1
|
Stanisławska-Sachadyn A, Krzemiński M, Zielonka D, Krygier M, Ziętkiewicz E, Sławek J, Limon J. Sex contribution to average age at onset of Huntington's disease depends on the number of (CAG) n repeats. Sci Rep 2024; 14:15729. [PMID: 38977715 PMCID: PMC11231309 DOI: 10.1038/s41598-024-64105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the extension of the CAG repeats in exon 1 of the HTT gene and is transmitted in a dominant manner. The present study aimed to assess whether patients' sex, in the context of mutated and normal allele length, contributes to age on onset (AO) of HD. The study population comprised a large cohort of 3723 HD patients from the European Huntington's Disease Network's REGISTRY database collected at 160 sites across 17 European countries and in one location outside Europe. The data were analyzed using regression models and factorial analysis of variance (ANOVA) considering both mutated allele length and sex as predictors of patients' AO. AO, as described by the rater's estimate, was found to be later in affected women than in men across the whole population. This difference was most pronounced in a subgroup of 1273 patients with relatively short variants of the mutated allele (40-45 CAG repeats) and normal alleles in a higher half of length distribution-namely, more than 17 CAG repeats; however, it was also observed in each group. Our results presented in this observational study point to sex-related differences in AO, most pronounced in the presence of the short mutated and long normal allele, which may add to understanding the dynamics of AO in Huntington's Disease.Trial registration: ClinicalTrials.gov identifier NCT01590589.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Department of Biotechnology and Microbiology, Gdańsk University of Technology, 80-233, Gdańsk, Poland.
- Department of Biology and Medical Genetics, Medical University of Gdańsk, 80-211, Gdańsk, Poland.
- BioTechMed Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michał Krzemiński
- Institute of Applied Mathematics , Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Daniel Zielonka
- Department of Public Health, Poznań University of Medical Sciences, 60-812, Poznan, Poland
| | - Magdalena Krygier
- Department of Developmental Neurology, Medical University of Gdansk, 80-952, Gdańsk, Poland
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Jarosław Sławek
- Department of Neurology, St. Adalbert Hospital, Copernicus PL, 80-462,, Gdańsk, Poland
- Department of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| | - Janusz Limon
- Department of Medical Ethics, Medical University of Gdańsk, 80-211, Gdańsk, Poland
| |
Collapse
|
2
|
Pengo M, Squitieri F. Beyond CAG Repeats: The Multifaceted Role of Genetics in Huntington Disease. Genes (Basel) 2024; 15:807. [PMID: 38927742 PMCID: PMC11203031 DOI: 10.3390/genes15060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG expansion on the huntingtin (HTT) gene and is characterized by progressive motor, cognitive, and neuropsychiatric decline. Recently, new genetic factors besides CAG repeats have been implicated in the disease pathogenesis. Most genetic modifiers are involved in DNA repair pathways and, as the cause of the loss of CAA interruption in the HTT gene, they exert their main influence through somatic expansion. However, this mechanism might not be the only driver of HD pathogenesis, and future studies are warranted in this field. The aim of the present review is to dissect the many faces of genetics in HD pathogenesis, from cis- and trans-acting genetic modifiers to RNA toxicity, mitochondrial DNA mutations, and epigenetics factors. Exploring genetic modifiers of HD onset and progression appears crucial to elucidate not only disease pathogenesis, but also to improve disease prediction and prevention, develop biomarkers of disease progression and response to therapies, and recognize new therapeutic opportunities. Since the same genetic mechanisms are also described in other repeat expansion diseases, their implications might encompass the whole spectrum of these disorders.
Collapse
Affiliation(s)
- Marta Pengo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy;
| | - Ferdinando Squitieri
- Centre for Neurological Rare Diseases (CMNR), Fondazione Lega Italiana Ricerca Huntington (LIRH), 00161 Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
3
|
Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver B, Lee JM. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. eLife 2024; 12:RP89782. [PMID: 38869243 PMCID: PMC11175616 DOI: 10.7554/elife.89782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.
Collapse
Affiliation(s)
- Doo Eun Choi
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jun Wan Shin
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Sophia Zeng
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
- Medical and Population Genetics Program, The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jae-Hyun Jang
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jacob M Loupe
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Vanessa C Wheeler
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Hannah E Stutzman
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Massachusetts General HospitalBostonUnited States
| | - Ben Kleinstiver
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Massachusetts General HospitalBostonUnited States
- Department of Pathology, Harvard Medical SchoolBostonUnited States
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Department of Neurology, Harvard Medical SchoolBostonUnited States
- Medical and Population Genetics Program, The Broad Institute of MIT and HarvardCambridgeUnited States
| |
Collapse
|
4
|
Aldous SG, Smith EJ, Landles C, Osborne GF, Cañibano-Pico M, Nita IM, Phillips J, Zhang Y, Jin B, Hirst MB, Benn CL, Bond BC, Edelmann W, Greene JR, Bates GP. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease. Brain 2024; 147:1784-1798. [PMID: 38387080 PMCID: PMC11068328 DOI: 10.1093/brain/awae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.
Collapse
Affiliation(s)
- Sarah G Aldous
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Edward J Smith
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christian Landles
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Georgina F Osborne
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Maria Cañibano-Pico
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Iulia M Nita
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jemima Phillips
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bo Jin
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Brian C Bond
- Prism Training and Consultancy Limited, St John's Innovation Centre, Cambridge, CB4 0WS, UK
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
5
|
Kim KH, Hong EP, Lee Y, McLean ZL, Elezi E, Lee R, Kwak S, McAllister B, Massey TH, Lobanov S, Holmans P, Orth M, Ciosi M, Monckton DG, Long JD, Lucente D, Wheeler VC, MacDonald ME, Gusella JF, Lee JM. Posttranscriptional regulation of FAN1 by miR-124-3p at rs3512 underlies onset-delaying genetic modification in Huntington's disease. Proc Natl Acad Sci U S A 2024; 121:e2322924121. [PMID: 38607933 PMCID: PMC11032436 DOI: 10.1073/pnas.2322924121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 04/14/2024] Open
Abstract
Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Eun Pyo Hong
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Yukyeong Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Zachariah L. McLean
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Emanuela Elezi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | | | | | - Branduff McAllister
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Thomas H. Massey
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Sergey Lobanov
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Peter Holmans
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, CardiffCF24 4HQ, United Kingdom
| | - Michael Orth
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000Bern 60, Switzerland
| | - Marc Ciosi
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Darren G. Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Jeffrey D. Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA52242
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA52242
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
| | - Vanessa C. Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
| | - Marcy E. MacDonald
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - James F. Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jong-Min Lee
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114
- Department of Neurology, Harvard Medical School, Boston, MA02115
- Medical and Population Genetics Program, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| |
Collapse
|
6
|
Sun X, Liu L, Wu C, Li X, Guo J, Zhang J, Guan J, Wang N, Gu L, Yang XW, Li GM. Mutant huntingtin protein induces MLH1 degradation, DNA hyperexcision, and cGAS-STING-dependent apoptosis. Proc Natl Acad Sci U S A 2024; 121:e2313652121. [PMID: 38498709 PMCID: PMC10990133 DOI: 10.1073/pnas.2313652121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 03/20/2024] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
- The Ministry of Education Key Laboratory of Reproductive Genetics, Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Lu Liu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Chao Wu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Xueying Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jinzhen Guo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junqiu Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Junhong Guan
- Cui-ying Experimental Center, Lanzhou University Second Hospital, Lanzhou730030, China
| | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human behavior, University of California, Los Angeles, CA90095
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - X. Willian Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience & Human behavior, University of California, Los Angeles, CA90095
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Institute for Cancer Research, Chinese Institutes for Medical Research, Beijing100069, China
- School of Basic Medical Sciences, Capital Medical University, Beijing100069, China
| |
Collapse
|
7
|
Dalene Skarping K, Arning L, Petersén Å, Nguyen HP, Gebre-Medhin S. Attenuated huntingtin gene CAG nucleotide repeat size in individuals with Lynch syndrome. Sci Rep 2024; 14:4300. [PMID: 38383663 PMCID: PMC10881568 DOI: 10.1038/s41598-024-54277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024] Open
Abstract
DNA mismatch repair (MMR) is thought to contribute to the onset and progression of Huntington disease (HD) by promoting somatic expansion of the pathogenic CAG nucleotide repeat in the huntingtin gene (HTT). Here we have studied constitutional HTT CAG repeat size in two cohorts of individuals with Lynch syndrome (LS) carrying heterozygous loss-of-function variants in the MMR genes MLH1 (n = 12/60; Lund cohort/Bochum cohort, respectively), MSH2 (n = 15/88), MSH6 (n = 21/23), and controls (n = 19/559). The sum of CAG repeats for both HTT alleles in each individual was calculated due to unknown segregation with the LS allele. In the larger Bochum cohort, the sum of CAG repeats was lower in the MLH1 subgroup compared to controls (MLH1 35.40 CAG repeats ± 3.6 vs. controls 36.89 CAG repeats ± 4.5; p = 0.014). All LS genetic subgroups in the Bochum cohort displayed lower frequencies of unstable HTT intermediate alleles and lower HTT somatic CAG repeat expansion index values compared to controls. Collectively, our results indicate that MMR gene haploinsufficiency could have a restraining impact on constitutional HTT CAG repeat size and support the notion that the MMR pathway is a driver of nucleotide repeat expansion diseases.
