Zheng
- Department of Endocrinology, People's Hospital of Henan Province, Zhengzhou, People's Republic of China
| | - Jia-Da Li
- School of Life Sciences, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, People's Republic of China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
18
|
Courage C, Jackson CB, Owczarek-Lipska M, Jamsheer A, Sowińska-Seidler A, Piotrowicz M, Jakubowski L, Dallèves F, Riesch E, Neidhardt J, Lemke JR. Novel synonymous and missense variants in FGFR1 causing Hartsfield syndrome. Am J Med Genet A 2019; 179:2447-2453. [PMID: 31512363 DOI: 10.1002/ajmg.a.61354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/29/2022]
Abstract
Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1-related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson-Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1. Here, we report three patients with Hartsfield syndrome from two unrelated families. Exome sequencing revealed two siblings harboring a novel de novo heterozygous synonymous variant c.1029G>A, p.Ala343Ala causing a cryptic splice donor site in exon 8 of FGFR1 likely due to gonadal mosaicism in one parent. The third case was a sporadic patient with a novel de novo heterozygous missense variant c.1868A>G, p.(Asp623Gly).
Collapse
Affiliation(s)
- Carolina Courage
- Folkhälsan Research Center, Helsinki, Finland.,Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Christopher B Jackson
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland.,Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Piotrowicz
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute, Poland
| | - Lucjusz Jakubowski
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute, Poland
| | - Fanny Dallèves
- Division of Human Genetics, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Erik Riesch
- CeGaT GmbH-Center for Genomics and Transcriptomics, Tübingen, Germany
| | - John Neidhardt
- Human Genetics, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
19
|
Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Cohesin complex-associated holoprosencephaly. Brain 2019; 142:2631-2643. [PMID: 31334757 PMCID: PMC7245359 DOI: 10.1093/brain/awz210] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Seth I Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Mike R Dekker
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jenna Gaesser
- Department of Pediatrics, Division of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David R Murdock
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Eloise J Prijoles
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Angie W Lichty
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC, USA
| | - Oebele F Brouwer
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Stephan
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jacob Hogue
- Division of Clinical Genetics, Department of Pediatrics, Madigan Army Hospital, Tacoma, WA, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Momoko Tanima-Nagai
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joshua L Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Chitra Prasad
- Children’s Health Research Institute, London, ON, Canada
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vickie Zurcher
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Corsten-Janssen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Luis Escobar
- Peyton Manning Children’s Hospital at St. Vincent, Medical Genetics and Neurodevelopment Center, Indianapolis, IN, USA
| | - Nancy J Clegg
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Mauricio R Delgado
- Texas Scottish Rite Hospital for Children, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics UT Southwestern Medical Center Dallas, TX, USA
| | - Omkar Hajirnis
- Pediatric Neurology, Synapses Child Neurology and Development Centre, Thane, Maharashtra, India
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children’s, NHS Foundation Trust, Sheffield, UK
- Academic Unit of Child Health, University of Sheffield, Sheffield, UK
| | - Hülya Kayserili
- Medical Genetics, Medical Faculty, Koç University, Istanbul, Turkey
| | - Matthew Deardorff
- The Division of Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond A Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Palumbo P, Petracca A, Maggi R, Biagini T, Nardella G, Sacco MC, Di Schiavi E, Carella M, Micale L, Castori M. A novel dominant-negative FGFR1 variant causes Hartsfield syndrome by deregulating RAS/ERK1/2 pathway. Eur J Hum Genet 2019; 27:1113-1120. [PMID: 30787447 DOI: 10.1038/s41431-019-0350-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
Hartsfield syndrome (HS) is an ultrarare developmental disorder mainly featuring holoprosencephaly and ectrodactyly. It is caused by heterozygous or biallelic variants in FGFR1. Recently, a dominant-negative effect was suggested for FGFR1 variants associated with HS. Here, exome sequencing analysis in a 12-year-old boy with HS disclosed a novel de novo heterozygous variant c.1934C>T in FGFR1 predicted to cause the p.(Ala645Val) amino-acid substitution. In order to evaluate whether the variant, changing a highly conserved residue of the kinase domain, affects FGFR1 function, biochemical studies were employed. We measured the FGFR1 receptor activity in FGF2-treated cell lines exogenously expressing wild-type or Ala645Val FGFR1 by monitoring the activation status of FGF2/FGFR1 downstream pathways. Our analysis highlighted that RAS/ERK1/2 signaling was significantly perturbed in cells expressing mutated FGFR1, in comparison with control cells. We also provided preliminary evidence showing a modulation of the autophagic process in cells expressing mutated FGFR1. This study expands the FGFR1 mutational spectrum associated with HS, provides functional evidence further supporting a dominant-negative effect of this category of FGFR1 variants and offers initial insights on dysregulation of autophagy in HS.
