1
|
Reitz NL, Nunes PT, Savage LM. Adolescent alcohol exposure alters age-related progression of behavioral and neurotrophic dysfunction in the TgF344-AD model in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603911. [PMID: 39091885 PMCID: PMC11291002 DOI: 10.1101/2024.07.17.603911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Alzheimer's Disease (AD) and heavy alcohol use are widely prevalent and lead to brain pathology. Both alcohol-related brain damage (ABRD) and AD result in cholinergic dysfunction, reductions in hippocampal neurogenesis, and the emergence of hippocampal-dependent cognitive impairments. It is still unknown how ARBD caused during a critical developmental timepoint, such as adolescence, interacts with AD-related pathologies to accelerate disease progression later in life. The current study utilized a longitudinal design to characterize behavioral and pathological changes in a transgenic rat model of AD (TgF344-AD) following adolescent intermittent ethanol (AIE) exposure. We found that AIE accelerates cognitive decline associated with AD transgenes in female rats at 6 months of age, and male AD-rats are impaired on spatial navigation by 3-months with no additional deficits due to AIE exposure. Protein levels of various AD-pathological markers were analyzed in the dorsal and ventral hippocampus of male and female rats. The data suggests that AIE-induced alterations of the tropomyosin-related kinase A receptor (TrkA) / p75 neurotrophin receptor (p75NTR) ratio creates a brain that is vulnerable to age- and AD-related pathologies, which leads to an acceleration of cognitive decline, particularly in female rats.
Collapse
|
2
|
Kuznetsov IA, Kuznetsov AV. Why slow axonal transport is bidirectional - can axonal transport of tau protein rely only on motor-driven anterograde transport? Comput Methods Biomech Biomed Engin 2024; 27:620-631. [PMID: 37068039 DOI: 10.1080/10255842.2023.2197541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023]
Abstract
Slow axonal transport (SAT) moves multiple proteins from the soma, where they are synthesized, to the axon terminal. Due to the great lengths of axons, SAT almost exclusively relies on active transport, which is driven by molecular motors. The puzzling feature of slow axonal transport is its bidirectionality. Although the net direction of SAT is anterograde, from the soma to the terminal, experiments show that it also contains a retrograde component. One of the proteins transported by SAT is the microtubule-associated protein tau. To better understand why the retrograde component in tau transport is needed, we used the perturbation technique to analyze how the full tau SAT model can be simplified for the specific case when retrograde motor-driven transport and diffusion-driven transport of tau are negligible and tau is driven only by anterograde (kinesin) motors. The solution of the simplified equations shows that without retrograde transport the tau concentration along the axon length stays almost uniform (decreases very slightly), which is inconsistent with the experimenal tau concentration at the outlet boundary (at the axon tip). Thus kinesin-driven transport alone is not enough to explain the empirically observed distribution of tau, and the retrograde motor-driven component in SAT is needed.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Sun X, Ogbolu VC, Baas PW, Qiang L. Reevaluating tau reduction as a therapeutic approach for tauopathies: Insights and perspectives. Cytoskeleton (Hoboken) 2024; 81:57-62. [PMID: 37819557 PMCID: PMC10843461 DOI: 10.1002/cm.21790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Tau, one of the most abundant microtubule-associated protein in neurons plays a role in regulating microtubule dynamics in axons, as well as shaping the overall morphology of the axon. Recent studies challenge the traditional view of tau as a microtubule stabilizer and shed new light on the complexity of its role in regulating various properties of the microtubule. While reducing tau levels shows therapeutic promise for early tauopathies, efficacy wanes in later stages due to resilient toxic tau aggregates and neurofibrillary tangles. Notably, tauopathies involve factors beyond toxic tau alone, necessitating a broader therapeutic approach. Overexpression of human tau in mouse models, although useful for answering some questions, may not accurately reflect disease mechanisms in patients with tauopathies. Furthermore, the interplay between tau and MAP6, another microtubule-associated protein, adds complexity to tau's regulation of microtubule dynamics. Tau promotes the formation and elongation of labile microtubule domains, vital for cellular processes, while MAP6 stabilizes microtubules. A delicate balance between these proteins is important for neuronal function. Therefore, tau reduction therapies require a comprehensive understanding of disease progression, considering functional tau loss, toxic aggregates, and microtubule dynamics. Stage-dependent application and potential unintended consequences must be carefully evaluated. Restoring microtubule dynamics in late-stage tauopathies may necessitate alternative strategies. This knowledge is valuable for developing effective and safe treatments for tauopathies.