Collapse
Affiliation(s)
- Karin Dalene Skarping
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics and Pathology, Office for Medical Service, 221 85, Lund, Sweden
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Huu Phuc Nguyen
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Samuel Gebre-Medhin
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Department of Clinical Genetics and Pathology, Office for Medical Service, 221 85, Lund, Sweden.
| |
Collapse
|
8
|
Bondulich MK, Phillips J, Cañibano-Pico M, Nita IM, Byrne LM, Wild EJ, Bates GP. Translatable plasma and CSF biomarkers for use in mouse models of Huntington's disease. Brain Commun 2024; 6:fcae030. [PMID: 38370446 PMCID: PMC10873584 DOI: 10.1093/braincomms/fcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Huntington's disease is an inherited neurodegenerative disorder for which a wide range of disease-modifying therapies are in development and the availability of biomarkers to monitor treatment response is essential for the success of clinical trials. Baseline levels of neurofilament light chain in CSF and plasma have been shown to be effective in predicting clinical disease status, subsequent clinical progression and brain atrophy. The identification of further sensitive prognostic fluid biomarkers is an active research area, and total-Tau and YKL-40 levels have been shown to be increased in CSF from Huntington's disease mutation carriers. The use of readouts with clinical utility in the preclinical assessment of potential therapeutics should aid in the translation of new treatments. Here, we set out to determine how the concentrations of these three proteins change in plasma and CSF with disease progression in representative, well-established mouse models of Huntington's disease. Plasma and CSF were collected throughout disease progression from R6/2 transgenic mice with CAG repeats of 200 or 90 codons (R6/2:Q200 and R6/2:Q90), zQ175 knock-in mice and YAC128 transgenic mice, along with their respective wild-type littermates. Neurofilament light chain and total-Tau concentrations were quantified in CSF and plasma using ultrasensitive single-molecule array (Quanterix) assays, and a novel Quanterix assay was developed for breast regression protein 39 (mouse homologue of YKL-40) and used to quantify breast regression protein 39 levels in plasma. CSF levels of neurofilament light chain and plasma levels of neurofilament light chain and breast regression protein 39 increased in wild-type biofluids with age, whereas total-Tau remained constant. Neurofilament light chain and breast regression protein 39 were elevated in the plasma and CSF from Huntington's disease mouse models, as compared with wild-type littermates, at presymptomatic stages, whereas total-Tau was only increased at the latest disease stages analysed. Levels of biomarkers that had been measured in the same CSF or plasma samples taken at the latest stages of disease were correlated. The demonstration that breast regression protein 39 constitutes a robust plasma biomarker in Huntington's disease mouse models supports the further investigation of YKL-40 as a CSF biomarker for Huntington's disease mutation carriers. Neurofilament light chain and Tau are considered markers of neuronal damage, and breast regression protein 39 is a marker of inflammation; the similarities and differences in the levels of these proteins between mouse models may provide future insights into their underlying pathology. These data will facilitate the use of fluid biomarkers in the preclinical assessment of therapeutic agents for Huntington's disease, providing readouts with direct relevance to clinical trials.
Collapse
Affiliation(s)
- Marie K Bondulich
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Jemima Phillips
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - María Cañibano-Pico
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Iulia M Nita
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Lauren M Byrne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Edward J Wild
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| |
Collapse
|
9
|
Handley RR, Reid SJ, Burch Z, Jacobsen JC, Gillis T, Correia K, Rudiger SR, McLaughlin CJ, Bawden CS, MacDonald ME, Wheeler VC, Snell RG. Somatic CAG Repeat Stability in a Transgenic Sheep Model of Huntington's Disease. J Huntingtons Dis 2024; 13:33-40. [PMID: 38393920 DOI: 10.3233/jhd-231516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington's disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.
Collapse
Affiliation(s)
- Renee R Handley
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Suzanne J Reid
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Burch
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jessie C Jacobsen
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy Gillis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin Correia
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Skye R Rudiger
- Molecular Biology and Reproductive Technology, Laboratories, South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Clive J McLaughlin
- Molecular Biology and Reproductive Technology, Laboratories, South Australian Research and Development Institute, Adelaide, SA, Australia
| | - C Simon Bawden
- Molecular Biology and Reproductive Technology, Laboratories, South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Marcy E MacDonald
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Vanessa C Wheeler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Russell G Snell
- Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Rajagopal S, Donaldson J, Flower M, Hensman Moss DJ, Tabrizi SJ. Genetic modifiers of repeat expansion disorders. Emerg Top Life Sci 2023; 7:325-337. [PMID: 37861103 PMCID: PMC10754329 DOI: 10.1042/etls20230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.
Collapse
Affiliation(s)
- Sangeerthana Rajagopal
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Jasmine Donaldson
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Michael Flower
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Davina J Hensman Moss
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
- St George's University of London, London SW17 0RE, U.K
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| |
Collapse
|
11
|
Cariulo C, Martufi P, Verani M, Toledo-Sherman L, Lee R, Dominguez C, Petricca L, Caricasole A. IKBKB reduces huntingtin aggregation by phosphorylating serine 13 via a non-canonical IKK pathway. Life Sci Alliance 2023; 6:e202302006. [PMID: 37553253 PMCID: PMC10410066 DOI: 10.26508/lsa.202302006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
N-terminal phosphorylation at residues T3 and S13 is believed to have important beneficial implications for the biological and pathological properties of mutant huntingtin, where inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) was identified as a candidate regulator of huntingtin N-terminal phosphorylation. The paucity of mechanistic information on IKK pathways, together with the lack of sensitive methods to quantify endogenous huntingtin phosphorylation, prevented detailed study of the role of IKBKB in Huntington's disease. Using novel ultrasensitive assays, we demonstrate that IKBKB can regulate endogenous S13 huntingtin phosphorylation in a manner, dependent on its kinase activity and known regulators. We found that the ability of IKBKB to phosphorylate endogenous huntingtin S13 is mediated through a non-canonical interferon regulatory factor3-mediated IKK pathway, distinct from the established involvement of IKBKB in mutant huntingtin's pathological mechanisms mediated via the canonical pathway. Furthermore, increased huntingtin S13 phosphorylation by IKBKB resulted in decreased aggregation of mutant huntingtin in cells, again dependent on its kinase activity. These findings point to a non-canonical IKK pathway linking S13 huntingtin phosphorylation to the pathological properties of mutant huntingtin aggregation, thought to be significant to Huntington's disease.
Collapse
Affiliation(s)
- Cristina Cariulo
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Paola Martufi
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Margherita Verani
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Leticia Toledo-Sherman
- Rainwatercf.org Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
- UCLA, Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ramee Lee
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | | | - Lara Petricca
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| | - Andrea Caricasole
- Neuroscience Unit, Translational and Discovery Research Department, IRBM S.p.A., Rome, Italy
| |
Collapse
|
12
|
Phadte AS, Bhatia M, Ebert H, Abdullah H, Elrazaq EA, Komolov KE, Pluciennik A. FAN1 removes triplet repeat extrusions via a PCNA- and RFC-dependent mechanism. Proc Natl Acad Sci U S A 2023; 120:e2302103120. [PMID: 37549289 PMCID: PMC10438374 DOI: 10.1073/pnas.2302103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
Human genome-wide association studies have identified FAN1 and several DNA mismatch repair (MMR) genes as modifiers of Huntington's disease age of onset. In animal models, FAN1 prevents somatic expansion of CAG triplet repeats, whereas MMR proteins promote this process. To understand the molecular basis of these opposing effects, we evaluated FAN1 nuclease function on DNA extrahelical extrusions that represent key intermediates in triplet repeat expansion. Here, we describe a strand-directed, extrusion-provoked nuclease function of FAN1 that is activated by RFC, PCNA, and ATP at physiological ionic strength. Activation of FAN1 in this manner results in DNA cleavage in the vicinity of triplet repeat extrahelical extrusions thereby leading to their removal in human cell extracts. The role of PCNA and RFC is to confer strand directionality to the FAN1 nuclease, and this reaction requires a physical interaction between PCNA and FAN1. Using cell extracts, we show that FAN1-dependent CAG extrusion removal relies on a very short patch excision-repair mechanism that competes with MutSβ-dependent MMR which is characterized by longer excision tracts. These results provide a mechanistic basis for the role of FAN1 in preventing repeat expansion and could explain the antagonistic effects of MMR and FAN1 in disease onset/progression.