Collapse
Affiliation(s)
- Pietro Palumbo
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, San Giovanni Rotondo, FG, Italy
| | - Antonio Petracca
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, San Giovanni Rotondo, FG, Italy
| | - Roberto Maggi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Studi di Milano, Italy
| | - Tommaso Biagini
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unit of Bioinformatics, San Giovanni Rotondo, FG, Italy
| | - Grazia Nardella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, San Giovanni Rotondo, FG, Italy.,Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Michele Carmine Sacco
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Pediatrics, San Giovanni Rotondo, FG, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council (CNR), Naples, Italy
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, San Giovanni Rotondo, FG, Italy
| | - Lucia Micale
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, San Giovanni Rotondo, FG, Italy.
| | - Marco Castori
- Fondazione IRCCS Casa Sollievo della Sofferenza, Division of Medical Genetics, San Giovanni Rotondo, FG, Italy
| |
Collapse
|
21
|
Hong S, Hu P, Roessler E, Hu T, Muenke M. Loss-of-function mutations in FGF8 can be independent risk factors for holoprosencephaly. Hum Mol Genet 2019; 27:1989-1998. [PMID: 29584859 DOI: 10.1093/hmg/ddy106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
The utilization of next generation sequencing has been shown to accelerate gene discovery in human disease. However, our confidence in the correct disease-associations of rare variants continues to depend on functional analysis. Here, we employ a sensitive assay of human FGF8 variants in zebrafish to demonstrate that the spectrum of isoforms of FGF8 produced by alternative splicing can provide key insights into the genetic susceptibility to human malformations. In addition, we describe novel mutations in the FGF core structure that have both subtle and profound effects on ligand posttranslational processing and biological activity. Finally, we solve a case of apparent digenic inheritance of novel variants in SHH and FGF8, two genes known to functionally coregulate each other in the developing forebrain, as a simpler case of FGF8 diminished function.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Tommy Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| |
Collapse
|
22
|
Weng M, Chen Z, Xiao Q, Li R, Chen Z. A review of FGF signaling in palate development. Biomed Pharmacother 2018; 103:240-247. [DOI: 10.1016/j.biopha.2018.04.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 11/25/2022] Open
|
23
|
Kruszka P, Martinez AF, Muenke M. Molecular testing in holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2018; 178:187-193. [PMID: 29771000 PMCID: PMC6125165 DOI: 10.1002/ajmg.c.31617] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 01/09/2023]
Abstract
Holoprosencephaly (HPE) is a structural brain anomaly characterized by failure of the forebrain to separate during early embryogenesis. Both genetic and environmental etiologies of HPE have been discovered over the last three decades. Traditionally, the genetic workup for HPE has been a karyotype, chromosomal microarray, and/or Sanger sequencing of select genes. The recent increased availability of next-generation sequencing has changed the molecular diagnostic landscape for HPE, associating new genes with this disorder such as FGFR1. We conducted a systematic review of the medical literature for the molecular testing of HPE for studies published in the last 20 years. We also queried known commercial diagnostic laboratories and used information on their websites to construct a list of available commercial testing. Our group released its first recommendations in 2010 and this update incorporates the technology shifts and gene discoveries over the last decade. These recommendations provide a guide for genetic diagnosis of HPE, which is paramount for patients and their families for prognosis, treatment, and genetic counseling.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, The National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Dubourg C, Kim A, Watrin E, de Tayrac M, Odent S, David V, Dupé V. Recent advances in understanding inheritance of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:258-269. [PMID: 29785796 DOI: 10.1002/ajmg.c.31619] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Holoprosencephaly (HPE) is a complex genetic disorder of the developing forebrain characterized by high phenotypic and genetic heterogeneity. HPE was initially defined as an autosomal dominant disease, but recent research has shown that its mode of transmission is more complex. The past decade has witnessed rapid development of novel genetic technologies and significant progresses in clinical studies of HPE. In this review, we recapitulate genetic epidemiological studies of the largest European HPE cohort and summarize the novel genetic discoveries of HPE based on recently developed diagnostic methods. Our main purpose is to present different inheritance patterns that exist for HPE with a particular emphasis on oligogenic inheritance and its implications in genetic counseling.
