1
|
Xing X, Liu X, Li X, Li M, Wu X, Huang X, Xu A, Liu Y, Zhang J. Insights into spinal muscular atrophy from molecular biomarkers. Neural Regen Res 2025; 20:1849-1863. [PMID: 38934395 DOI: 10.4103/nrr.nrr-d-24-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal muscular atrophy is a devastating motor neuron disease characterized by severe cases of fatal muscle weakness. It is one of the most common genetic causes of mortality among infants aged less than 2 years. Biomarker research is currently receiving more attention, and new candidate biomarkers are constantly being discovered. This review initially discusses the evaluation methods commonly used in clinical practice while briefly outlining their respective pros and cons. We also describe recent advancements in research and the clinical significance of molecular biomarkers for spinal muscular atrophy, which are classified as either specific or non-specific biomarkers. This review provides new insights into the pathogenesis of spinal muscular atrophy, the mechanism of biomarkers in response to drug-modified therapies, the selection of biomarker candidates, and would promote the development of future research. Furthermore, the successful utilization of biomarkers may facilitate the implementation of gene-targeting treatments for patients with spinal muscular atrophy.
Collapse
Affiliation(s)
- Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xinzhu Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xian Wu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Jalali H, Rahimian S, Shahsavarian N, Norouzi R, Ahmadiyeh Z, Najafi H, Golchin H. The organoid modeling approach to understanding the mechanisms underlying neurodegeneration: A comprehensive review. Life Sci 2024; 358:123198. [PMID: 39486620 DOI: 10.1016/j.lfs.2024.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Neurodegenerative diseases (NDs) are severe disorders of the nervous system, and their causes are still not completely understood. Modeling the complex pathological mechanisms underlying NDs has long posed a significant challenge, as traditional in vitro and animal models often fail to accurately recapitulate the disease phenotypes observed in humans; however, the rise of organoid technology has opened new approaches for developing innovative disease models that can better capture the nuances of the human nervous system. Organoid platforms hold promise for contributing to the design of future clinical trials and advancing our understanding of these devastating neurological conditions and accelerate the discovery of effective, personalized therapies. This comprehensive review discusses the recent advancements in neural organoid technology and explores the potential of patient-derived organoids for modeling NDs conditions and presents findings related to the mechanisms of their development or progress.
Collapse
Affiliation(s)
- Hanieh Jalali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Sana Rahimian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nasim Shahsavarian
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rozhan Norouzi
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Zahra Ahmadiyeh
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hossein Najafi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hasti Golchin
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Barbo M, Koritnik B, Leonardis L, Blagus T, Dolžan V, Ravnik-Glavač M. Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy. Cell Mol Neurobiol 2024; 44:71. [PMID: 39463208 PMCID: PMC11513727 DOI: 10.1007/s10571-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.
Collapse
Affiliation(s)
- Maruša Barbo
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- , Ljubljana, Slovenia.
| |
Collapse
|
4
|
Liguori M, Bianco A, Introna A, Consiglio A, Milella G, Abbatangelo E, D'Errico E, Licciulli F, Grillo G, Simone IL. An early Transcriptomic Investigation in Adult Patients with Spinal Muscular Atrophy Under Treatment with Nusinersen. J Mol Neurosci 2024; 74:89. [PMID: 39325116 PMCID: PMC11427494 DOI: 10.1007/s12031-024-02251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 09/27/2024]
Abstract
Spinal muscular atrophy (SMA) is a rare degenerative disorder with loss of motor neurons caused by mutations in the SMN1 gene. Nusinersen, an antisense oligonucleotide, was approved for SMA treatment to compensate the deficit of the encoded protein SMN by modulating the pre-mRNA splicing of SMN2, the centromeric homologous of SMN1, thus inducing the production of a greater amount of biologically active protein. Here, we reported a 10-month transcriptomics investigation in 10 adult SMA who received nusinersen to search for early genetic markers for clinical monitoring. By comparing their profiles with age-matched healthy controls (HC), we also analyzed the changes in miRNA/mRNAs expression and miRNA-target gene interactions possibly associated with SMA. A multidisciplinary approach of HT-NGS followed by bioinformatics/biostatistics analysis was applied. Within the study interval, those SMA patients who showed some clinical improvements were characterized by having the SMN2/SMN1 ratio slightly increased over the time, while in the stable ones the ratio decreased, suggesting that the estimation of SMN2/SMN1 expression may be an early indicator of nusinersen efficacy. On the other hand, the expression of 38/147 genes/genetic regions DE at T0 between SMA and HC like TRADD and JUND resulted "restored" at T10. We also confirmed the dysregulation of miR-146a(-5p), miR-324-5p and miR-423-5p in SMA subjects. Of interest, miR-146a-5p targeted SMN1, in line with experimental evidence showing the key role of astrocyte-produced miR-146a in SMA motor neuron loss. Molecular pathways such as NOTCH, NF-kappa B, and Toll-like receptor signalings seem to be involved in the SMA pathogenesis.
Collapse
Grants
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
- D.U.P. n.246/2019, D.D. n. 3 of 13 January 2021 Apulian Regional Council
Collapse
Affiliation(s)
- Maria Liguori
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy.
| | - Annalisa Bianco
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Alessandro Introna
- Neurology Unit, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Arianna Consiglio
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Giammarco Milella
- Neurology Unit, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Elena Abbatangelo
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Eustachio D'Errico
- Neurology Unit, Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Flavio Licciulli
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | - Giorgio Grillo
- National Research Council, Department of Biomedicine, Institute of Biomedical Technologies - Bari Unit, 70125, Bari, Italy
| | | |
Collapse
|
5
|
Banack SA, Dunlop RA, Mehta P, Mitsumoto H, Wood SP, Han M, Cox PA. A microRNA diagnostic biomarker for amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae268. [PMID: 39280119 PMCID: PMC11398878 DOI: 10.1093/braincomms/fcae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Blood-based diagnostic biomarkers for amyotrophic lateral sclerosis will improve patient outcomes and positively impact novel drug development. Critical to the development of such biomarkers is robust method validation, optimization and replication with adequate sample sizes and neurological disease comparative blood samples. We sought to test an amyotrophic lateral sclerosis biomarker derived from diverse samples to determine if it is disease specific. Extracellular vesicles were extracted from blood plasma obtained from individuals diagnosed with amyotrophic lateral sclerosis, primary lateral sclerosis, Parkinson's disease and healthy controls. Immunoaffinity purification was used to create a neural-enriched extracellular vesicle fraction. MicroRNAs were measured across sample cohorts using real-time polymerase chain reaction. A Kruskal-Wallis test was used to assess differences in plasma microRNAs followed by post hoc Mann-Whitney tests to compare disease groups. Diagnostic accuracy was determined using a machine learning algorithm and a logistic regression model. We identified an eight-microRNA diagnostic signature for blood samples from amyotrophic lateral sclerosis patients with high sensitivity and specificity and an area under the curve calculation of 98% with clear statistical separation from neurological controls. The eight identified microRNAs represent disease-related biological processes consistent with amyotrophic lateral sclerosis. The direction and magnitude of gene fold regulation are consistent across four separate patient cohorts with real-time polymerase chain reaction analyses conducted in two laboratories from diverse samples and sample collection procedures. We propose that this diagnostic signature could be an aid to neurologists to supplement current clinical metrics used to diagnose amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | - Paul Mehta
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MND/ALS Research Center, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Moon Han
- Office of Innovation and Analytics, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA 30033, USA
| | | |
Collapse
|
6
|
Rashid S, Dimitriadi M. Autophagy in spinal muscular atrophy: from pathogenic mechanisms to therapeutic approaches. Front Cell Neurosci 2024; 17:1307636. [PMID: 38259504 PMCID: PMC10801191 DOI: 10.3389/fncel.2023.1307636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder caused by the depletion of the ubiquitously expressed survival motor neuron (SMN) protein. While the genetic cause of SMA has been well documented, the exact mechanism(s) by which SMN depletion results in disease progression remain elusive. A wide body of evidence has highlighted the involvement and dysregulation of autophagy in SMA. Autophagy is a highly conserved lysosomal degradation process which is necessary for cellular homeostasis; defects in the autophagic machinery have been linked with a wide range of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. The pathway is particularly known to prevent neurodegeneration and has been suggested to act as a neuroprotective factor, thus presenting an attractive target for novel therapies for SMA patients. In this review, (a) we provide for the first time a comprehensive summary of the perturbations in the autophagic networks that characterize SMA development, (b) highlight the autophagic regulators which may play a key role in SMA pathogenesis and (c) propose decreased autophagic flux as the causative agent underlying the autophagic dysregulation observed in these patients.