Collapse
Affiliation(s)
- Ashutosh S. Phadte
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Mayuri Bhatia
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Hope Ebert
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Haaris Abdullah
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Essam Abed Elrazaq
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Konstantin E. Komolov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
13
|
O'Reilly D, Belgrad J, Ferguson C, Summers A, Sapp E, McHugh C, Mathews E, Boudi A, Buchwald J, Ly S, Moreno D, Furgal R, Luu E, Kennedy Z, Hariharan V, Monopoli K, Yang XW, Carroll J, DiFiglia M, Aronin N, Khvorova A. Di-valent siRNA-mediated silencing of MSH3 blocks somatic repeat expansion in mouse models of Huntington's disease. Mol Ther 2023; 31:1661-1674. [PMID: 37177784 PMCID: PMC10277892 DOI: 10.1016/j.ymthe.2023.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Huntington's disease (HD) is a severe neurodegenerative disorder caused by the expansion of the CAG trinucleotide repeat tract in the huntingtin gene. Inheritance of expanded CAG repeats is needed for HD manifestation, but further somatic expansion of the repeat tract in non-dividing cells, particularly striatal neurons, hastens disease onset. Called somatic repeat expansion, this process is mediated by the mismatch repair (MMR) pathway. Among MMR components identified as modifiers of HD onset, MutS homolog 3 (MSH3) has emerged as a potentially safe and effective target for therapeutic intervention. Here, we identify a fully chemically modified short interfering RNA (siRNA) that robustly silences Msh3 in vitro and in vivo. When synthesized in a di-valent scaffold, siRNA-mediated silencing of Msh3 effectively blocked CAG-repeat expansion in the striatum of two HD mouse models without affecting tumor-associated microsatellite instability or mRNA expression of other MMR genes. Our findings establish a promising treatment approach for patients with HD and other repeat expansion diseases.
Collapse
Affiliation(s)
- Daniel O'Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chantal Ferguson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Cassandra McHugh
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Ella Mathews
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julianna Buchwald
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Moreno
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Raymond Furgal
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zachary Kennedy
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kathryn Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - X William Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute of Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jeffery Carroll
- Behavioral Neuroscience Program, Psychology Department, Western Washington University, Bellingham, WA 98225, USA; Department of Neurology, University of Washington, Seattle, WA 98104-2499, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
14
|
Choi DE, Shin JW, Zeng S, Hong EP, Jang JH, Loupe JM, Wheeler VC, Stutzman HE, Kleinstiver BP, Lee JM. Base editing strategies to convert CAG to CAA diminish the disease-causing mutation in Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538700. [PMID: 37162872 PMCID: PMC10168301 DOI: 10.1101/2023.04.28.538700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An expanded CAG repeat in the huntingtin gene ( HTT ) causes Huntington's disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and gRNAs efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion base editing strategies in HD and potentially other repeat expansion disorders.
Collapse
|
15
|
Sturchio A, Duker AP, Muñoz-Sanjuan I, Espay AJ. Subtyping monogenic disorders: Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:171-184. [PMID: 36803810 DOI: 10.1016/b978-0-323-85555-6.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Huntington disease is a highly disabling neurodegenerative disease characterized by psychiatric, cognitive, and motor deficits. The causal genetic mutation in huntingtin (Htt, also known as IT15), located on chromosome 4p16.3, leads to an expansion of a triplet coding for polyglutamine. The expansion is invariably associated with the disease when >39 repeats. Htt encodes for the protein huntingtin (HTT), which carries out many essential biological functions in the cell, in particular in the nervous system. The precise mechanism of toxicity is not known. Based on a one-gene-one-disease framework, the prevailing hypothesis ascribes toxicity to the universal aggregation of HTT. However, the aggregation process into mutant huntingtin (mHTT) is associated with a reduction of the levels of wild-type HTT. A loss of wild-type HTT may plausibly be pathogenic, contributing to the disease onset and progressive neurodegeneration. Moreover, many other biological pathways are altered in Huntington disease, such as in the autophagic system, mitochondria, and essential proteins beyond HTT, potentially explaining biological and clinical differences among affected individuals. As one gene does not mean one disease, future efforts at identifying specific Huntington subtypes are important to design biologically tailored therapeutic approaches that correct the corresponding biological pathways-rather than continuing to exclusively target the common denominator of HTT aggregation for elimination.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States; Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, Stockholm, Sweden.
| | - Andrew P Duker
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | | | - Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
16
|
Smith EJ, Sathasivam K, Landles C, Osborne GF, Mason MA, Gomez-Paredes C, Taxy BA, Milton RE, Ast A, Schindler F, Zhang C, Duan W, Wanker EE, Bates GP. Early detection of exon 1 huntingtin aggregation in zQ175 brains by molecular and histological approaches. Brain Commun 2023; 5:fcad010. [PMID: 36756307 PMCID: PMC9901570 DOI: 10.1093/braincomms/fcad010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/08/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Huntingtin-lowering approaches that target huntingtin expression are a major focus for therapeutic intervention for Huntington's disease. When the cytosine, adenine and guanine repeat is expanded, the huntingtin pre-mRNA is alternatively processed to generate the full-length huntingtin and HTT1a transcripts. HTT1a encodes the aggregation-prone and highly pathogenic exon 1 huntingtin protein. In evaluating huntingtin-lowering approaches, understanding how the targeting strategy modulates levels of both transcripts and the huntingtin protein isoforms that they encode will be essential. Given the aggregation-propensity of exon 1 huntingtin, the impact of a given strategy on the levels and subcellular location of aggregated huntingtin will need to be determined. We have developed and applied sensitive molecular approaches to monitor the levels of aggregated and soluble huntingtin isoforms in tissue lysates. We have used these, in combination with immunohistochemistry, to map the appearance and accumulation of aggregated huntingtin throughout the CNS of zQ175 mice, a model of Huntington's disease frequently chosen for preclinical studies. Aggregation analyses were performed on tissues from zQ175 and wild-type mice at monthly intervals from 1 to 6 months of age. We developed three homogeneous time-resolved fluorescence assays to track the accumulation of aggregated huntingtin and showed that two of these were specific for the exon 1 huntingtin protein. Collectively, the homogeneous time-resolved fluorescence assays detected huntingtin aggregation in the 10 zQ175 CNS regions by 1-2 months of age. Immunohistochemistry with the polyclonal S830 anti-huntingtin antibody showed that nuclear huntingtin aggregation, in the form of a diffuse nuclear immunostain, could be visualized in the striatum, hippocampal CA1 region and layer IV of the somatosensory cortex by 2 months. That this diffuse nuclear immunostain represented aggregated huntingtin was confirmed by immunohistochemistry with a polyglutamine-specific antibody, which required formic acid antigen retrieval to expose its epitope. By 6 months of age, nuclear and cytoplasmic inclusions were widely distributed throughout the brain. Homogeneous time-resolved fluorescence analysis showed that the comparative levels of soluble exon 1 huntingtin between CNS regions correlated with those for huntingtin aggregation. We found that soluble exon 1 huntingtin levels decreased over the 6-month period, whilst those of soluble full-length mutant huntingtin remained unchanged, data that were confirmed for the cortex by immunoprecipitation and western blotting. These data support the hypothesis that exon 1 huntingtin initiates the aggregation process in knock-in mouse models and pave the way for a detailed analysis of huntingtin aggregation in response to huntingtin-lowering treatments.
Collapse
Affiliation(s)
- Edward J Smith
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kirupa Sathasivam
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Georgina F Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Michael A Mason
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Casandra Gomez-Paredes
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Rebecca E Milton
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anne Ast
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Franziska Schindler
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Chuangchuang Zhang
- Division of Neurobiology, Department Psychiatry and Behavioral Sciences; Department Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department Psychiatry and Behavioral Sciences; Department Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
17
|
Qin Y, Li S, Li XJ, Yang S. CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy. Neurosci Bull 2022; 38:1397-1408. [PMID: 35608753 PMCID: PMC9672252 DOI: 10.1007/s12264-022-00880-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
Collapse
Affiliation(s)
- Yiyang Qin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Su Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
19
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
20
|
Lobanov SV, McAllister B, McDade-Kumar M, Landwehrmeyer GB, Orth M, Rosser AE, Paulsen JS, Lee JM, MacDonald ME, Gusella JF, Long JD, Ryten M, Williams NM, Holmans P, Massey TH, Jones L. Huntington's disease age at motor onset is modified by the tandem hexamer repeat in TCERG1. NPJ Genom Med 2022; 7:53. [PMID: 36064847 PMCID: PMC9445028 DOI: 10.1038/s41525-022-00317-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/15/2022] [Indexed: 01/29/2023] Open
Abstract
Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.