Collapse
Affiliation(s)
- Christèle Dubourg
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| | - Erwan Watrin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| | - Marie de Tayrac
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Sylvie Odent
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Clinique, CHU, Rennes, France
| | - Véronique David
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F - 35000, Rennes, France
| |
Collapse
|
25
|
Roessler E, Hu P, Muenke M. Holoprosencephaly in the genomics era. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:165-174. [PMID: 29770992 DOI: 10.1002/ajmg.c.31615] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023]
Abstract
Holoprosencephaly (HPE) is the direct consequence of specific genetic and/or environmental insults interrupting the midline specification of the nascent forebrain. Such disturbances can lead to a broad range of phenotypic consequences for the brain and face in humans. This malformation sequence is remarkably common in utero (1 in 250 human fetuses), but 97% typically do not survive to birth. The precise molecular pathogenesis of HPE in these early human embryos remains largely unknown. Here, we outline our current understanding of the principal driving factors leading to HPE pathologies and elaborate our multifactorial integrated genomics approach. Overall, our understanding of the pathogenesis continues to become simpler, rather than more complicated. Genomic technologies now provide unprecedented insight into disease-associated variation, including the overall extent of genetic interactions (coding and noncoding) predicted to explain divergent phenotypes.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human, Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Kruszka P, Muenke M. Syndromes associated with holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:229-237. [PMID: 29770994 DOI: 10.1002/ajmg.c.31620] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 01/29/2023]
Abstract
Holoprosencephaly (HPE) is partial or complete failure of the forebrain to divide into hemispheres and can be an isolated finding or associated with a syndrome. Most cases of HPE are associated with a syndrome and roughly 40%-60% of fetuses with HPE have trisomy 13 which is the most common etiology of HPE. Other syndromes associated with HPE include additional aneuploidies like trisomy 18 and single gene disorders such as Smith-Lemli-Opitz syndrome. There are a number of syndromes such as pseudotrisomy 13 which do not have a known molecular etiology; therefore, this review has two parts: syndromes with a molecular diagnosis and syndromes where the etiology is yet to be found. As most HPE is syndromic, this review provides a comprehensive list and description of syndromes associated with HPE that may be used as a differential diagnosis and starting point for evaluating individuals with HPE.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
27
|
Maione L, Dwyer AA, Francou B, Guiochon-Mantel A, Binart N, Bouligand J, Young J. GENETICS IN ENDOCRINOLOGY: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol 2018; 178:R55-R80. [PMID: 29330225 DOI: 10.1530/eje-17-0749] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 12/22/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare, related diseases that prevent normal pubertal development and cause infertility in affected men and women. However, the infertility carries a good prognosis as increasing numbers of patients with CHH/KS are now able to have children through medically assisted procreation. These are genetic diseases that can be transmitted to patients' offspring. Importantly, patients and their families should be informed of this risk and given genetic counseling. CHH and KS are phenotypically and genetically heterogeneous diseases in which the risk of transmission largely depends on the gene(s) responsible(s). Inheritance may be classically Mendelian yet more complex; oligogenic modes of transmission have also been described. The prevalence of oligogenicity has risen dramatically since the advent of massively parallel next-generation sequencing (NGS) in which tens, hundreds or thousands of genes are sequenced at the same time. NGS is medically and economically more efficient and more rapid than traditional Sanger sequencing and is increasingly being used in medical practice. Thus, it seems plausible that oligogenic forms of CHH/KS will be increasingly identified making genetic counseling even more complex. In this context, the main challenge will be to differentiate true oligogenism from situations when several rare variants that do not have a clear phenotypic effect are identified by chance. This review aims to summarize the genetics of CHH/KS and to discuss the challenges of oligogenic transmission and also its role in incomplete penetrance and variable expressivity in a perspective of genetic counseling.