Collapse
Affiliation(s)
- Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Victor C. Ogbolu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
4
|
Rivera J, Sharma B, Torres MM, Kumar S. Factors affecting the GABAergic synapse function in Alzheimer's disease: Focus on microRNAs. Ageing Res Rev 2023; 92:102123. [PMID: 37967653 DOI: 10.1016/j.arr.2023.102123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disease characterized by the loss of cognitive function, confusion, and memory deficit. Accumulation of abnormal proteins, amyloid beta (Aß), and phosphorylated Tau (p-tau) forms plaques and tangles that deteriorate synapse function, resulting in neurodegeneration and cognitive decline in AD. The human brain is composed of different types of neurons and/or synapses that are functionally defective in AD. The GABAergic synapse, the most abundant inhibitory neuron in the human brain was found to be dysfunctional in AD and contributes to disrupting neurological function. This study explored the types of GABA receptors associated with neurological dysfunction and various biological and environmental factors that cause GABAergic neuron dysfunction in AD, such as Aβ, p-tau, aging, sex, astrocytes, microglia, APOE, mental disorder, diet, physical activity, and sleep. Furthermore, we explored the role of microRNAs (miRNAs) in the regulation of GABAergic synapse function in neurological disorders and AD states. We also discuss the molecular mechanisms underlying GABAergic synapse dysfunction with a focus on miR-27b, miR-30a, miR-190a/b, miR-33, miR-51, miR-129-5p, miR-376-3p, miR-376c, miR-30b and miR-502-3p. The purpose of our article is to highlight the recent research on miRNAs affecting the regulation of GABAergic synapse function and factors that contribute to the progression of AD.
Collapse
Affiliation(s)
- Jazmin Rivera
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Melissa M Torres
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
5
|
Katzenberger RJ, Ganetzky B, Wassarman DA. Lissencephaly-1 mutations enhance traumatic brain injury outcomes in Drosophila. Genetics 2023; 223:iyad008. [PMID: 36683334 PMCID: PMC9991514 DOI: 10.1093/genetics/iyad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) outcomes vary greatly among individuals, but most of the variation remains unexplained. Using a Drosophila melanogaster TBI model and 178 genetically diverse lines from the Drosophila Genetic Reference Panel (DGRP), we investigated the role that genetic variation plays in determining TBI outcomes. Following injury at 20-27 days old, DGRP lines varied considerably in mortality within 24 h ("early mortality"). Additionally, the disparity in early mortality resulting from injury at 20-27 vs 0-7 days old differed among DGRP lines. These data support a polygenic basis for differences in TBI outcomes, where some gene variants elicit their effects by acting on aging-related processes. Our genome-wide association study of DGRP lines identified associations between single nucleotide polymorphisms in Lissencephaly-1 (Lis-1) and Patronin and early mortality following injury at 20-27 days old. Lis-1 regulates dynein, a microtubule motor required for retrograde transport of many cargoes, and Patronin protects microtubule minus ends against depolymerization. While Patronin mutants did not affect early mortality, Lis-1 compound heterozygotes (Lis-1x/Lis-1y) had increased early mortality following injury at 20-27 or 0-7 days old compared with Lis-1 heterozygotes (Lis-1x/+), and flies that survived 24 h after injury had increased neurodegeneration but an unaltered lifespan, indicating that Lis-1 affects TBI outcomes independently of effects on aging. These data suggest that Lis-1 activity is required in the brain to ameliorate TBI outcomes through effects on axonal transport, microtubule stability, and other microtubule proteins, such as tau, implicated in chronic traumatic encephalopathy, a TBI-associated neurodegenerative disease in humans.