Collapse
Affiliation(s)
- Sergey V Lobanov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Mia McDade-Kumar
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | | | - Michael Orth
- Department of Old Age Psychiatry and Psychotherapy, Bern University, Bern, Switzerland
- Swiss Huntington's Disease Centre, Siloah, Gümligen, Switzerland
| | - Anne E Rosser
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin, Madison, WI53705, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University, College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Nigel M Williams
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Thomas H Massey
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK.
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Abstract
Roughly 3% of the human genome consists of microsatellites or tracts of short tandem repeats (STRs). These STRs are often unstable, undergoing high-frequency expansions (increases) or contractions (decreases) in the number of repeat units. Some microsatellite instability (MSI) is seen at multiple STRs within a single cell and is associated with certain types of cancer. A second form of MSI is characterised by expansion of a single gene-specific STR and such expansions are responsible for a group of 40+ human genetic disorders known as the repeat expansion diseases (REDs). While the mismatch repair (MMR) pathway prevents genome-wide MSI, emerging evidence suggests that some MMR factors are directly involved in generating expansions in the REDs. Thus, MMR suppresses some forms of expansion while some MMR factors promote expansion in other contexts. This review will cover what is known about the paradoxical effect of MMR on microsatellite expansion in mammalian cells.
Collapse
|
22
|
Di Tella S, Lo Monaco MRI, Petracca M, Zinzi P, Solito M, Piano C, Calabresi P, Silveri MC, Bentivoglio AR. Beyond the CAG triplet number: exploring potential predictors of delayed age of onset in Huntington's disease. J Neurol 2022; 269:6634-6640. [PMID: 35915275 DOI: 10.1007/s00415-022-11297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Huntington's disease (HD) is a genetic neurodegenerative disease characterized by cognitive, motor, and psychiatric dysfunction. It is caused by an expansion of the trinucleotide repeat sequence cytosine-adenine-guanine (CAG) in the Huntingtin gene on chromosome 4. Onset typically occurs in the fourth or fifth decade, ranging from childhood to late adulthood. The CAG triplet number is generally inversely proportional to the age of onset (AOO), but the repeat number only accounts for ∼70% of the variability in AOO. Several studies demonstrated the impact of genetic modifiers on age of disease onset. In addition to genetics, we also explored the demographic, anamnestic, and socio-environmental factors that can affect AOO, to help us understand the non-genetic variability of age of onset in HD. METHODS We analyzed the retrospective data of the ENROLL-HD global registry study, particularly focusing on the continuum of ages, to include sociodemographic, genetic, and anamnestic psychobehavioral variables in a multivariate regression model aimed at identifying the potential predictors of age of motor onset (n = 5053). We ran the same regression model in the sample of subjects who had the same number of triplets (41 CAG, n = 593) and in the sample whose family history was absent/unknown (n = 630). RESULTS Patients with delayed onset more frequently have unknown/missing family history, are married or widowed, live in larger urbanized contexts and have a lower educational level. Individuals with earlier onset more frequently develop psychobehavioral symptoms. CONCLUSIONS In the past, the HD gene was considered the epitome of genetic determinism. Our results are consistent with recent evidence that other factors might modulate its impact. These findings allow characterizing the determinants of AOO beyond the CAG expansions and provide valuable information for stratifying patients for future clinical trial designs.
Collapse
Affiliation(s)
- Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123, Milan, Italy
| | - Maria RIta Lo Monaco
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy. .,Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
| | - Martina Petracca
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy
| | - Paola Zinzi
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy
| | - Marcella Solito
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy
| | - Carla Piano
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy.,Institute of Neurology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Paolo Calabresi
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy.,Institute of Neurology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Maria Caterina Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123, Milan, Italy.,Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Anna Rita Bentivoglio
- Fondazione Policlinico Universitario 'Agostino Gemelli' IRCSS, Largo A Gemelli, 8, 00168, Rome, Italy.,Institute of Neurology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
23
|
Qin N, Geng A, Xue R. Activated or Impaired: An Overview of DNA Repair in Neurodegenerative Diseases. Aging Dis 2022; 13:987-1004. [PMID: 35855336 PMCID: PMC9286913 DOI: 10.14336/ad.2021.1212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022] Open
Abstract
As the population ages, age-related neurodegenerative diseases have become a major challenge in health science. Currently, the pathology of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease, is still not fully understood. Remarkably, emerging evidence indicates a role of genomic DNA damage and repair in various neurodegenerative disorders. Here, we summarized the current understanding of the function of DNA damage repair, especially base excision repair and double strand break repair pathways, in a variety of neurodegenerative diseases. We concluded that exacerbation of DNA lesions is found in almost all types of neurodegenerative diseases, whereas the activities of different DNA repair pathways demonstrate distinct trends, depending on disease type and even brain region. Specifically, key enzymes involved in base excision repair are likely impaired in Alzheimer's disease and amyotrophic lateral sclerosis but activated in Parkinson's disease, while nonhomologous end joining is likely downregulated in most types of neurodegenerative diseases. Hence, impairment of nonhomologous end joining is likely a common etiology for most neurodegenerative diseases, while defects in base excision repair are likely involved in the pathology of Alzheimer's disease and amyotrophic lateral sclerosis but are Parkinson's disease, based on current findings. Although there are still discrepancies and further studies are required to completely elucidate the exact roles of DNA repair in neurodegeneration, the current studies summarized here provide crucial insights into the pathology of neurodegenerative diseases and may reveal novel drug targets for corresponding neurodegenerative diseases.
Collapse
Affiliation(s)
- Nan Qin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Renhao Xue
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
24
|
Kaye J, Reisine T, Finkbeiner S. Huntington's disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac Rev 2022; 11:16. [PMID: 35865413 PMCID: PMC9264339 DOI: 10.12703/r/11-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A major advance in the study of Huntington's disease (HD) has been the development of human disease models employing induced pluripotent stem cells (iPSCs) derived from patients with HD. Because iPSCs provide an unlimited source of cells and can be obtained from large numbers of HD patients, they are a uniquely valuable tool for investigating disease mechanisms and for discovering potential disease-modifying therapeutics. Here, we summarize some of the important findings in HD pathophysiology that have emerged from studies of patient-derived iPSC lines. Because they retain the genome and actual disease mutations of the patient, they provide a cell source to investigate genetic contributions to the disease. iPSCs provide advantages over other disease models. While iPSC-based technology erases some epigenetic marks, newly developed transdifferentiation methods now let us investigate epigenetic factors that control expression of mutant huntingtin (mHTT). Human HD iPSC lines allow us to investigate how endogenous levels of mHTT affect cell health, in contrast to other models that often rely on overexpressing the protein. iPSCs can be differentiated into neurons and other disease-related cells such as astrocytes from different brain regions to study brain regional differences in the disease process, as well as the cell-cell dependencies involved in HD-associated neurodegeneration. They also serve as a tissue source to investigate factors that impact CAG repeat instability, which is involved in regional differences in neurodegeneration in the HD brain. Human iPSC models can serve as a powerful model system to identify genetic modifiers that may impact disease onset, progression, and symptomatology, providing novel molecular targets for drug discovery.
Collapse
Affiliation(s)
- Julia Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
- Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology and Physiology, University of California, San Francisco, CA, USA
| |
Collapse
|
25
|
Welch G, Tsai LH. Mechanisms of DNA damage-mediated neurotoxicity in neurodegenerative disease. EMBO Rep 2022; 23:e54217. [PMID: 35499251 PMCID: PMC9171412 DOI: 10.15252/embr.202154217] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Neurons are highly susceptible to DNA damage accumulation due to their large energy requirements, elevated transcriptional activity, and long lifespan. While newer research has shown that DNA breaks and mutations may facilitate neuron diversity during development and neuronal function throughout life, a wealth of evidence indicates deficient DNA damage repair underlies many neurological disorders, especially age-associated neurodegenerative diseases. Recently, efforts to clarify the molecular link between DNA damage and neurodegeneration have improved our understanding of how the genomic location of DNA damage and defunct repair proteins impact neuron health. Additionally, work establishing a role for senescence in the aging and diseased brain reveals DNA damage may play a central role in neuroinflammation associated with neurodegenerative disease.