Collapse
Affiliation(s)
- Luigi Maione
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Andrew A Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, Massachusetts, USA
| | - Bruno Francou
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Nadine Binart
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenomics, and Hormonology, Le Kremlin-Bicêtre, France
| | - Jacques Young
- University of Paris-Sud, Paris-Sud Medical School, Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, France
- INSERM U1185, Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Affiliation(s)
- Maximilian Muenke
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| | - Suzanne Hart
- National Human Genome Research InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
29
|
Lansdon LA, Bernabe HV, Nidey N, Standley J, Schnieders MJ, Murray JC. The Use of Variant Maps to Explore Domain-Specific Mutations of FGFR1. J Dent Res 2017; 96:1339-1345. [PMID: 28825856 DOI: 10.1177/0022034517726496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here we describe the genotype-phenotype correlations of diseases caused by variants in Fibroblast Growth Factor Receptor 1 ( FGFR1) and report a novel, de novo variant in FGFR1 in an individual with multiple congenital anomalies. The proband presented with bilateral cleft lip and palate, malformed auricles, and bilateral ectrodactyly of his hands and feet at birth. He was later diagnosed with diabetes insipidus, spastic quadriplegia, developmental delay, agenesis of the corpus callosum, and enlargement of the third cerebral ventricle. We noted the substantial phenotypic overlap with individuals with Hartsfield syndrome, the rare combination of holoprosencephaly and ectrodactyly. Sequencing of FGFR1 identified a previously unreported de novo variant in exon 11 (p.Gly487Cys), which we modeled to determine its predicted effect on the protein structure. Although it was not predicted to significantly alter protein folding stability, it is possible this variant leads to the formation of nonnative intra- or intermolecular disulfide bonds. We then mapped this and other disease-associated variants to a 3-dimensional model of FGFR1 to assess which protein domains harbored the highest number of pathogenic changes. We observed the greatest number of variants within the domains involved in FGF binding and FGFR activation. To further explore the contribution of each variant to disease, we recorded the phenotype resulting from each FGFR1 variant to generate a series of phenotype-specific protein maps and compared our results to benign variants appearing in control databases. It is our hope that the use of phenotypic maps such as these will further the understanding of genetic disease in general and diseases caused by variation in FGFR1 specifically.
Collapse
Affiliation(s)
- L A Lansdon
- 1 Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,2 Department of Biology, University of Iowa, Iowa City, IA, USA.,3 Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - H V Bernabe
- 4 Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - N Nidey
- 1 Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - J Standley
- 1 Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - M J Schnieders
- 4 Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - J C Murray
- 1 Department of Pediatrics, University of Iowa, Iowa City, IA, USA.,3 Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
30
|
Hong M, Srivastava K, Kim S, Allen BL, Leahy DJ, Hu P, Roessler E, Krauss RS, Muenke M. BOC is a modifier gene in holoprosencephaly. Hum Mutat 2017; 38:1464-1470. [PMID: 28677295 DOI: 10.1002/humu.23286] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Holoprosencephaly (HPE), a common developmental defect of the forebrain and midface, has a complex etiology. Heterozygous, loss-of-function mutations in the sonic hedgehog (SHH) pathway are associated with HPE. However, mutation carriers display highly variable clinical presentation, leading to an "autosomal dominant with modifier" model, in which the penetrance and expressivity of a predisposing mutation is graded by genetic or environmental modifiers. Such modifiers have not been identified. Boc encodes a SHH coreceptor and is a silent HPE modifier gene in mice. Here, we report the identification of missense BOC variants in HPE patients. Consistent with these alleles functioning as HPE modifiers, individual variant BOC proteins had either loss- or gain-of-function properties in cell-based SHH signaling assays. Therefore, in addition to heterozygous loss-of-function mutations in specific SHH pathway genes and an ill-defined environmental component, our findings identify a third variable in HPE: low-frequency modifier genes, BOC being the first identified.