Collapse
Affiliation(s)
- Rebeccah J Katzenberger
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Barry Ganetzky
- Department of Genetics, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David A Wassarman
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Zhang Y, Wu KM, Yang L, Dong Q, Yu JT. Tauopathies: new perspectives and challenges. Mol Neurodegener 2022; 17:28. [PMID: 35392986 PMCID: PMC8991707 DOI: 10.1186/s13024-022-00533-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial tau-positive inclusions. MAIN BODY Clinically, tauopathies can present with a range of phenotypes that include cognitive/behavioral-disorders, movement disorders, language disorders and non-specific amnestic symptoms in advanced age. Pathologically, tauopathies can be classified based on the predominant tau isoforms that are present in the inclusion bodies (i.e., 3R, 4R or equal 3R:4R ratio). Imaging, cerebrospinal fluid (CSF) and blood-based tau biomarkers have the potential to be used as a routine diagnostic strategy and in the evaluation of patients with tauopathies. As tauopathies are strongly linked neuropathologically and genetically to tau protein abnormalities, there is a growing interest in pursuing of tau-directed therapeutics for the disorders. Here we synthesize emerging lessons on tauopathies from clinical, pathological, genetic, and experimental studies toward a unified concept of these disorders that may accelerate the therapeutics. CONCLUSIONS Since tauopathies are still untreatable diseases, efforts have been made to depict clinical and pathological characteristics, identify biomarkers, elucidate underlying pathogenesis to achieve early diagnosis and develop disease-modifying therapies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Kai-Min Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, 12th Wulumuqi Zhong Road, Shanghai, 200040 China
| |
Collapse
|
7
|
Chiang NN, Lin TH, Teng YS, Sun YC, Chang KH, Lin CY, Hsieh-Li HM, Su MT, Chen CM, Lee-Chen GJ. Flavones 7,8-DHF, Quercetin, and Apigenin Against Tau Toxicity via Activation of TRKB Signaling in ΔK280 Tau RD-DsRed SH-SY5Y Cells. Front Aging Neurosci 2022; 13:758895. [PMID: 34975454 PMCID: PMC8714935 DOI: 10.3389/fnagi.2021.758895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with memory loss and cognitive decline. Neurofibrillary tangles (NFTs) formed by hyperphosphorylated Tau protein are one of the pathological hallmarks of several neurodegenerative diseases including AD. Heat shock protein family B (small) member 1 (HSPB1) is a molecular chaperone that promotes the correct folding of other proteins in response to environmental stress. Nuclear factor erythroid 2-like 2 (NRF2), a redox-regulated transcription factor, is the master regulator of the cellular response to excess reactive oxygen species. Tropomyosin-related kinase B (TRKB) is a membrane-bound receptor that, upon binding brain-derived neurotrophic factor (BDNF), phosphorylates itself to initiate downstream signaling for neuronal survival and axonal growth. In this study, four natural flavones such as 7,8-dihydroxyflavone (7,8-DHF), wogonin, quercetin, and apigenin were evaluated for Tau aggregation inhibitory activity and neuroprotection in SH-SY5Y neuroblastoma. Among the tested flavones, 7,8-DHF, quercetin, and apigenin reduced Tau aggregation, oxidative stress, and caspase-1 activity as well as improved neurite outgrowth in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. Treatments with 7,8-DHF, quercetin, and apigenin rescued the reduced HSPB1 and NRF2 and activated TRKB-mediated extracellular signal-regulated kinase (ERK) signaling to upregulate cAMP-response element binding protein (CREB) and its downstream antiapoptotic BCL2 apoptosis regulator (BCL2). Knockdown of TRKB attenuated the neuroprotective effects of these three flavones. Our results suggest 7,8-DHF, quercetin, and apigenin targeting HSPB1, NRF2, and TRKB to reduce Tau aggregation and protect cells against Tau neurotoxicity and may provide new treatment strategies for AD.
Collapse
Affiliation(s)
- Ni-Ni Chiang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Shan Teng
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chung-Yin Lin
- Medical Imaging Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
8
|
Russell JC, Lei H, Chaliparambil RK, Fish S, Markiewicz SM, Lee TI, Noori A, Kaeberlein M. Generation and characterization of a tractable C. elegans model of tauopathy. GeroScience 2021; 43:2621-2631. [PMID: 34536202 PMCID: PMC8599767 DOI: 10.1007/s11357-021-00436-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease(AD) is an age-associated neurodegenerative disease that results in deterioration of memory and cognitive function. As a currently untreatable disorder, AD has emerged as one of the defining biomedical challenges of our time. Thus, new approaches that can examine the cellular and molecular mechanisms underlying age-related AD pathology are sorely needed. One of the hallmarks of Alzheimer's disease is the hyperphosphorylation of the tau protein. Caenorhabditis elegans have been previously used to study the genetic pathways impacted by tau proteotoxic stress; however, currently, available C. elegans tau models express the human protein solely in neurons, which are unresponsive to global RNA interference (RNAi). This limits powerful RNAi screening methods from being utilized effectively in these disease models. Our goal was to develop a C. elegans tau model that has pronounced tau-induced disease phenotypes in cells that can be modified by feeding RNAi methods. Towards this end, we generated a novel C. elegans transgenic line with codon-optimized human 0N4R V337M tau expressed in the body wall muscle under the myo-3 promoter. Immunoblotting experiments revealed that the expressed tau is phosphorylated on epitopes canonically associated with human AD pathology. The tau line has significantly reduced health metrics, including egg laying, growth rate, paralysis, thrashing frequency, crawling speed, and lifespan. These defects are suppressed by RNAi directed against the tau mRNA. Taken together, our results suggest that this alternative tau genetic model could be a useful tool for uncovering the mechanisms that influence the hyperphosphorylation and toxicity of human tau via RNAi screening and other approaches.