Collapse
Affiliation(s)
| | - Maria Dimitriadi
- School of Life and Medical Science, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
7
|
Sierra-Delgado JA, Sinha-Ray S, Kaleem A, Ganjibakhsh M, Parvate M, Powers S, Zhang X, Likhite S, Meyer K. In Vitro Modeling as a Tool for Testing Therapeutics for Spinal Muscular Atrophy and IGHMBP2-Related Disorders. BIOLOGY 2023; 12:867. [PMID: 37372153 DOI: 10.3390/biology12060867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Spinal Muscular Atrophy (SMA) is the leading genetic cause of infant mortality. The most common form of SMA is caused by mutations in the SMN1 gene, located on 5q (SMA). On the other hand, mutations in IGHMBP2 lead to a large disease spectrum with no clear genotype-phenotype correlation, which includes Spinal Muscular Atrophy with Muscular Distress type 1 (SMARD1), an extremely rare form of SMA, and Charcot-Marie-Tooth 2S (CMT2S). We optimized a patient-derived in vitro model system that allows us to expand research on disease pathogenesis and gene function, as well as test the response to the AAV gene therapies we have translated to the clinic. We generated and characterized induced neurons (iN) from SMA and SMARD1/CMT2S patient cell lines. After establishing the lines, we treated the generated neurons with AAV9-mediated gene therapy (AAV9.SMN (Zolgensma) for SMA and AAV9.IGHMBP2 for IGHMBP2 disorders (NCT05152823)) to evaluate the response to treatment. The iNs of both diseases show a characteristic short neurite length and defects in neuronal conversion, which have been reported in the literature before with iPSC modeling. SMA iNs respond to treatment with AAV9.SMN in vitro, showing a partial rescue of the morphology phenotype. For SMARD1/CMT2S iNs, we were able to observe an improvement in the neurite length of neurons after the restoration of IGHMBP2 in all disease cell lines, albeit to a variable extent, with some lines showing better responses to treatment than others. Moreover, this protocol allowed us to classify a variant of uncertain significance on IGHMBP2 on a suspected SMARD1/CMT2S patient. This study will further the understanding of SMA, and SMARD1/CMT2S disease in particular, in the context of variable patient mutations, and might further the development of new treatments, which are urgently needed.
Collapse
Affiliation(s)
| | - Shrestha Sinha-Ray
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Abuzar Kaleem
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Meysam Ganjibakhsh
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Mohini Parvate
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Samantha Powers
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Xiaojin Zhang
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Shibi Likhite
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kathrin Meyer
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
8
|
Kim JK, Jha NN, Awano T, Caine C, Gollapalli K, Welby E, Kim SS, Fuentes-Moliz A, Wang X, Feng Z, Sera F, Takeda T, Homma S, Ko CP, Tabares L, Ebert AD, Rich MM, Monani UR. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron 2023; 111:1423-1439.e4. [PMID: 36863345 PMCID: PMC10164130 DOI: 10.1016/j.neuron.2023.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Narendra N Jha
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Tomoyuki Awano
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Charlotte Caine
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Kishore Gollapalli
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, New York, NY, USA
| | - Andrea Fuentes-Moliz
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Zhihua Feng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fusako Sera
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taishi Takeda
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Shunichi Homma
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Umrao R Monani
- Department of Neurology, New York, NY, USA; Department of Pathology & Cell Biology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA; Colleen Giblin Research Laboratory, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Welby E, Ebert AD. Diminished motor neuron activity driven by abnormal astrocytic EAAT1 glutamate transporter activity in spinal muscular atrophy is not fully restored after lentiviral SMN delivery. Glia 2023; 71:1311-1332. [PMID: 36655314 DOI: 10.1002/glia.24340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Spinal muscular atrophy (SMA) is characterized by the loss of the lower spinal motor neurons due to survival motor neuron (SMN) deficiency. The motor neuron cell autonomous and non-cell autonomous disease mechanisms driving early glutamatergic dysfunction, a therapeutically targetable phenotype prior to motor neuron cell loss, remain unclear. Using microelectrode array analysis, we demonstrate that the secretome and cell surface proteins needed for proper synaptic modulation are likely disrupted in human SMA astrocytes and lead to diminished motor neuron activity. While healthy astrocyte conditioned media did not improve SMA motor neuron activity, SMA motor neurons robustly responded to healthy astrocyte neuromodulation in direct contact cultures. This suggests an important role of astrocyte synaptic-associated plasma membrane proteins and contact-mediated cellular interactions for proper motor neuron function in SMA. Specifically, we identified a significant reduction of the glutamate Na+ dependent excitatory amino acid transporter EAAT1 within human SMA astrocytes and SMA lumbar spinal cord tissue. The selective inhibition of EAAT1 in healthy co-cultures phenocopied the diminished neural activity observed in SMA astrocyte co-cultures. Caveolin-1, an SMN-interacting protein previously associated with local translation at the plasma membrane, was abnormally elevated in human SMA astrocytes. Although lentiviral SMN delivery to SMA astrocytes partially rescued EAAT1 expression, limited activity of healthy motor neurons was still observed in SMN-transduced SMA astrocyte co-cultures. Together, these data highlight the detrimental impact of astrocyte-mediated disease mechanisms on motor neuron function in SMA and that SMN delivery may be insufficient to fully restore astrocyte function at the synapse.
Collapse
Affiliation(s)
- Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Faravelli I, Riboldi GM, Rinchetti P, Lotti F. The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration. Int J Mol Sci 2023; 24:2247. [PMID: 36768569 PMCID: PMC9917330 DOI: 10.3390/ijms24032247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulietta M. Riboldi
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, NY 10017, USA
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
11
|
D’Silva AM, Kariyawasam D, Venkat P, Mayoh C, Farrar MA. Identification of Novel CSF-Derived miRNAs in Treated Paediatric Onset Spinal Muscular Atrophy: An Exploratory Study. Pharmaceutics 2023; 15:pharmaceutics15010170. [PMID: 36678797 PMCID: PMC9865256 DOI: 10.3390/pharmaceutics15010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
The availability of disease modifying therapies for spinal muscular atrophy (SMA) have created an urgent need to identify clinically meaningful biomarkers that provide insight into disease progression and therapeutic response. microRNAs (miRNA) have been shown to be involved in the pathogenesis of SMA and have the potential to provide insight within the field of SMA. miRNA-sequencing was utilized to identify differential miRNA expression in the cerebrospinal fluid (CSF) in six children with SMA treated with nusinersen in this exploratory study. Fourteen differentially expressed miRNAs were significantly altered in CSF from baseline to follow-up during treatment with nusinersen. The greatest magnitude of change was noted in miR-7-5p, miR-15a-5p, miR-15b-3p/5p, miR-126-5p, miR-128-2-5p and miR-130a-3p which encompassed a spectrum of functions predominantly in neurogenesis, neuronal differentiation and growth. The dominant signaling pathways identified in this study were the mammalian target of rapamycin and the mitogen-activated protein kinase signaling pathways. This study identified multiple miRNAs that were involved in the complex interplay between neurodevelopment and neurodegeneration.