Collapse
Affiliation(s)
- Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kshitij Srivastava
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Sungjin Kim
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin L Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Daniel J Leahy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Abstract
The chromatin scaffolding protein SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) was previously shown to have diverse roles in X-chromosome inactivation, imprinting and double-strand break repair, and mutations in SMCHD1 contribute to a type of muscular dystrophy. Now, development of the nose and eyes is added to its list of functions.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Luo H, Zheng R, Zhao Y, Wu J, Li J, Jiang F, Chen DN, Zhou XT, Li JD. A dominant negative FGFR1 mutation identified in a Kallmann syndrome patient. Gene 2017; 621:1-4. [DOI: 10.1016/j.gene.2017.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
|
33
|
Weiss K, Kruszka P, Guillen Sacoto MJ, Addissie YA, Hadley DW, Hadsall CK, Stokes B, Hu P, Roessler E, Solomon B, Wiggs E, Thurm A, Hufnagel RB, Zein WM, Hahn JS, Stashinko E, Levey E, Baldwin D, Clegg NJ, Delgado MR, Muenke M. In-depth investigations of adolescents and adults with holoprosencephaly identify unique characteristics. Genet Med 2017. [PMID: 28640243 PMCID: PMC5763157 DOI: 10.1038/gim.2017.68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose With improved medical care, some individuals with holoprosencephaly (HPE) are surviving into adulthood. We investigated the clinical manifestations of adolescents and adults with HPE and explored the underlying molecular causes. Methods Participants included 20 subjects 15 years of age and older. Clinical assessments included dysmorphology exams, cognitive testing, swallowing studies, ophthalmic examination, and brain magnetic resonance imaging. Genetic testing included chromosomal microarray, Sanger sequencing for SHH, ZIC2, SIX3, and TGIF, and whole-exome sequencing (WES) of 10 trios. Results Semilobar HPE was the most common subtype of HPE, seen in 50% of the participants. Neurodevelopmental disabilities were found to correlate with HPE subtype. Factors associated with long-term survival included HPE subtype not alobar, female gender, and nontypical facial features. Four participants had de novo pathogenic variants in ZIC2. WES analysis of 11 participants did not reveal plausible candidate genes, suggesting complex inheritance in these cases. Indeed, in two probands there was a history of uncontrolled maternal type 1 diabetes. Conclusion Individuals with various HPE subtypes can survive into adulthood and the neurodevelopmental outcomes are variable. Based on the facial characteristics and molecular evaluations, we suggest that classic genetic causes of HPE may play a smaller role in this cohort.