Collapse
Affiliation(s)
- Gwyneth Welch
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Hereditary spastic paraplegia type 56: what a mouse can tell – a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Martí-Martínez S, Valor LM. A Glimpse of Molecular Biomarkers in Huntington's Disease. Int J Mol Sci 2022; 23:ijms23105411. [PMID: 35628221 PMCID: PMC9142992 DOI: 10.3390/ijms23105411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder that is caused by an abnormal expansion of CAG repeats in the Huntingtin (HTT) gene. Although the main symptomatology is explained by alterations at the level of the central nervous system, predominantly affecting the basal ganglia, a peripheral component of the disease is being increasingly acknowledged. Therefore, the manifestation of the disease is complex and variable among CAG expansion carriers, introducing uncertainty in the appearance of specific signs, age of onset and severity of disease. The monogenic nature of the disorder allows a precise diagnosis, but the use of biomarkers with prognostic value is still needed to achieve clinical management of the patients in an individual manner. In addition, we need tools to evaluate the patient's response to potential therapeutic approaches. In this review, we provide a succinct summary of the most interesting molecular biomarkers that have been assessed in patients, mostly obtained from body fluids such as cerebrospinal fluid, peripheral blood and saliva.
Collapse
Affiliation(s)
- Silvia Martí-Martínez
- Servicio de Neurología, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain;
| | - Luis M. Valor
- Laboratorio de Apoyo a la Investigación, Hospital General Universitario Dr. Balmis, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
28
|
Lee JM, Huang Y, Orth M, Gillis T, Siciliano J, Hong E, Mysore JS, Lucente D, Wheeler VC, Seong IS, McLean ZL, Mills JA, McAllister B, Lobanov SV, Massey TH, Ciosi M, Landwehrmeyer GB, Paulsen JS, Dorsey ER, Shoulson I, Sampaio C, Monckton DG, Kwak S, Holmans P, Jones L, MacDonald ME, Long JD, Gusella JF. Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. Am J Hum Genet 2022; 109:885-899. [PMID: 35325614 DOI: 10.1016/j.ajhg.2022.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.
Collapse
|
29
|
Barbé L, Finkbeiner S. Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases. Front Aging Neurosci 2022; 14:750629. [PMID: 35592702 PMCID: PMC9110800 DOI: 10.3389/fnagi.2022.750629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Repeat diseases, such as fragile X syndrome, myotonic dystrophy, Friedreich ataxia, Huntington disease, spinocerebellar ataxias, and some forms of amyotrophic lateral sclerosis, are caused by repetitive DNA sequences that are expanded in affected individuals. The age at which an individual begins to experience symptoms, and the severity of disease, are partially determined by the size of the repeat. However, the epigenetic state of the area in and around the repeat also plays an important role in determining the age of disease onset and the rate of disease progression. Many repeat diseases share a common epigenetic pattern of increased methylation at CpG islands near the repeat region. CpG islands are CG-rich sequences that are tightly regulated by methylation and are often found at gene enhancer or insulator elements in the genome. Methylation of CpG islands can inhibit binding of the transcriptional regulator CTCF, resulting in a closed chromatin state and gene down regulation. The downregulation of these genes leads to some disease-specific symptoms. Additionally, a genetic and epigenetic interplay is suggested by an effect of methylation on repeat instability, a hallmark of large repeat expansions that leads to increasing disease severity in successive generations. In this review, we will discuss the common epigenetic patterns shared across repeat diseases, how the genetics and epigenetics interact, and how this could be involved in disease manifestation. We also discuss the currently available stem cell and mouse models, which frequently do not recapitulate epigenetic patterns observed in human disease, and propose alternative strategies to study the role of epigenetics in repeat diseases.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
| | - Steve Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Steve Finkbeiner,
| |
Collapse
|
30
|
Petracca M, Di Tella S, Solito M, Zinzi P, Lo Monaco MR, Di Lazzaro G, Calabresi P, Silveri MC, Bentivoglio AR. Clinical and genetic characteristics of late-onset Huntington's disease in a large European cohort. Eur J Neurol 2022; 29:1940-1951. [PMID: 35357736 PMCID: PMC9324106 DOI: 10.1111/ene.15340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Background and purpose Huntington's disease (HD) is an autosomal dominant condition caused by CAG‐triplet repeat expansions. CAG‐triplet repeat expansion is inversely correlated with age of onset in HD and largely determines the clinical features. The aim of this study was to examine the phenotypic and genotypic correlates of late‐onset HD (LoHD) and to determine whether LoHD is a more benign expression of HD. Methods This was a retrospective observational study of 5053 White European HD patients from the ENROLL‐HD database. Sociodemographic, genetic and phenotypic variables at baseline evaluation of subjects with LoHD, common‐onset HD (CoHD) and young‐onset HD (YoHD) were compared. LoHD subjects were compared with healthy subjects (HS) aged ≥60 years. Differences between the CoHD and LoHD groups were also explored in subjects with 41 CAG triplets, a repeat number in the lower pathological expansion range associated with wide variability in age at onset. Results Late‐onset HD presented predominantly as motor‐onset disease, with a lower prevalence of both psychiatric history and current symptomatology. Absent/unknown HD family history was significantly more common in the LoHD group (31.2%) than in the other groups. The LoHD group had more severe motor and cognitive deficits than the HS group. Subjects with LoHD and CoHD with 41 triplets in the larger allele were comparable with regard to cognitive impairment, but those with LoHD had more severe motor disorders, less problematic behaviors and more often an unknown HD family history. Conclusions It is likely that cognitive disorders and motor symptoms of LoHD are at least partly age‐related and not a direct expression of the disease. In addition to CAG‐triplet repeat expansion, future studies should investigate the role of other genetic and environmental factors in determining age of onset.
Collapse
Affiliation(s)
- M Petracca
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - S Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123, Milan
| | - M Solito
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - P Zinzi
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Clinical Psychology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - M R Lo Monaco
- Geriatric Day-Hospital, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Medicine of the Ageing, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - G Di Lazzaro
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Department of Systems Medicine, University of Rome Tor Vergata, Rome
| | - P Calabresi
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Institute of Neurology, Università Cattolica del Sacro Cuore, Rome
| | - M C Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, 20123, Milan.,Medicine of the Ageing, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome
| | - A R Bentivoglio
- Movement Disorders Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168, Rome.,Institute of Neurology, Università Cattolica del Sacro Cuore, Rome
| |
Collapse
|
31
|
Bunting EL, Hamilton J, Tabrizi SJ. Polyglutamine diseases. Curr Opin Neurobiol 2022; 72:39-47. [PMID: 34488036 DOI: 10.1016/j.conb.2021.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Polyglutamine diseases are a collection of nine CAG trinucleotide expansion disorders, presenting with a spectrum of neurological and clinical phenotypes. Recent human, mouse and cell studies of Huntington's disease have highlighted the role of DNA repair genes in somatic expansion of the CAG repeat region, modifying disease pathogenesis. Incomplete splicing of the HTT gene has also been shown to occur in humans, with the resulting exon 1 fragment most probably contributing to the Huntington's disease phenotype. In the spinocerebellar ataxias, studies have converged on transcriptional dysregulation of ion channels as a key disease modifier. In addition, advances have been made in understanding how increased levels of toxic, polyglutamine-expanded proteins can arise in the spinocerebellar ataxias through post-transcriptional and -translational modifications and autophagic mechanisms. Recent studies in spinal and bulbar muscular atrophy implicate similar pathogenic pathways to the more common polyglutamine diseases, highlighting autophagy stimulation as a potential therapeutic target. Finally, the therapeutic use of antisense oligonucleotides in several polyglutamine diseases has shown preclinical benefits and serves as potential future therapies in humans.
Collapse
Affiliation(s)
- Emma L Bunting
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Joseph Hamilton
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK; UK Dementia Research Institute, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
32
|
Wipf P, Polyzos AA, McMurray CT. A Double-Pronged Sword: XJB-5-131 Is a Suppressor of Somatic Instability and Toxicity in Huntington's Disease. J Huntingtons Dis 2022; 11:3-15. [PMID: 34924397 PMCID: PMC9028625 DOI: 10.3233/jhd-210510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to large increases in the elderly populations across the world, age-related diseases are expected to expand dramatically in the coming years. Among these, neurodegenerative diseases will be among the most devastating in terms of their emotional and economic impact on patients, their families, and associated subsidized health costs. There is no currently available cure or rescue for dying brain cells. Viable therapeutics for any of these disorders would be a breakthrough and provide relief for the large number of affected patients and their families. Neurodegeneration is accompanied by elevated oxidative damage and inflammation. While natural antioxidants have largely failed in clinical trials, preclinical phenotyping of the unnatural, mitochondrial targeted nitroxide, XJB-5-131, bodes well for further translational development in advanced animal models or in humans. Here we consider the usefulness of synthetic antioxidants for the treatment of Huntington's disease. The mitochondrial targeting properties of XJB-5-131 have great promise. It is both an electron scavenger and an antioxidant, reducing both somatic expansion and toxicity simultaneously through the same redox mechanism. By quenching reactive oxygen species, XJB-5-131 breaks the cycle between the rise in oxidative damage during disease progression and the somatic growth of the CAG repeat which depends on oxidation.