Collapse
Affiliation(s)
- Arlene M. D’Silva
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +61-2-9382-5517
| | - Didu Kariyawasam
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Pooja Venkat
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chelsea Mayoh
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Michelle A. Farrar
- Department of Neurology, Sydney Children’s Hospital Network, Sydney, NSW 2031, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Sun J, Qiu J, Yang Q, Ju Q, Qu R, Wang X, Wu L, Xing L. Single-cell RNA sequencing reveals dysregulation of spinal cord cell types in a severe spinal muscular atrophy mouse model. PLoS Genet 2022; 18:e1010392. [PMID: 36074806 PMCID: PMC9488758 DOI: 10.1371/journal.pgen.1010392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/20/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Although spinal muscular atrophy (SMA) is a motor neuron disease caused by the loss of survival of motor neuron (SMN) proteins, there is growing evidence that non-neuronal cells play important roles in SMA pathogenesis. However, transcriptome alterations occurring at the single-cell level in SMA spinal cord remain unknown, preventing us from fully comprehending the role of specific cells. Here, we performed single-cell RNA sequencing of the spinal cord of a severe SMA mouse model, and identified ten cell types as well as their differentially expressed genes. Using CellChat, we found that cellular communication between different cell types in the spinal cord of SMA mice was significantly reduced. A dimensionality reduction analysis revealed 29 cell subtypes and their differentially expressed gene. A subpopulation of vascular fibroblasts showed the most significant change in the SMA spinal cord at the single-cell level. This subpopulation was drastically reduced, possibly causing vascular defects and resulting in widespread protein synthesis and energy metabolism reductions in SMA mice. This study reveals for the first time a single-cell atlas of the spinal cord of mice with severe SMA, and sheds new light on the pathogenesis of SMA.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- * E-mail: (JS); (LW); (LX)
| | - Jiaying Qiu
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qianqian Ju
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Xu Wang
- Laboratory Animal Center, Nantong University, Nantong, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong, China
- * E-mail: (JS); (LW); (LX)
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- * E-mail: (JS); (LW); (LX)
| |
Collapse
|
13
|
Khayrullina G, Alipio‐Gloria ZA, Deguise M, Gagnon S, Chehade L, Stinson M, Belous N, Bergman EM, Lischka FW, Rotty J, Dalgard CL, Kothary R, Johnson KA, Burnett BG. Survival motor neuron protein deficiency alters microglia reactivity. Glia 2022; 70:1337-1358. [PMID: 35373853 PMCID: PMC9081169 DOI: 10.1002/glia.24177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
Survival motor neuron (SMN) protein deficiency results in loss of alpha motor neurons and subsequent muscle atrophy in patients with spinal muscular atrophy (SMA). Reactive microglia have been reported in SMA mice and depleting microglia rescues the number of proprioceptive synapses, suggesting a role in SMA pathology. Here, we explore the contribution of lymphocytes on microglia reactivity in SMA mice and investigate how SMN deficiency alters the reactive profile of human induced pluripotent stem cell (iPSC)-derived microglia. We show that microglia adopt a reactive morphology in spinal cords of SMA mice. Ablating lymphocytes did not alter the reactive morphology of SMA microglia and did not improve the survival or motor function of SMA mice, indicating limited impact of peripheral immune cells on the SMA phenotype. We found iPSC-derived SMA microglia adopted an amoeboid morphology and displayed a reactive transcriptome profile, increased cell migration, and enhanced phagocytic activity. Importantly, cell morphology and electrophysiological properties of motor neurons were altered when they were incubated with conditioned media from SMA microglia. Together, these data reveal that SMN-deficient microglia adopt a reactive profile and exhibit an exaggerated inflammatory response with potential impact on SMA neuropathology.
Collapse
Affiliation(s)
- Guzal Khayrullina
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | | | - Marc‐Olivier Deguise
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioCanada
- Department of PediatricsChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Sabrina Gagnon
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
| | - Lucia Chehade
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioCanada
| | - Matthew Stinson
- Department of BiochemistryUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Natalya Belous
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Elizabeth M. Bergman
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Fritz W. Lischka
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Jeremy Rotty
- Department of BiochemistryUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
- The American Genome CenterUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Rashmi Kothary
- Regenerative Medicine ProgramOttawa Hospital Research InstituteOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
- Centre for Neuromuscular DiseaseUniversity of OttawaOttawaOntarioCanada
- Department of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Barrington G. Burnett
- Department of Anatomy, Physiology, and GeneticsUniformed Services University of the Health Sciences, F. Edward Hebert School of MedicineBethesdaMarylandUSA
| |
Collapse
|
14
|
Gomes C, Sequeira C, Likhite S, Dennys CN, Kolb SJ, Shaw PJ, Vaz AR, Kaspar BK, Meyer K, Brites D. Neurotoxic Astrocytes Directly Converted from Sporadic and Familial ALS Patient Fibroblasts Reveal Signature Diversities and miR-146a Theragnostic Potential in Specific Subtypes. Cells 2022; 11:cells11071186. [PMID: 35406750 PMCID: PMC8997588 DOI: 10.3390/cells11071186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups.
Collapse
Affiliation(s)
- Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Catarina Sequeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
| | - Shibi Likhite
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Cassandra N. Dennys
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
| | - Stephen J. Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43214, USA;
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK;
| | - Ana R. Vaz
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Brian K. Kaspar
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kathrin Meyer
- The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.L.); (C.N.D.); (B.K.K.); (K.M.)
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.G.); (C.S.); (A.R.V.)
- Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: ; Tel.: +351-217946450
| |
Collapse
|
15
|
Johns AE, Maragakis NJ. Exploring Motor Neuron Diseases Using iPSC Platforms. Stem Cells 2022; 40:2-13. [PMID: 35511862 PMCID: PMC9199844 DOI: 10.1093/stmcls/sxab006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
The degeneration of motor neurons is a pathological hallmark of motor neuron diseases (MNDs), but emerging evidence suggests that neuronal vulnerability extends well beyond this cell subtype. The ability to assess motor function in the clinic is limited to physical examination, electrophysiological measures, and tissue-based or neuroimaging techniques which lack the resolution to accurately assess neuronal dysfunction as the disease progresses. Spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), hereditary spastic paraplegia (HSP), and amyotrophic lateral sclerosis (ALS) are all MNDs with devastating clinical outcomes that contribute significantly to disease burden as patients are no longer able to carry out normal activities of daily living. The critical need to accurately assess the cause and progression of motor neuron dysfunction, especially in the early stages of those diseases, has motivated the use of human iPSC-derived motor neurons (hiPSC-MN) to study the neurobiological mechanisms underlying disease pathogenesis and to generate platforms for therapeutic discovery and testing. As our understanding of MNDs has grown, so too has our need to develop more complex in vitro models which include hiPSC-MN co-cultured with relevant non-neuronal cells in 2D as well as in 3D organoid and spheroid systems. These more complex hiPSC-derived culture systems have led to the implementation of new technologies, including microfluidics, multielectrode array, and machine learning which offer novel insights into the functional correlates of these emerging model systems.
Collapse
Affiliation(s)
- Alexandra E Johns
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
16
|
Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12030344. [PMID: 35327542 PMCID: PMC8945600 DOI: 10.3390/biom12030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Most neurodegenerative disorders have complex and still unresolved pathology characterized by progressive neuronal damage and death. Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies. In the last 14 years, the differentiation of human iPSCs into astrocytes allowed for the opportunity to explore the contribution of astrocytes to neurodegenerative diseases. This review discusses the development protocols and applications of human iPSC-derived astrocytes in the most common neurodegenerative conditions.
Collapse
|
17
|
The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11030572. [PMID: 35159383 PMCID: PMC8833997 DOI: 10.3390/cells11030572] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons. As there is no effective treatment for ALS, it is particularly important to screen key gene therapy targets. The identifications of microRNAs (miRNAs) have completely changed the traditional view of gene regulation. miRNAs are small noncoding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression. Recent advances also indicate that miRNAs are biomarkers in many diseases, including neurodegenerative diseases. In this review, we summarize recent advances regarding the mechanisms underlying the role of miRNAs in ALS pathogenesis and its application to gene therapy for ALS. The potential of miRNAs to target diverse pathways opens a new avenue for ALS therapy.
Collapse
|
18
|
Allison RL, Welby E, Khayrullina G, Burnett BG, Ebert AD. Viral mediated knockdown of GATA6 in SMA iPSC-derived astrocytes prevents motor neuron loss and microglial activation. Glia 2022; 70:989-1004. [PMID: 35088910 PMCID: PMC9303278 DOI: 10.1002/glia.24153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA), a pediatric genetic disorder, is characterized by the profound loss of spinal cord motor neurons and subsequent muscle atrophy and death. Although the mechanisms underlying motor neuron loss are not entirely clear, data from our work and others support the idea that glial cells contribute to disease pathology. GATA6, a transcription factor that we have previously shown to be upregulated in SMA astrocytes, is negatively regulated by SMN (survival motor neuron) and can increase the expression of inflammatory regulator NFκB. In this study, we identified upregulated GATA6 as a contributor to increased activation, pro-inflammatory ligand production, and neurotoxicity in spinal-cord patterned astrocytes differentiated from SMA patient induced pluripotent stem cells. Reducing GATA6 expression in SMA astrocytes via lentiviral infection ameliorated these effects to healthy control levels. Additionally, we found that SMA astrocytes contribute to SMA microglial phagocytosis, which was again decreased by lentiviral-mediated knockdown of GATA6. Together these data identify a role of GATA6 in SMA astrocyte pathology and further highlight glia as important targets of therapeutic intervention in SMA.