Collapse
Affiliation(s)
- Karin Weiss
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria J Guillen Sacoto
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yonit A Addissie
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donald W Hadley
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Casey K Hadsall
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bethany Stokes
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Beth Solomon
- Speech and Language Pathology Section, Department of Rehabilitation Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Edythe Wiggs
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Audrey Thurm
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jin S Hahn
- Stanford University School of Medicine and Lucile Packard Children's Hospital, Stanford, California, USA
| | - Elaine Stashinko
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Eric Levey
- Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Debbie Baldwin
- Department of Neurology, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Nancy J Clegg
- Department of Neurology, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA
| | - Mauricio R Delgado
- Department of Neurology, Texas Scottish Rite Hospital for Children, Dallas, Texas, USA.,Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Takagi M, Miyoshi T, Nagashima Y, Shibata N, Yagi H, Fukuzawa R, Hasegawa T. Novel heterozygous mutation in the extracellular domain of FGFR1 associated with Hartsfield syndrome. Hum Genome Var 2016; 3:16034. [PMID: 27790375 PMCID: PMC5061861 DOI: 10.1038/hgv.2016.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 11/12/2022] Open
Abstract
Heterozygous kinase domain mutations or homozygous extracellular domain mutations in FGFR1 have been reported to cause Hartsfield syndrome (HS), which is characterized by the triad of holoprosencephaly, ectrodactyly and cleft lip/palate. To date, more than 200 mutations in FGFR1 have been described; however, only 10 HS-associated mutations have been reported thus far. We describe a case of typical HS with hypogonadotropic hypogonadism (HH) harboring a novel heterozygous mutation, p.His253Pro, in the extracellular domain of FGFR1. This is the first report of an HS-associated heterozygous mutation located in the extracellular domain of FGFR1, thus expanding our understanding of the phenotypic features and further developmental course associated with FGFR1 mutations.
Collapse
Affiliation(s)
- Masaki Takagi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan; Department of Pathology and Laboratory Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tatsuya Miyoshi
- Department of Endocrinology and Metabolism, Shikoku Medical Center for Children and Adults , Kagawa, Japan
| | - Yuka Nagashima
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center , Tokyo, Japan
| | - Nao Shibata
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center , Tokyo, Japan
| | - Hiroko Yagi
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center , Tokyo, Japan
| | - Ryuji Fukuzawa
- Department of Pathology and Laboratory Medicine, Tokyo Metropolitan Children's Medical Center , Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|
35
|
Dubourg C, Carré W, Hamdi-Rozé H, Mouden C, Roume J, Abdelmajid B, Amram D, Baumann C, Chassaing N, Coubes C, Faivre-Olivier L, Ginglinger E, Gonzales M, Levy-Mozziconacci A, Lynch SA, Naudion S, Pasquier L, Poidvin A, Prieur F, Sarda P, Toutain A, Dupé V, Akloul L, Odent S, de Tayrac M, David V. Mutational Spectrum in Holoprosencephaly Shows That FGF is a New Major Signaling Pathway. Hum Mutat 2016; 37:1329-1339. [DOI: 10.1002/humu.23038] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Christèle Dubourg
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Wilfrid Carré
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Houda Hamdi-Rozé
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Charlotte Mouden
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Joëlle Roume
- Service de Génétique Médicale; CHI; Poissy France
| | | | - Daniel Amram
- Unité de Génétique Clinique; CHI; Créteil France
| | | | | | | | | | | | - Marie Gonzales
- Service de Génétique et Embryologie Médicales; Hôpital Armand Trousseau; Paris France
| | | | - Sally-Ann Lynch
- Medical Genetics; Our Lady's Children Hospital; Dublin Ireland
| | | | | | - Amélie Poidvin
- Service d'Endocrinologie; CHU Robert Debré; Paris France
| | | | - Pierre Sarda
- Département de Génétique Médicale; CHU; Montpellier France
| | | | - Valérie Dupé
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Linda Akloul
- Service de Génétique Clinique; CHU; Rennes France
| | - Sylvie Odent
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
- Service de Génétique Clinique; CHU; Rennes France
| | - Marie de Tayrac
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| | - Véronique David
- Service de Génétique Moléculaire et Génomique; CHU; Rennes France
- UMR6290 Institut de Génétique et Développement de Rennes; Université de Rennes 1; Rennes France
| |
Collapse
|
36
|
Prasad R, Brewer C, Burren CP. Hartsfield syndrome associated with a novel heterozygous missense mutation in FGFR1 and incorporating tumoral calcinosis. Am J Med Genet A 2016; 170:2222-5. [PMID: 27170295 DOI: 10.1002/ajmg.a.37731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/25/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Rathi Prasad
- Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Carole Brewer
- Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Christine P Burren
- Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| |
Collapse
|