Collapse
Affiliation(s)
- Pater Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aris A. Polyzos
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cynthia T. McMurray
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
33
|
CAG repeat-binding small molecule improves motor coordination impairment in a mouse model of Dentatorubral-pallidoluysian atrophy. Neurobiol Dis 2021; 163:105604. [PMID: 34968706 DOI: 10.1016/j.nbd.2021.105604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a devastating genetic disease presenting myoclonus, epilepsy, ataxia, and dementia. DRPLA is caused by the expansion of a CAG repeat in the ATN1 gene. Aggregation of the polyglutamine-expanded ATN1 protein causes neuro-degeneration of the dentatorubral and pallidoluysian systems. The expanded CAG repeats are unstable, and ongoing repeat expansions contribute to disease onset, progression, and severity. Inducing contractions of expanded repeats can be a means to treat DRPLA, for which no disease-modifying or curative therapies exist at present. Previously, we characterized a small molecule, naphthyridine-azaquinolone (NA), which binds to CAG slip-out structures and induces repeat contraction in Huntington's disease mice. Here, we demonstrate that long-term intracerebroventricular infusion of NA leads to repeat contraction, reductions in mutant ATN1 aggregation, and improved motor phenotype in a murine model of DRPLA. Furthermore, NA-induced contraction resulted in the modification of repeat-length-dependent dysregulation of gene expression profiles in DRPLA mice. Our study reveals the therapeutic potential of repeat contracting small molecules for repeat expansion disorders, such as DRPLA.
Collapse
|
34
|
Lee YH, Tsai YS, Chang CC, Ho CC, Shih HM, Chen HM, Lai HL, Lee CW, Lee YC, Liao YC, Yang UC, Cheng TH, Chern Y, Soong BW. A PIAS1 Protective Variant S510G Delays polyQ Disease Onset by Modifying Protein Homeostasis. Mov Disord 2021; 37:767-777. [PMID: 34951052 DOI: 10.1002/mds.28896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polyglutamine (polyQ) diseases are dominant neurodegenerative diseases caused by an expansion of the polyQ-encoding CAG repeats in the disease-causing gene. The length of the CAG repeats is the major determiner of the age at onset (AO) of polyQ diseases, including Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). OBJECTIVE We set out to identify common genetic variant(s) that may affect the AO of polyQ diseases. METHODS Three hundred thirty-seven patients with HD or SCA3 were enrolled for targeted sequencing of 583 genes implicated in proteinopathies. In total, 16 genes were identified as containing variants that are associated with late AO of polyQ diseases. For validation, we further investigate the variants of PIAS1 because PIAS1 is an E3 SUMO (small ubiquitin-like modifier) ligase for huntingtin (HTT), the protein linked to HD. RESULTS Biochemical analyses revealed that the ability of PIAS1S510G to interact with mutant huntingtin (mHTT) was less than that of PIAS1WT , resulting in lower SUMOylation of mHTT and lower accumulation of insoluble mHTT. Genetic knock-in of PIAS1S510G in a HD mouse model (R6/2) ameliorated several HD-like deficits (including shortened life spans, poor grip strength and motor coordination) and reduced neuronal accumulation of mHTT. CONCLUSIONS Our findings suggest that PIAS1 is a genetic modifier of polyQ diseases. The naturally occurring variant, PIAS1S510G , is associated with late AO in polyQ disease patients and milder disease severity in HD mice. Our study highlights the possibility of targeting PIAS1 or pathways governing protein homeostasis as a disease-modifying approach for treating patients with HD.
Collapse
Affiliation(s)
- Yan Hua Lee
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine and International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chen Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Ming Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ueng-Cheng Yang
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hao Cheng
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yijuang Chern
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Taipei Veterans General Hospital, and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, Shuang Ho Hospital, and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Arning L, Nguyen HP. Huntington disease update: new insights into the role of repeat instability in disease pathogenesis. MED GENET-BERLIN 2021; 33:293-300. [PMID: 38835439 PMCID: PMC11006308 DOI: 10.1515/medgen-2021-2101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/16/2021] [Indexed: 06/06/2024]
Abstract
The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis- (DNA repair genes) and trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.
Collapse
Affiliation(s)
- Larissa Arning
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr-University Bochum, Bochum 44780, Germany
| |
Collapse
|
36
|
Abstract
At fifteen different genomic locations, the expansion of a CAG/CTG repeat causes a neurodegenerative or neuromuscular disease, the most common being Huntington's disease and myotonic dystrophy type 1. These disorders are characterized by germline and somatic instability of the causative CAG/CTG repeat mutations. Repeat lengthening, or expansion, in the germline leads to an earlier age of onset or more severe symptoms in the next generation. In somatic cells, repeat expansion is thought to precipitate the rate of disease. The mechanisms underlying repeat instability are not well understood. Here we review the mammalian model systems that have been used to study CAG/CTG repeat instability, and the modifiers identified in these systems. Mouse models have demonstrated prominent roles for proteins in the mismatch repair pathway as critical drivers of CAG/CTG instability, which is also suggested by recent genome-wide association studies in humans. We draw attention to a network of connections between modifiers identified across several systems that might indicate pathway crosstalk in the context of repeat instability, and which could provide hypotheses for further validation or discovery. Overall, the data indicate that repeat dynamics might be modulated by altering the levels of DNA metabolic proteins, their regulation, their interaction with chromatin, or by direct perturbation of the repeat tract. Applying novel methodologies and technologies to this exciting area of research will be needed to gain deeper mechanistic insight that can be harnessed for therapies aimed at preventing repeat expansion or promoting repeat contraction.
Collapse
Affiliation(s)
- Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA,Department of Neurology, Harvard Medical School, Boston, MA, USA,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, UK,Correspondence to: Vanessa C. Wheeler, Center for Genomic Medicine, Massachusetts Hospital, Boston MAA 02115, USA. E-mail: . and Vincent Dion, UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ Cardiff, UK. E-mail:
| |
Collapse
|
37
|
Gusella JF, Lee JM, MacDonald ME. Huntington's disease: nearly four decades of human molecular genetics. Hum Mol Genet 2021; 30:R254-R263. [PMID: 34169318 PMCID: PMC8490011 DOI: 10.1093/hmg/ddab170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a devastating neurogenetic disorder whose familial nature and progressive course were first described in the 19th century but for which no disease-modifying treatment is yet available. Through the active participation of HD families, this disorder has acted as a flagship for the application of human molecular genetic strategies to identify disease genes, understand pathogenesis and identify rational targets for development of therapies.
Collapse
Affiliation(s)
- James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Yang B, Borgeaud AC, Buřičová M, Aeschbach L, Rodríguez-Lima O, Ruiz Buendía GA, Cinesi C, Taylor AS, Baubec T, Dion V. Expanded CAG/CTG repeats resist gene silencing mediated by targeted Epigenome editing. Hum Mol Genet 2021; 31:386-398. [PMID: 34494094 PMCID: PMC8825355 DOI: 10.1093/hmg/ddab255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/08/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Expanded CAG/CTG repeat disorders affect over 1 in 2500 individuals worldwide. Potential therapeutic avenues include gene silencing and modulation of repeat instability. However, there are major mechanistic gaps in our understanding of these processes, which prevent the rational design of an efficient treatment. To address this, we developed a novel system, ParB/ANCHOR-mediated Inducible Targeting (PInT), in which any protein can be recruited at will to a GFP reporter containing an expanded CAG/CTG repeat. Previous studies have implicated the histone deacetylase HDAC5 and the DNA methyltransferase DNMT1 as modulators of repeat instability via mechanisms that are not fully understood. Using PInT, we found no evidence that HDAC5 or DNMT1 modulate repeat instability upon targeting to the expanded repeat, suggesting that their effect is independent of local chromatin structure. Unexpectedly, we found that expanded CAG/CTG repeats reduce the effectiveness of gene silencing mediated by targeting HDAC5 and DNMT1. The repeat-length effect in gene silencing by HDAC5 was abolished by a small molecule inhibitor of HDAC3. Our results have important implications on the design of epigenome editing approaches for expanded CAG/CTG repeat disorders. PInT is a versatile synthetic system to study the effect of any sequence of interest on epigenome editing.