Collapse
Affiliation(s)
- Reilly L Allison
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guzal Khayrullina
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Welby E, Rehborg RJ, Harmelink M, Ebert AD. Assessment of cerebral spinal fluid biomarkers and microRNA-mediated disease mechanisms in spinal muscular atrophy patient samples. Hum Mol Genet 2021; 31:1830-1843. [PMID: 34919695 DOI: 10.1093/hmg/ddab365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/14/2022] Open
Abstract
Cerebral spinal fluid (CSF) is a promising biospecimen for the detection of central nervous system biomarkers to monitor therapeutic efficacy at the cellular level in neurological diseases. Spinal muscular atrophy (SMA) patients receiving intrathecal antisense oligonucleotide (nusinersen) therapy tend to show improved motor function, but the treatment effect on cellular health remains unknown. The objective of this study was to assess the potential of extracellular RNAs and microRNAs in SMA patient CSF as indicators of neuron and glial health following nusinersen treatment. Extracellular RNA analysis of CSF samples revealed ongoing cellular stress related to inflammation and glial differentiation, even after treatment administration. Downregulated microRNA expression associated with SMA-specific or general motor neuron dysfunction in animal and cellular models, tended to increase in nusinersen treated patient CSF samples and correlated with SMA Type 1 and 2 motor functioning improvements. However, miR-146a, known to be upregulated in SMA induced pluripotent stem cell (iPSC)-derived astrocytes, showed increased expression in nusinersen treated CSF samples. We then used mRNA sequencing and multi-electrode arrays to assess the transcriptional and functional effects of miR-146a on healthy and SMA iPSC-derived motor neurons. miR-146a treatment on iPSC-derived motor neurons led to a downregulation of extracellular matrix genes associated with synaptic perineuronal net and alterations in spontaneous electrophysiological activity. Together, this study suggests that extracellular RNAs and microRNAs may serve as useful biomarkers to monitor cellular health during nusinersen treatment. Moreover, these data highlight the importance of addressing astrocyte health and response to nusinersen in SMA pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Rebecca J Rehborg
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Harmelink
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
20
|
Yedigaryan L, Sampaolesi M. Therapeutic Implications of miRNAs for Muscle-Wasting Conditions. Cells 2021; 10:cells10113035. [PMID: 34831256 PMCID: PMC8616481 DOI: 10.3390/cells10113035] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that are mainly involved in translational repression by binding to specific messenger RNAs. Recently, miRNAs have emerged as biomarkers, relevant for a multitude of pathophysiological conditions, and cells can selectively sort miRNAs into extracellular vesicles for paracrine and endocrine effects. In the overall context of muscle-wasting conditions, a multitude of miRNAs has been implied as being responsible for the typical dysregulation of anabolic and catabolic pathways. In general, chronic muscle disorders are associated with the main characteristic of a substantial loss in muscle mass. Muscular dystrophies (MDs) are a group of genetic diseases that cause muscle weakness and degeneration. Typically, MDs are caused by mutations in those genes responsible for upholding the integrity of muscle structure and function. Recently, the dysregulation of miRNA levels in such pathological conditions has been reported. This revelation is imperative for both MDs and other muscle-wasting conditions, such as sarcopenia and cancer cachexia. The expression levels of miRNAs have immense potential for use as potential diagnostic, prognostic and therapeutic biomarkers. Understanding the role of miRNAs in muscle-wasting conditions may lead to the development of novel strategies for the improvement of patient management.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium;
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
21
|
An enriched environment prevents cognitive impairment in an Alzheimer's disease model by enhancing the secretion of exosomal microRNA-146a from the choroid plexus. Brain Behav Immun Health 2021; 9:100149. [PMID: 34589894 PMCID: PMC8474441 DOI: 10.1016/j.bbih.2020.100149] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized by the extensive deposition of amyloid-β plaques and neurofibrillary tangles. We previously found that preserved function of astrocytes is associated with cognitively normal subjects with AD pathology. Here we show that an enriched environment (EE) can prevent cognitive impairment in AD model mice by ameliorating astrocytic inflammation and increasing synaptic density in the subiculum area of the hippocampus. In AD model mice treated with an EE, increased levels of microRNA (miR)-146a and down-regulation of NF-κB were observed in the hippocampus. In addition, increased levels of interferon (IFN)-γ were seen in serum from mice exposed to an EE. In vitro, enhanced miR-146a expression was observed in exosomes derived from the choroid plexus (CP) after IFN-γ treatment. In further in vitro experiments, we transfected miR-146a into Aβ/lipopolysaccharide-induced inflammatory astrocytes and showed that miR-146a ameliorated astrocytic inflammation by down-regulating tumor necrosis factor receptor-associated factor 6 and NF-κB. The present study indicates that following an EE, exosomal miR-146a derived from the CP cells is a key factor in ameliorating astrocytic inflammation, leading to synaptogenesis and correction of cognitive impairment. An enriched environment (EE) prevented the cognitive impairment in 5 × FAD mice. An EE inhibited astrocytic inflammation and increased miR-146a in hippocampus. An EE increased the levels of interferon-γ (IFN-γ) in serum. IFN-γ increased the secretion of exosomal miR-146a from cultured choroid plexus. Transfection of miR-146a down-regulated NF-κB in cultured astrocytes.
Collapse
|
22
|
Abiusi E, Infante P, Cagnoli C, Lospinoso Severini L, Pane M, Coratti G, Pera MC, D'Amico A, Diano F, Novelli A, Spartano S, Fiori S, Baranello G, Moroni I, Mora M, Pasanisi MB, Pocino K, Le Pera L, D'Amico D, Travaglini L, Ria F, Bruno C, Locatelli D, Bertini ES, Morandi LO, Mercuri E, Di Marcotullio L, Tiziano FD. SMA-miRs (miR-181a-5p, -324-5p, and -451a) are overexpressed in spinal muscular atrophy skeletal muscle and serum samples. eLife 2021; 10:68054. [PMID: 34542403 PMCID: PMC8486378 DOI: 10.7554/elife.68054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by the degeneration of the second motor neuron. The phenotype ranges from very severe to very mild forms. All patients have the homozygous loss of the SMN1 gene and a variable number of SMN2 (generally 2–4 copies), inversely related to the severity. The amazing results of the available treatments have made compelling the need of prognostic biomarkers to predict the progression trajectories of patients. Besides the SMN2 products, few other biomarkers have been evaluated so far, including some miRs. Methods: We performed whole miRNome analysis of muscle samples of patients and controls (14 biopsies and 9 cultures). The levels of muscle differentially expressed miRs were evaluated in serum samples (51 patients and 37 controls) and integrated with SMN2 copies, SMN2 full-length transcript levels in blood and age (SMA-score). Results: Over 100 miRs were differentially expressed in SMA muscle; 3 of them (hsa-miR-181a-5p, -324-5p, -451a; SMA-miRs) were significantly upregulated in the serum of patients. The severity predicted by the SMA-score was related to that of the clinical classification at a correlation coefficient of 0.87 (p<10-5). Conclusions: miRNome analyses suggest the primary involvement of skeletal muscle in SMA pathogenesis. The SMA-miRs are likely actively released in the blood flow; their function and target cells require to be elucidated. The accuracy of the SMA-score needs to be verified in replicative studies: if confirmed, its use could be crucial for the routine prognostic assessment, also in presymptomatic patients. Funding: Telethon Italia (grant #GGP12116).
Collapse
Affiliation(s)
- Emanuela Abiusi
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Paola Infante
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia; Department of Molecular Medicine, Università degli Studi di Roma "La Sapienza", Roma, Italy, Roma, Italy
| | - Cinzia Cagnoli
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy, Roma, Italy
| | | | - Marika Pane
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giorgia Coratti
- Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Carmela Pera
- Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Federica Diano
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Agnese Novelli
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Serena Spartano
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Stefania Fiori
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy
| | - Giovanni Baranello
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Isabella Moroni
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Barbara Pasanisi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Krizia Pocino
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Loredana Le Pera
- Bioenergetics and Molecular Biotechnologies (IBIOM), CNR-Institute of Biomembranes, Bari, Italy.,CNR-Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Losanne, Switzerland
| | - Lorena Travaglini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Denise Locatelli
- Clinical and Experimental Epileptology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy, Roma, Italy
| | - Enrico Silvio Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Dept. Neurosciences, Bambino Gesu' Children's Hospital IRCCS, Roma, Italy
| | - Lucia Ovidia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Eugenio Mercuri
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico Nemo, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Roma, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Università degli Studi di Roma "La Sapienza", Roma, Italy.,Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Francesco Danilo Tiziano
- Department of Life Sciences and Public Health, Section of Genomic Medicine, Università cattolica del Sacro Cuore, Roma, Italy.,Unit of Medical Genetics, Department of Laboratory science and Infectious Diseases, Fondazione Policlinico Universitario IRCCS "A. Gemelli", Rome, Italy
| |
Collapse
|
23
|
Ghafouri-Fard S, Abak A, Khademi S, Shoorei H, Bahroudi Z, Taheri M, Akbari Dilmaghani N. Functional roles of non-coding RNAs in atrophy. Biomed Pharmacother 2021; 141:111820. [PMID: 34146849 DOI: 10.1016/j.biopha.2021.111820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Atrophy is defined as a reduction in cell, organ, or tissue size after reaching their normal mature sizes because of loss of organelles, cytoplasmic compartments, and proteins. This process is also involved in the pathogenesis of human disorders. Inadequate nourishment, poor circulation, inadequate hormonal support, defects in nerve supply of the tissue, disproportionate induction of apoptosis in the tissue, and absence of exercise are some underlying causes of atrophy. Recently, several non-coding RNAs (ncRNAs) have been identified that regulate atrophy, thus participating in the pathobiology of related disorders such as neurodegenerative/ neuromuscular diseases, age-related muscle atrophy, and cardiac tissue atrophy. In the current review, we have focused on two classes of ncRNAs namely long ncRNAs (lncRNAs) and microRNAs (miRNAs) to unravel their participation in atrophy-associated disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Khademi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Karpe Y, Chen Z, Li XJ. Stem Cell Models and Gene Targeting for Human Motor Neuron Diseases. Pharmaceuticals (Basel) 2021; 14:565. [PMID: 34204831 PMCID: PMC8231537 DOI: 10.3390/ph14060565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Motor neurons are large projection neurons classified into upper and lower motor neurons responsible for controlling the movement of muscles. Degeneration of motor neurons results in progressive muscle weakness, which underlies several debilitating neurological disorders including amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegias (HSP), and spinal muscular atrophy (SMA). With the development of induced pluripotent stem cell (iPSC) technology, human iPSCs can be derived from patients and further differentiated into motor neurons. Motor neuron disease models can also be generated by genetically modifying human pluripotent stem cells. The efficiency of gene targeting in human cells had been very low, but is greatly improved with recent gene editing technologies such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and CRISPR-Cas9. The combination of human stem cell-based models and gene editing tools provides unique paradigms to dissect pathogenic mechanisms and to explore therapeutics for these devastating diseases. Owing to the critical role of several genes in the etiology of motor neuron diseases, targeted gene therapies have been developed, including antisense oligonucleotides, viral-based gene delivery, and in situ gene editing. This review summarizes recent advancements in these areas and discusses future challenges toward the development of transformative medicines for motor neuron diseases.
Collapse
Affiliation(s)
- Yashashree Karpe
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL 61107, USA; (Y.K.); (Z.C.)
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
25
|
Metabolic Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22115913. [PMID: 34072857 PMCID: PMC8198411 DOI: 10.3390/ijms22115913] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.
Collapse
|
26
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
27
|
Gandhi G, Abdullah S, Foead AI, Yeo WWY. The potential role of miRNA therapies in spinal muscle atrophy. J Neurol Sci 2021; 427:117485. [PMID: 34015517 DOI: 10.1016/j.jns.2021.117485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/14/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by low levels of full-length survival motor neuron (SMN) protein due to the loss of the survival motor neuron 1 (SMN1) gene and inefficient splicing of the survival motor neuron 2 (SMN2) gene, which mostly affects alpha motor neurons of the lower spinal cord. Despite the U.S. Food and Drug Administration (FDA) approved SMN-dependent therapies including Nusinersen, Zolgensma® and Evrysdi™, SMA is still a devastating disease as these existing expensive drugs may not be sufficient and thus, remains a need for additional therapies. The involvement of microRNAs (miRNAs) in SMA is expanding because miRNAs are important mediators of gene expression as each miRNA could target a number of genes. Hence, miRNA-based therapy could be utilized in treating this genetic disorder. However, the delivery of miRNAs into the target cells remains an obstacle in SMA, as there is no effective delivery system to date. This review highlights the potential strategies for intracellular miRNA delivery into target cells and current challenges in miRNA delivery. Furthermore, we provide the future prospects of miRNA-based therapeutic strategies in SMA.
Collapse
Affiliation(s)
- Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Syahril Abdullah
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia; Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia
| | - Agus Iwan Foead
- Department of Orthopedics, Perdana University-Royal College of Surgeons in Ireland, Perdana University, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| |
Collapse
|
28
|
Albert K, Niskanen J, Kälvälä S, Lehtonen Š. Utilising Induced Pluripotent Stem Cells in Neurodegenerative Disease Research: Focus on Glia. Int J Mol Sci 2021; 22:ijms22094334. [PMID: 33919317 PMCID: PMC8122303 DOI: 10.3390/ijms22094334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism's somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer's disease and Parkinson's disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.
Collapse
Affiliation(s)
- Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Jonna Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Sara Kälvälä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (J.N.); (S.K.)
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
- Correspondence:
| |
Collapse
|
29
|
The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel) 2021; 10:antiox10040524. [PMID: 33801675 PMCID: PMC8066875 DOI: 10.3390/antiox10040524] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular aging is a complex process and underlying physiological mechanisms are not fully clear. In recent years, the participation of the NF-kB pathway and the NLRP3 inflammasome in the chronic inflammation process that accompanies the skeletal muscle's aging has been confirmed. microRNAs (miRs) form part of a gene regulatory machinery, and they control numerous biological processes including inflammatory pathways. In this work, we studied the expression of four miRs; three of them are considered as inflammatory-related miRs (miR-21, miR-146a, and miR-223), and miR-483, which is related to the regulation of melatonin synthesis, among other targets. To investigate the changes of miRs expression in muscle along aging, the impact of inflammation, and the role of melatonin in aged skeletal muscle, we used the gastrocnemius muscle of wild type (WT) and NLRP3-knockout (NLRP3-) mice of 3, 12, and 24 months-old, with and without melatonin supplementation. The expression of miRs and pro-caspase-1, caspase-3, pro-IL-1β, bax, bcl-2, and p53, was investigated by qRT-PCR analysis. Histological examination of the gastrocnemius muscle was also done. The results showed that age increased the expression of miR-21 (p < 0.01), miR-146a, and miR-223 (p < 0.05, for both miRs) in WT mice, whereas the 24-months-old mutant mice revealed decline of miR-21 and miR-223 (p < 0.05), compared to WT age. The lack of NLRP3 inflammasome also improved the skeletal muscle fibers arrangement and reduced the collagen deposits compared with WT muscle during aging. For the first time, we showed that melatonin significantly reduced the expression of miR-21, miR-146a, and miR-223 (p < 0.05 for all ones, and p < 0.01 for miR-21 at 24 months old) in aged WT mice, increased miR-223 in NLRP3- mice (p < 0.05), and induced miR-483 expression in both mice strains, this increase being significant at 24 months of age.