Collapse
Affiliation(s)
- Bin Yang
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Alicia C Borgeaud
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, United Kingdom
| | - Marcela Buřičová
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, United Kingdom
| | - Lorène Aeschbach
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Oscar Rodríguez-Lima
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Gustavo A Ruiz Buendía
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Cinzia Cinesi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Alysha S Taylor
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, United Kingdom
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057, Zurich, Switzerland
| | - Vincent Dion
- UK Dementia Research Institute at Cardiff University, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, United Kingdom
| |
Collapse
|
39
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Mouro Pinto R, Arning L, Giordano JV, Razghandi P, Andrew MA, Gillis T, Correia K, Mysore JS, Grote Urtubey DM, Parwez CR, von Hein SM, Clark HB, Nguyen HP, Förster E, Beller A, Jayadaev S, Keene CD, Bird TD, Lucente D, Vonsattel JP, Orr H, Saft C, Petrasch-Parwez E, Wheeler VC. Patterns of CAG repeat instability in the central nervous system and periphery in Huntington's disease and in spinocerebellar ataxia type 1. Hum Mol Genet 2021; 29:2551-2567. [PMID: 32761094 PMCID: PMC7471505 DOI: 10.1093/hmg/ddaa139] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The expanded HTT CAG repeat causing Huntington’s disease (HD) exhibits somatic expansion proposed to drive the rate of disease onset by eliciting a pathological process that ultimately claims vulnerable cells. To gain insight into somatic expansion in humans, we performed comprehensive quantitative analyses of CAG expansion in ~50 central nervous system (CNS) and peripheral postmortem tissues from seven adult-onset and one juvenile-onset HD individual. We also assessed ATXN1 CAG repeat expansion in brain regions of an individual with a neurologically and pathologically distinct repeat expansion disorder, spinocerebellar ataxia type 1 (SCA1). Our findings reveal similar profiles of tissue instability in all HD individuals, which, notably, were also apparent in the SCA1 individual. CAG expansion was observed in all tissues, but to different degrees, with multiple cortical regions and neostriatum tending to have the greatest instability in the CNS, and liver in the periphery. These patterns indicate different propensities for CAG expansion contributed by disease locus-independent trans-factors and demonstrate that expansion per se is not sufficient to cause cell type or disease-specific pathology. Rather, pathology may reflect distinct toxic processes triggered by different repeat lengths across cell types and diseases. We also find that the HTT CAG length-dependent expansion propensity of an individual is reflected in all tissues and in cerebrospinal fluid. Our data indicate that peripheral cells may be a useful source to measure CAG expansion in biomarker assays for therapeutic efforts, prompting efforts to dissect underlying mechanisms of expansion that may differ between the brain and periphery.
Collapse
Affiliation(s)
- Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Larissa Arning
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - James V Giordano
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pedram Razghandi
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Constanze R Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Sarah M von Hein
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr-University Bochum, Bochum 44780, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Allison Beller
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Suman Jayadaev
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.,Department of Medicine, University of Washington, Seattle, Washington 98195, USA.,Geriatrics Research Education and Clinical Center, VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Harry Orr
- Department of Laboratory Medicine and Pathology, Institute of Translational Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, St. Josef-Hospital, Ruhr-University Bochum, Bochum 44791, Germany
| | - Elisabeth Petrasch-Parwez
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr-University Bochum, Bochum 44780, Germany
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Loupe JM, Pinto RM, Kim KH, Gillis T, Mysore JS, Andrew MA, Kovalenko M, Murtha R, Seong I, Gusella JF, Kwak S, Howland D, Lee R, Lee JM, Wheeler VC, MacDonald ME. Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out. Hum Mol Genet 2021; 29:3044-3053. [PMID: 32876667 PMCID: PMC7645713 DOI: 10.1093/hmg/ddaa196] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Recent genome-wide association studies of age-at-onset in Huntington’s disease (HD) point to distinct modes of potential disease modification: altering the rate of somatic expansion of the HTT CAG repeat or altering the resulting CAG threshold length-triggered toxicity process. Here, we evaluated the mouse orthologs of two HD age-at-onset modifier genes, FAN1 and RRM2B, for an influence on somatic instability of the expanded CAG repeat in Htt CAG knock-in mice. Fan1 knock-out increased somatic expansion of Htt CAG repeats, in the juvenile- and the adult-onset HD ranges, whereas knock-out of Rrm2b did not greatly alter somatic Htt CAG repeat instability. Simultaneous knock-out of Mlh1, the ortholog of a third HD age-at-onset modifier gene (MLH1), which suppresses somatic expansion of the Htt knock-in CAG repeat, blocked the Fan1 knock-out-induced acceleration of somatic CAG expansion. This genetic interaction indicates that functional MLH1 is required for the CAG repeat destabilizing effect of FAN1 loss. Thus, in HD, it is uncertain whether the RRM2B modifier effect on timing of onset may be due to a DNA instability mechanism. In contrast, the FAN1 modifier effects reveal that functional FAN1 acts to suppress somatic CAG repeat expansion, likely in genetic interaction with other DNA instability modifiers whose combined effects can hasten or delay onset and other CAG repeat length-driven phenotypes.
Collapse
Affiliation(s)
- Jacob M Loupe
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyung-Hee Kim
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jayalakshmi S Mysore
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marissa A Andrew
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ryan Murtha
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - IhnSik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Seung Kwak
- CHDI Foundation, Princeton, NJ 08540, USA
| | | | - Ramee Lee
- CHDI Foundation, Princeton, NJ 08540, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.,Medical and Population Genetics Program, The Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Zhao X, Usdin K. (Dys)function Follows Form: Nucleic Acid Structure, Repeat Expansion, and Disease Pathology in FMR1 Disorders. Int J Mol Sci 2021; 22:ijms22179167. [PMID: 34502075 PMCID: PMC8431139 DOI: 10.3390/ijms22179167] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| | - Karen Usdin
- Correspondence: (X.Z.); (K.U.); Tel.: +1-301-451-6322 (X.Z.); +1-301-496-2189 (K.U.)
| |
Collapse
|
43
|
Costantino I, Nicodemus J, Chun J. Genomic Mosaicism Formed by Somatic Variation in the Aging and Diseased Brain. Genes (Basel) 2021; 12:1071. [PMID: 34356087 PMCID: PMC8305509 DOI: 10.3390/genes12071071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022] Open
Abstract
Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell's genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.
Collapse
Affiliation(s)
- Isabel Costantino
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juliet Nicodemus
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
- Neurosciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jerold Chun
- Translational Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (I.C.); (J.N.)
| |
Collapse
|
44
|
Hong EP, Chao MJ, Massey T, McAllister B, Lobanov S, Jones L, Holmans P, Kwak S, Orth M, Ciosi M, Monckton DG, Long JD, Lucente D, Wheeler VC, MacDonald ME, Gusella JF, Lee JM. Association Analysis of Chromosome X to Identify Genetic Modifiers of Huntington's Disease. J Huntingtons Dis 2021; 10:367-375. [PMID: 34180418 DOI: 10.3233/jhd-210485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Huntington's disease (HD) is caused by an expanded (>35) CAG trinucleotide repeat in huntingtin (HTT). Age-at-onset of motor symptoms is inversely correlated with the size of the inherited CAG repeat, which expands further in brain regions due to somatic repeat instability. Our recent genetic investigation focusing on autosomal SNPs revealed that age-at-onset is also influenced by genetic variation at many loci, the majority of which encode genes involved in DNA maintenance/repair processes and repeat instability. OBJECTIVE We performed a complementary association analysis to determine whether variants in the X chromosome modify HD. METHODS We imputed SNPs on chromosome X for ∼9,000 HD subjects of European ancestry and performed an X chromosome-wide association study (XWAS) to test for association with age-at-onset corrected for inherited CAG repeat length. RESULTS In a mixed effects model XWAS analysis of all subjects (males and females), assuming random X-inactivation in females, no genome-wide significant onset modification signal was found. However, suggestive significant association signals were detected at Xq12 (top SNP, rs59098970; p-value, 1.4E-6), near moesin (MSN), in a region devoid of DNA maintenance genes. Additional suggestive signals not involving DNA repair genes were observed in male- and female-only analyses at other locations. CONCLUSION Although not genome-wide significant, potentially due to small effect size compared to the power of the current study, our data leave open the possibility of modification of HD by a non-DNA repair process. Our XWAS results are publicly available at the updated GEM EURO 9K website hosted at https://www.hdinhd.org/ for browsing, pathway analysis, and data download.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Michael J Chao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Thomas Massey
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Branduff McAllister
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sergey Lobanov
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Michael Orth
- Department of Old Age Psychiatry and Psychotherapy, University of Bern, Switzerland
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine and Department of Biostatistics, College of Public Health, and Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| |
Collapse
|
45
|
Hyeon JW, Kim AH, Yano H. Epigenetic regulation in Huntington's disease. Neurochem Int 2021; 148:105074. [PMID: 34038804 DOI: 10.1016/j.neuint.2021.105074] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/23/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022]
Abstract
Huntington's disease (HD) is a devastating and fatal monogenic neurodegenerative disorder characterized by progressive loss of selective neurons in the brain and is caused by an abnormal expansion of CAG trinucleotide repeats in a coding exon of the huntingtin (HTT) gene. Progressive gene expression changes that begin at premanifest stages are a prominent feature of HD and are thought to contribute to disease progression. Increasing evidence suggests the critical involvement of epigenetic mechanisms in abnormal transcription in HD. Genome-wide alterations of a number of epigenetic modifications, including DNA methylation and multiple histone modifications, are associated with HD, suggesting that mutant HTT causes complex epigenetic abnormalities and chromatin structural changes, which may represent an underlying pathogenic mechanism. The causal relationship of specific epigenetic changes to early transcriptional alterations and to disease pathogenesis require further investigation. In this article, we review recent studies on epigenetic regulation in HD with a focus on DNA and histone modifications. We also discuss the contribution of epigenetic modifications to HD pathogenesis as well as potential mechanisms linking mutant HTT and epigenetic alterations. Finally, we discuss the therapeutic potential of epigenetic-based treatments.