Collapse
|
30
|
Liang C, Zou T, Zhang M, Fan W, Zhang T, Jiang Y, Cai Y, Chen F, Chen X, Sun Y, Zhao B, Wang Y, Cui L. MicroRNA-146a switches microglial phenotypes to resist the pathological processes and cognitive degradation of Alzheimer's disease. Theranostics 2021; 11:4103-4121. [PMID: 33754051 PMCID: PMC7977456 DOI: 10.7150/thno.53418] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and currently has no effective treatment. Mainstream research on the mechanisms and therapeutic targets of AD is focused on the two most important hallmarks, Aβ and Tau, but the results from clinical studies are not encouraging. Abnormal microglial polarization is a clear typical pathological feature in the progression of AD. Microglia can be neuroprotective by degrading and removing Aβ and Tau. However, under AD conditions, microglia transform into a pro-inflammatory phenotype that decreases the phagocytic activity of microglia, damages neurons and promotes the pathology of AD. We previously reported that a miR-146a polymorphism is associated with sporadic AD risk, and the nasal administration of miR-146a mimics reduced cognitive impairment and the main pathological features of AD. However, it is not clear by what mechanism miR-146a resists the pathological process of AD. In this study, we discovered that microglia-specific miR-146a overexpression reduced cognitive deficits in learning and memory, attenuated neuroinflammation, reduced Aβ levels, ameliorated plaque-associated neuritic pathology, and prevented neuronal loss in APP/PS1 transgenic mice. In addition, we found that miR-146a switched the microglial phenotype, reduced pro-inflammatory cytokines and enhanced phagocytic function to protect neurons in vitro and in vivo. Moreover, transcriptional analysis confirmed that miR-146a opposed the pathological process of AD mainly through neuroinflammation-related pathways. In summary, our results provide sufficient evidence for the mechanism by which miR-146a opposes AD and strengthen the conclusion that miR-146a is a promising target for AD and other microglia-related diseases.
Collapse
|
31
|
Chen TH. Circulating microRNAs as potential biomarkers and therapeutic targets in spinal muscular atrophy. Ther Adv Neurol Disord 2020; 13:1756286420979954. [PMID: 33488772 PMCID: PMC7768327 DOI: 10.1177/1756286420979954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterized by the selective loss of particular groups of motor neurons (MNs) in the anterior horn of the spinal cord with progressive muscle wasting. SMA is caused by a deficiency of the survival motor neuron (SMN) protein due to a homozygous deletion or mutation of the SMN1 gene. However, the molecular mechanisms whereby the SMN complex regulates MN functions are not fully elucidated. Emerging studies on SMA pathogenesis have turned the attention of researchers to RNA metabolism, given that increasingly identified SMN-associated modifiers are involved in both coding and non-coding RNA (ncRNA) processing. Among various ncRNAs, microRNAs (miRNAs) are the most studied in terms of regulation of posttranscriptional gene expression. Recently, the discovery that miRNAs are critical to MN function and survival led to the study of dysregulated miRNAs in SMA pathogenesis. Circulating miRNAs have drawn attention as a readily available biomarker due to their property of being clinically detectable in numerous human biofluids through non-invasive approaches. As there are recent promising findings from novel miRNA-based medicines, this article presents an extensive review of the most up-to-date studies connecting specific miRNAs to SMA pathogenesis and the potential applications of miRNAs as biomarkers and therapeutic targets for SMA.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
32
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
33
|
Extracellular vesicles and amyotrophic lateral sclerosis: from misfolded protein vehicles to promising clinical biomarkers. Cell Mol Life Sci 2020; 78:561-572. [PMID: 32803397 PMCID: PMC7872995 DOI: 10.1007/s00018-020-03619-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small reservoirs of different molecules and important mediators of cell-to-cell communication. As putative vehicles of misfolded protein propagation between cells, they have drawn substantial attention in the field of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Moreover, exosome-mediated non-coding RNA delivery may play a crucial role in ALS, given the relevance of RNA homeostasis in disease pathogenesis. Since EVs can enter the systemic circulation and are easily detectable in patients’ biological fluids, they have generated broad interest both as diagnostic and prognostic biomarkers and as valuable tools in understanding disease pathogenesis. Here, after a brief introduction on biogenesis and functions of EVs, we aim to investigate their role in neurodegenerative disorders, especially ALS. Specifically, we focus on the main findings supporting EV-mediated protein and RNA transmission in ALS in vitro and in vivo models. Then, we provide an overview of clinical applications of EVs, summarizing the most relevant studies able to detect EVs in blood and cerebrospinal fluid (CSF) of ALS patients, underlying their potential use in aiding diagnosis and prognosis. Finally, we explore the therapeutic applications of EVs in ALS, either as targets or as vehicles of proteins, nucleic acids and molecular drugs.
Collapse
|
34
|
Adami R, Bottai D. Spinal Muscular Atrophy Modeling and Treatment Advances by Induced Pluripotent Stem Cells Studies. Stem Cell Rev Rep 2020; 15:795-813. [PMID: 31863335 DOI: 10.1007/s12015-019-09910-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spinal Muscular Atrophy (SMA) is a neurodegenerative disease characterized by specific and predominantly lower motor neuron (MN) loss. SMA is the main reason for infant death, while about one in 40 children born is a healthy carrier. SMA is caused by decreased levels of production of a ubiquitously expressed gene: the survival motor neuron (SMN). All SMA patients present mutations of the telomeric SMN1 gene, but many copies of a centromeric, partially functional paralog gene, SMN2, can somewhat compensate for the SMN1 deficiency, scaling inversely with phenotypic harshness. Because the study of neural tissue in and from patients presents too many challenges and is very often not feasible; the use of animal models, such as the mouse, had a pivotal impact in our understanding of SMA pathology but could not portray totally satisfactorily the elaborate regulatory mechanisms that are present in higher animals, particularly in humans. And while recent therapeutic achievements have been substantial, especially for very young infants, some issues should be considered for the treatment of older patients. An alternative way to study SMA, and other neurological pathologies, is the use of induced pluripotent stem cells (iPSCs) derived from patients. In this work, we will present a wide analysis of the uses of iPSCs in SMA pathology, starting from basic science to their possible roles as therapeutic tools.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy
| | - Daniele Bottai
- Department of Health Sciences, University of Milan, via A. di Rudinì 8, 20142, Milan, Italy.
| |
Collapse
|
35
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
36
|
Banack SA, Dunlop RA, Cox PA. An miRNA fingerprint using neural-enriched extracellular vesicles from blood plasma: towards a biomarker for amyotrophic lateral sclerosis/motor neuron disease. Open Biol 2020; 10:200116. [PMID: 32574550 PMCID: PMC7333885 DOI: 10.1098/rsob.200116] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biomarkers for amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) are currently not clinically available for disease diagnosis or analysis of disease progression. If identified, biomarkers could improve patient outcomes by enabling early intervention and assist in the determination of treatment efficacy. We hypothesized that neural-enriched extracellular vesicles could provide microRNA (miRNA) fingerprints with unequivocal signatures of neurodegeneration. Using blood plasma from ALS/MND patients and controls, we extracted neural-enriched extracellular vesicle fractions and conducted next-generation sequencing and qPCR of miRNA components of the transcriptome. We here report eight miRNA sequences which significantly distinguish ALS/MND patients from controls in a replicated experiment using a second cohort of patients and controls. miRNA sequences from patient blood samples using neural-enriched extracellular vesicles may yield unique insights into mechanisms of neurodegeneration and assist in early diagnosis of ALS/MND.