Collapse
Affiliation(s)
- Jae Wook Hyeon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
46
|
Pannafino G, Alani E. Coordinated and Independent Roles for MLH Subunits in DNA Repair. Cells 2021; 10:cells10040948. [PMID: 33923939 PMCID: PMC8074049 DOI: 10.3390/cells10040948] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
The MutL family of DNA mismatch repair proteins (MMR) acts to maintain genomic integrity in somatic and meiotic cells. In baker’s yeast, the MutL homolog (MLH) MMR proteins form three heterodimeric complexes, MLH1-PMS1, MLH1-MLH2, and MLH1-MLH3. The recent discovery of human PMS2 (homolog of baker’s yeast PMS1) and MLH3 acting independently of human MLH1 in the repair of somatic double-strand breaks questions the assumption that MLH1 is an obligate subunit for MLH function. Here we provide a summary of the canonical roles for MLH factors in DNA genomic maintenance and in meiotic crossover. We then present the phenotypes of cells lacking specific MLH subunits, particularly in meiotic recombination, and based on this analysis, propose a model for an independent early role for MLH3 in meiosis to promote the accurate segregation of homologous chromosomes in the meiosis I division.
Collapse
|
47
|
Abstract
DNA mismatch repair (MMR) is a highly conserved genome stabilizing pathway that corrects DNA replication errors, limits chromosomal rearrangements, and mediates the cellular response to many types of DNA damage. Counterintuitively, MMR is also involved in the generation of mutations, as evidenced by its role in causing somatic triplet repeat expansion in Huntington’s disease (HD) and other neurodegenerative disorders. In this review, we discuss the current state of mechanistic knowledge of MMR and review the roles of key enzymes in this pathway. We also present the evidence for mutagenic function of MMR in CAG repeat expansion and consider mechanistic hypotheses that have been proposed. Understanding the role of MMR in CAG expansion may shed light on potential avenues for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Ravi R Iyer
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - Anna Pluciennik
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Hong EP, MacDonald ME, Wheeler VC, Jones L, Holmans P, Orth M, Monckton DG, Long JD, Kwak S, Gusella JF, Lee JM. Huntington's Disease Pathogenesis: Two Sequential Components. J Huntingtons Dis 2021; 10:35-51. [PMID: 33579862 PMCID: PMC7990433 DOI: 10.3233/jhd-200427] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Historically, Huntington's disease (HD; OMIM #143100) has played an important role in the enormous advances in human genetics seen over the past four decades. This familial neurodegenerative disorder involves variable onset followed by consistent worsening of characteristic abnormal movements along with cognitive decline and psychiatric disturbances. HD was the first autosomal disease for which the genetic defect was assigned to a position on the human chromosomes using only genetic linkage analysis with common DNA polymorphisms. This discovery set off a multitude of similar studies in other diseases, while the HD gene, later renamed HTT, and its vicinity in chromosome 4p16.3 then acted as a proving ground for development of technologies to clone and sequence genes based upon their genomic location, with the growing momentum of such advances fueling the Human Genome Project. The identification of the HD gene has not yet led to an effective treatment, but continued human genetic analysis of genotype-phenotype relationships in large HD subject populations, first at the HTT locus and subsequently genome-wide, has provided insights into pathogenesis that divide the course of the disease into two sequential, mechanistically distinct components.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Lesley Jones
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Peter Holmans
- Medical Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Michael Orth
- Department of Neurology, University of Ulm, Germany
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Seung Kwak
- CHDI Management/CHDI Foundation, Princeton, NJ, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| |
Collapse
|
49
|
Gomes-Pereira M, Monckton DG. Chronic Exposure to Cadmium and Antioxidants Does Not Affect the Dynamics of Expanded CAG•CTG Trinucleotide Repeats in a Mouse Cell Culture System of Unstable DNA. Front Cell Neurosci 2021; 14:606331. [PMID: 33603644 PMCID: PMC7884634 DOI: 10.3389/fncel.2020.606331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
More than 30 human disorders are caused by the expansion of simple sequence DNA repeats, among which triplet repeats remain the most frequent. Most trinucleotide repeat expansion disorders affect primarily the nervous system, through mechanisms of neurodysfunction and/or neurodegeneration. While trinucleotide repeat tracts are short and stably transmitted in unaffected individuals, disease-associated expansions are highly dynamic in the germline and in somatic cells, with a tendency toward further expansion. Since longer repeats are associated with increasing disease severity and earlier onset of symptoms, intergenerational repeat size gains account for the phenomenon of anticipation. In turn, higher levels of age-dependent somatic expansion have been linked with increased disease severity and earlier age of onset, implicating somatic instability in the onset and progression of disease symptoms. Hence, tackling the root cause of symptoms through the control of repeat dynamics may provide therapeutic modulation of clinical manifestations. DNA repair pathways have been firmly implicated in the molecular mechanism of repeat length mutation. The demonstration that repeat expansion depends on functional DNA mismatch repair (MMR) proteins, points to MMR as a potential therapeutic target. Similarly, a role of DNA base excision repair (BER) in repeat expansion has also been suggested, particularly during the removal of oxidative lesions. Using a well-characterized mouse cell model system of an unstable CAG•CTG trinucleotide repeat, we tested if expanded repeat tracts can be stabilized by small molecules with reported roles in both pathways: cadmium (an inhibitor of MMR activity) and a variety of antioxidants (capable of neutralizing oxidative species). We found that chronic exposure to sublethal doses of cadmium and antioxidants did not result in significant reduction of the rate of trinucleotide repeat expansion. Surprisingly, manganese yielded a significant stabilization of the triplet repeat tract. We conclude that treatment with cadmium and antioxidants, at doses that do not interfere with cell survival and cell culture dynamics, is not sufficient to modify trinucleotide repeat dynamics in cell culture.
Collapse
Affiliation(s)
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
50
|
Morozko EL, Smith-Geater C, Monteys AM, Pradhan S, Lim RG, Langfelder P, Kachemov M, Kulkarni JA, Zaifman J, Hill A, Stocksdale JT, Cullis PR, Wu J, Ochaba J, Miramontes R, Chakraborty A, Hazra TK, Lau A, St-Cyr S, Orellana I, Kopan L, Wang KQ, Yeung S, Leavitt BR, Reidling JC, Yang XW, Steffan JS, Davidson BL, Sarkar PS, Thompson LM. PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:e2021836118. [PMID: 33468657 PMCID: PMC7848703 DOI: 10.1073/pnas.2021836118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.
Collapse
Affiliation(s)
- Eva L Morozko
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Charlene Smith-Geater
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Alejandro Mas Monteys
- Raymond G. Perelman Center for Cell and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Subrata Pradhan
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555
| | - Ryan G Lim
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Peter Langfelder
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Marketta Kachemov
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Jayesh A Kulkarni
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Josh Zaifman
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Austin Hill
- Incisive Genetics Inc., Vancouver, BC, Canada V6A 0H9
| | | | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
- NanoMedicines Innovation Network, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Joseph Ochaba
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697
| | - Ricardo Miramontes
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Alice Lau
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Sophie St-Cyr
- Raymond G. Perelman Center for Cell and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Institute, University of California, Irvine, CA 92697
| | - Lexi Kopan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Keona Q Wang
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
| | - Sylvia Yeung
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Jack C Reidling
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - X William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095
| | - Joan S Steffan
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
| | - Beverly L Davidson
- Raymond G. Perelman Center for Cell and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Partha S Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697
- Institute of Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Sue and Bill Gross Stem Cell Institute, University of California, Irvine, CA 92697
| |
Collapse
|