Collapse
Affiliation(s)
- Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| | - Rachael Anne Dunlop
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, PO Box 3464, Jackson, WY 83001, USA
| |
Collapse
|
37
|
Wang L, Zhang L. Circulating MicroRNAs as Diagnostic Biomarkers for Motor Neuron Disease. Front Neurosci 2020; 14:354. [PMID: 32372911 PMCID: PMC7177050 DOI: 10.3389/fnins.2020.00354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron disease (MND) is a kind of neurodegenerative disease that selectively invades spinal cord anterior horn cells, brainstem motor neurons, cortical pyramidal cells and the pyramidal tract. The main clinical features are the symptoms and signs of impaired upper and lower motor neurons, manifested as muscle weakness, atrophy and pyramidal tract signs. Histopathology has shown the disappearance of pyramidal cells in the motor cortex, loss of motor neurons in the anterior horn of the spinal cord and brainstem, and degeneration of the corticospinal tract. Due to the lack of effective treatment methods, the prognosis is generally poor, so it is of great significance to confirm the diagnosis early by various means. However, the current diagnosis of MND mainly relies on the combination of clinical manifestations and neurophysiological examinations, lacking effective means of early diagnosis. Circulating microRNA (CmiRNA) is a kind of stable miRNA molecule in serum, plasma and other body fluids, which has the characteristics of distinct differential expression, sensitive detection and convenient sample collection. As a possible new biomarker of MND, CmiRNA can not only reveal the pathophysiological process of MND, but also monitor disease progression and response to drug therapy. With the development of miRNA detection technology, more and more CmiRNAs as biomarkers with potential diagnostic value have been investigated. In this review, we explored the possibility of circulating samples as different sources of biomarkers for the diagnosis of MND, analyzing the progress of CmiRNA detection techniques, and presenting potential diagnostic MND biomarkers that have been reported.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease? Neurobiol Dis 2020; 140:104870. [PMID: 32294521 DOI: 10.1016/j.nbd.2020.104870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/11/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a severe, inherited disease characterized by the progressive degeneration and death of motor neurons of the anterior horns of the spinal cord, which results in muscular atrophy and weakness of variable severity. Its early-onset form is invariably fatal in early childhood, while milder forms lead to permanent disability, physical deformities and respiratory complications. Recently, two novel revolutionary therapies, antisense oligonucleotides and gene therapy, have been approved, and might prove successful in making long-term survival of these patients likely. In this perspective, a deep understanding of the pathogenic mechanisms and of their impact on the interactions between motor neurons and other cell types within the central nervous system (CNS) is crucial. Studies using SMA animal and cellular models have taught us that the survival and functionality of motor neurons is highly dependent on a whole range of other cell types, namely glial cells, which are responsible for a variety of different functions, such as neuronal trophic support, synaptic remodeling, and immune surveillance. Thus, it emerges that SMA is likely a non-cell autonomous, multifactorial disease in which the interaction of different cell types and disease mechanisms leads to motor neurons failure and loss. This review will introduce the different glial cell types in the CNS and provide an overview of the role of glial cells in motor neuron degeneration in SMA. Furthermore, we will discuss the relevance of these findings so far and the potential impact on the success of available therapies and on the development of novel ones.
Collapse
|
39
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Liu GJ, Zhang QR, Gao X, Wang H, Tao T, Gao YY, Zhou Y, Chen XX, Li W, Hang CH. MiR-146a Ameliorates Hemoglobin-Induced Microglial Inflammatory Response via TLR4/IRAK1/TRAF6 Associated Pathways. Front Neurosci 2020; 14:311. [PMID: 32317924 PMCID: PMC7147172 DOI: 10.3389/fnins.2020.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Microglial activation and sustained inflammation in the brain can lead to neuronal damage. Hence, limiting microglial activation and brain inflammation is a good therapeutic strategy for inflammatory-associated central nervous disease. MiR-146a is a promising therapeutic microRNA, since it can negatively regulate the inflammatory response. We thus investigated the expression changes of miR-146a after experimental induction of a subarachnoid hemorrhage (SAH) in vivo and in vitro, and we assessed the anti-inflammatory effects of miR-146a in microglial cells in vitro. Primary microglial cells were preincubated with miR-146a before hemoglobin (Hb) treatment. The results indicated that miR-146a decreased gene expression of Hb-induced pro-inflammatory cytokines (TNF-α and IL-1β) and phenotype-related genes (iNOS and CD86) through IRAK1/TRAF6/NF-κB or MAPK signaling pathways, suggesting its pro-resolution activity in microglia. However, contrary to the LPS-induced microglia or macrophage activation model, we did not observe an elevation in miR-146a after activation. Overall, our findings demonstrated that miR-146a was involved in the regulation of brain inflammation and could be considered a novel therapeutic agent for treating brain inflammation.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing-Rong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
41
|
Yu G, Zilundu PLM, Xu X, Li Y, Zhou Y, Zhong K, Fu R, Zhou LH. The temporal pattern of brachial plexus root avulsion-induced lncRNA and mRNA expression prior to the motoneuron loss in the injured spinal cord segments. Neurochem Int 2020; 132:104611. [DOI: 10.1016/j.neuint.2019.104611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
|
42
|
Chen TH, Chen JA. Multifaceted roles of microRNAs: From motor neuron generation in embryos to degeneration in spinal muscular atrophy. eLife 2019; 8:50848. [PMID: 31738166 PMCID: PMC6861003 DOI: 10.7554/elife.50848] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Two crucial questions in neuroscience are how neurons establish individual identity in the developing nervous system and why only specific neuron subtypes are vulnerable to neurodegenerative diseases. In the central nervous system, spinal motor neurons serve as one of the best-characterized cell types for addressing these two questions. In this review, we dissect these questions by evaluating the emerging role of regulatory microRNAs in motor neuron generation in developing embryos and their potential contributions to neurodegenerative diseases such as spinal muscular atrophy (SMA). Given recent promising results from novel microRNA-based medicines, we discuss the potential applications of microRNAs for clinical assessments of SMA disease progression and treatment.
Collapse
Affiliation(s)
- Tai-Heng Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Academia Sinica, Kaohsiung, Taiwan.,Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jun-An Chen
- PhD Program in Translational Medicine, Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Academia Sinica, Kaohsiung, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
43
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
44
|
Kaifer KA, Villalón E, O'Brien BS, Sison SL, Smith CE, Simon ME, Marquez J, O'Day S, Hopkins AE, Neff R, Rindt H, Ebert AD, Lorson CL. AAV9-mediated delivery of miR-23a reduces disease severity in Smn2B/-SMA model mice. Hum Mol Genet 2019; 28:3199-3210. [PMID: 31211843 PMCID: PMC6859438 DOI: 10.1093/hmg/ddz142] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in survival motor neuron 1 (SMN1). The molecular mechanisms underlying motor neuron degeneration in SMA remain elusive, as global cellular dysfunction obscures the identification and characterization of disease-relevant pathways and potential therapeutic targets. Recent reports have implicated microRNA (miRNA) dysregulation as a potential contributor to the pathological mechanism in SMA. To characterize miRNAs that are differentially regulated in SMA, we profiled miRNA levels in SMA induced pluripotent stem cell (iPSC)-derived motor neurons. From this array, miR-23a downregulation was identified selectively in SMA motor neurons, consistent with previous reports where miR-23a functioned in neuroprotective and muscle atrophy-antagonizing roles. Reintroduction of miR-23a expression in SMA patient iPSC-derived motor neurons protected against degeneration, suggesting a potential miR-23a-specific disease-modifying effect. To assess this activity in vivo, miR-23a was expressed using a self-complementary adeno-associated virus serotype 9 (scAAV9) viral vector in the Smn2B/- SMA mouse model. scAAV9-miR-23a significantly reduced the pathology in SMA mice, including increased motor neuron size, reduced neuromuscular junction pathology, increased muscle fiber area, and extended survival. These experiments demonstrate that miR-23a is a novel protective modifier of SMA, warranting further characterization of miRNA dysfunction in SMA.
Collapse
Affiliation(s)
- Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin S O'Brien
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Samantha L Sison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caley E Smith
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Madeline E Simon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jose Marquez
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Siri O'Day
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Abigail E Hopkins
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Rachel Neff
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Hansjörg Rindt
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
45
|
Qu X, Wang N, Cheng W, Xue Y, Chen W, Qi M. MicroRNA-146a protects against intracerebral hemorrhage by inhibiting inflammation and oxidative stress. Exp Ther Med 2019; 18:3920-3928. [PMID: 31656540 PMCID: PMC6812313 DOI: 10.3892/etm.2019.8060] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the role of microRNA-146a (miR-146a) in intracerebral hemorrhage (ICH), and to further assess its underlying mechanism. An ICH rat model was established in the current study and 1 h following ICH induction, rats were treated with or without an miR-146a mimic. A total of 3 days following ICH induction, rat neurological score, brain water content and neuronal apoptosis were measured via flow cytometry. Levels of pro-inflammatory cytokines tumor necrosis factor-α and interleukin-1β were detected via ELISA and certain biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase and glutathione peroxidase, were also determined in current study. The expression of genes and proteins were detected in current study via reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. MicroRNA.org software and a dual luciferase reporter assay were used to confirm the association between miR-146a and TRAF6. The results of the current study revealed that miR-146a was significantly downregulated in ICH rats, and its overexpression reduced neurological damage and brain edema, as evidenced by decreased neurological scores and brain water content. Results from further analyses demonstrated that the overexpression of miR-146a inhibited neuronal apoptosis, reduced pro-inflammatory cytokine production and prevented oxidative stress in ICH rats. In addition, it was revealed that the upregulation of miR-146a repressed the TRAF6/NF-κB pathway in the brain tissue of ICH rats. TRAF6 was also determined to be a target of miR-146a. In conclusion, these data indicated that miR-146a protects against ICH by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xin Qu
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Ning Wang
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Weitao Cheng
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Yueqiao Xue
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Wenjin Chen
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Meng Qi
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
46
|
Gao XJ, Tang B, Liang HH, Yi L, Wei ZG. Selenium deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulation of the MAPK pathway in the head kidney of carp. FISH & SHELLFISH IMMUNOLOGY 2019; 91:284-292. [PMID: 31125664 DOI: 10.1016/j.fsi.2019.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/04/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is a necessity in multiple species of fish. Se plays an important role in immunoregulation, inflammation, and antioxidant systems in fish and other animals. The head kidney is the major immune organ in adult carp, and it produces white blood cells and destroys old red blood cells. The present study aimed to explore the effects and regulatory molecular mechanisms of Se on ROS and micRNA-146a as part of the inflammatory response in fancy carp. Adult fancy carp were fed different concentrations of Se in their diets. The Se content of the head kidney changed in a pattern consistent with the dietary content of Se. Se deficiency induced a significant increase in ROS, restrained the activities of GPx, SOD and CAT and increased MDA content. qPCR analysis showed a reduction in micRNA-146a with Se deficiency. The Se content, miRNA-146a expression and ROS levels were correlated. H2O2 cell stimulation assays found that ROS could activate the MAPK pathway, and ELISA results showed p38, JNK and ERK phosphorylation significantly increased with H2O2 stimulation. TNF-α, IL-1β, and IL-6 were appreciably increased. At same time, miRNA-146a, which should have increased to regulate the inflammatory response, was reduced with Se deficiency. Therefore, with Se deficiency, the head kidney was inflamed. All these results indicated that Se deficiency inhibits micRNA-146a to promote ROS-induced inflammation via regulating the MAPK pathway in the head kidney of carp. The present study revealed that supplementing the diet of carp with selenium is beneficial for growth and disease prevention.
Collapse
Affiliation(s)
- Xue-Jiao Gao
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Bin Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Hui-Huang Liang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Li Yi
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zi-Gong Wei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
47
|
Quinlan KA, Reedich EJ, Arnold WD, Puritz AC, Cavarsan CF, Heckman CJ, DiDonato CJ. Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. J Neurophysiol 2019; 122:1297-1311. [PMID: 31365319 DOI: 10.1152/jn.00652.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - E J Reedich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - W D Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - A C Puritz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C F Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
48
|
Cheng YY, Zhao HK, Chen LW, Yao XY, Wang YL, Huang ZW, Li GP, Wang Z, Chen BY. Reactive astrocytes increase expression of proNGF in the mouse model of contused spinal cord injury. Neurosci Res 2019; 157:34-43. [PMID: 31348996 DOI: 10.1016/j.neures.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are major glial cells critically in maintaining stability of the central nervous system and functional activation of astrocytes occurs rapidly in various diseased or traumatic events. We are interested in functional changes of astrocytes during the spinal cord injury, and studied expression of nerve growth factor (NGF) in activated astrocytes by mouse model of contused spinal cord injury and cell culture experiment. It revealed that the spinal cord injury resulted in apparent activation of astrocytes and microglial cells and decreased BMS scores. A larger number of astrocytes showed immunoreactivity to proNGF in the injured spinal cord areas, and proNGF expression increased and remained high level at 7 to 14dpi, which was coincided with upregulation of glial fibrillary acidic protein. The proNGF was clearly localized in both exosome-like vesicles and cytoplasm of astrocytes in culture. Electron microscopy confirmed exosome-like vesicles with proNGF-immunoreactivity in diameter sizes of 50-100 nm. Finally, cell culture with lipopolysaccharide (LPS) experiment indicated increasing expression and release of proNGF in the astrocytes with LPS exposure. This study demonstrated that reactive astrocytes increased proNGF expression after spinal cord injury, also suggesting involvement of exosome-like proNGF transport or release in triggering neuronal apoptosis and aggravating progression of spinal cord injury.
Collapse
Affiliation(s)
- Ying-Ying Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, 710038, PR China.
| | - Hai-Kang Zhao
- Department of Neurosurgery, Second Affiliated Hospital, Xi'an Medical University, 710038, PR China.
| | - Liang-Wei Chen
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China; Department of Histology and Embryology, School of Medicine, Northwest University, Xi'an 710069, PR China.
| | - Xin-Yi Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Yu-Ling Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Zhen-Wen Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Guo-Peng Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
49
|
Foggin S, Mesquita-Ribeiro R, Dajas-Bailador F, Layfield R. Biological Significance of microRNA Biomarkers in ALS-Innocent Bystanders or Disease Culprits? Front Neurol 2019; 10:578. [PMID: 31244752 PMCID: PMC6579821 DOI: 10.3389/fneur.2019.00578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) represent potential biomarkers for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). However, whether expression changes of individual miRNAs are simply an indication of cellular dysfunction and degeneration, or actually promote functional changes in target gene expression relevant to disease pathogenesis, is unclear. Here we used bioinformatics to test the hypothesis that ALS-associated miRNAs exert their effects through targeting genes implicated in disease etiology. We documented deregulated miRNAs identified in studies of ALS patients, noting variations in participants, tissue samples, miRNA detection or quantification methods used, and functional or bioinformatic assessments (if performed). Despite lack of experimental standardization, overlap of many deregulated miRNAs between studies was noted; however, direction of reported expression changes did not always concur. The use of in silico predictions of target genes for the most commonly deregulated miRNAs, cross-referenced to a selection of previously identified ALS genes, did not support our hypothesis. Specifically, although deregulated miRNAs were predicted to commonly target ALS genes, random miRNAs gave similar predictions. To further investigate biological patterns in the deregulated miRNAs, we grouped them by tissue source in which they were identified, indicating that for a core of frequently detected miRNAs, blood/plasma/serum may be useful for future profiling experiments. We conclude that in silico predictions of gene targets of deregulated ALS miRNAs, at least using currently available algorithms, are unlikely to be sufficient in informing disease pathomechanisms. We advocate experimental functional testing of candidate miRNAs and their predicted targets, propose miRNAs to prioritise, and suggest a concerted move towards protocol standardization for biomarker identification.
Collapse
Affiliation(s)
- Sophie Foggin
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Raquel Mesquita-Ribeiro
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Federico Dajas-Bailador
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Rob Layfield
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| |
Collapse
|
50
|
Notch Signaling Mediates Astrocyte Abnormality in Spinal Muscular Atrophy Model Systems. Sci Rep 2019; 9:3701. [PMID: 30842449 PMCID: PMC6403369 DOI: 10.1038/s41598-019-39788-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder characterized by the degeneration of spinal motor neurons and muscle atrophy. The disease is mainly caused by low level of the survival motor neuron (SMN) protein, which is coded by two genes, namely SMN1 and SMN2, but leads to selective spinal motor neuron degeneration when SMN1 gene is deleted or mutated. Previous reports have shown that SMN-protein-deficient astrocytes are abnormally abundant in the spinal cords of SMA model mice. However, the mechanism of the SMN- deficient astrocyte abnormality remains unclear. The purpose of this study is to identify the cellular signaling pathways associated with the SMN-deficient astrocyte abnormality and propose a candidate therapy tool that modulates signaling. In the present study, we found that the astrocyte density was increased around the central canal of the spinal cord in a mouse SMA model and we identified the dysregulation of Notch signaling which is a known mechanism that regulates astrocyte differentiation and proliferation, in the spinal cord in both early and late stages of SMA pathogenesis. Moreover, pharmacological inhibition of Notch signaling improved the motor functional deficits in SMA model mice. These findings indicate that dysregulated Notch signaling may be an underlying cause of SMA pathology.
Collapse
|