Collapse
Affiliation(s)
- Joshua C Russell
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.
| | - Haoyi Lei
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | - Rahul K Chaliparambil
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Ting-I Lee
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA
| | | | - Matt Kaeberlein
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
10
|
High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Sci Rep 2021; 11:17029. [PMID: 34426604 PMCID: PMC8382845 DOI: 10.1038/s41598-021-96227-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mutations in MAPT (microtubule-associated protein tau) cause frontotemporal dementia (FTD). MAPT mutations are associated with abnormal tau phosphorylation levels and accumulation of misfolded tau protein that can propagate between neurons ultimately leading to cell death (tauopathy). Recently, a p.A152T tau variant was identified as a risk factor for FTD, Alzheimer's disease, and synucleinopathies. Here we used induced pluripotent stem cells (iPSC) from a patient carrying this p.A152T variant to create a robust, functional cellular assay system for probing pathophysiological tau accumulation and phosphorylation. Using stably transduced iPSC-derived neural progenitor cells engineered to enable inducible expression of the pro-neural transcription factor Neurogenin 2 (Ngn2), we generated disease-relevant, cortical-like glutamatergic neurons in a scalable, high-throughput screening compatible format. Utilizing automated confocal microscopy, and an advanced image-processing pipeline optimized for analysis of morphologically complex human neuronal cultures, we report quantitative, subcellular localization-specific effects of multiple kinase inhibitors on tau, including ones under clinical investigation not previously reported to affect tau phosphorylation. These results demonstrate the potential for using patient iPSC-derived ex vivo models of tauopathy as genetically accurate, disease-relevant systems to probe tau biochemistry and support the discovery of novel therapeutics for tauopathies.
Collapse
|
11
|
The role of frontotemporal dementia associated genes in patients with Alzheimer's disease. Neurobiol Aging 2021; 107:153-158. [PMID: 34172279 DOI: 10.1016/j.neurobiolaging.2021.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) overlap clinically and pathologically. However, the role of FTD-associated genes in patients with AD remained unclear. To explore the relationship between FTD-associated genes and AD risk, we investigated 14 FTD-associated genes via targeted next-generation sequencing panel or whole-genome sequencing in a total of 721 AD patients and 1391 controls. Common variant-based association analysis and gene-based association test of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test-Optimal (SKAT-O test) respectively. As a result, 2 common variants, UBQLN1 rs1044175 (p value = 2.76 × 10-4) and MAPT rs2258689 (p value = 5.71 × 10-4), differed significantly between AD patients and controls. Additionally, gene-based analysis aggregating rare variants demonstrated that HNRNPA1 reached statistical significance in the SKAT-O test (p value = 2.24 × 10-3). Protein-protein interaction analysis showed that UBQLN1, MAPT, and HNRNPA1 interacted with proteins encoded by well-recognized AD-associated genes. Our study indicated that UBQLN1, MAPT, and HNRNPA1 are implicated in the pathogenesis of AD in the mainland Chinese population.
Collapse
|
12
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
13
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
Guha S, Johnson GVW, Nehrke K. The Crosstalk Between Pathological Tau Phosphorylation and Mitochondrial Dysfunction as a Key to Understanding and Treating Alzheimer's Disease. Mol Neurobiol 2020; 57:5103-5120. [PMID: 32851560 PMCID: PMC7544674 DOI: 10.1007/s12035-020-02084-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder. A defining hallmark of the AD brain is the presence of intraneuronal neurofibrillary tangles (NFTs) which are made up of abnormally modified tau, with aberrant phosphorylation being the most studied posttranslational modification (PTM). Although the accumulation of tau as NFTs is an invariant feature of the AD brain, it has become evident that these insoluble aggregates are likely not the primary pathogenic form of tau, rather soluble forms of tau with abnormal PTMs are the mediators of toxicity. The most prevalent PTM on tau is phosphorylation, with the abnormal modification of specific residues on tau playing a key role in its toxicity. Even though it is widely accepted that tau with aberrant PTMs facilitates neurodegeneration, the precise cellular mechanisms remain unknown. Nonetheless, there is an evolving conceptual framework that an important contributing factor may be selective pathological tau species compromising mitochondrial biology. Understanding the mechanisms by which tau with site-specific PTM impacts mitochondria is crucial for understanding the role tau plays in AD. Here, we provide a brief introduction to tau and its phosphorylation and function in a physiological context, followed by a discussion of the impact of soluble phosphorylated tau species on neuronal processes in general and mitochondria more specifically. We also discuss how therapeutic strategies that attenuate pathological tau species in combination with treatments that improve mitochondrial biology could be a potential therapeutic avenue to mitigate disease progression in AD and other tauopathies.
Collapse
Affiliation(s)
- Sanjib Guha
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Gail V W Johnson
- Department of Anesthesiology & Perioperative Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester, Rochester, 14642, NY, USA
| |
Collapse
|
15
|
Caenorhabditis elegans Models to Investigate the Mechanisms Underlying Tau Toxicity in Tauopathies. Brain Sci 2020; 10:brainsci10110838. [PMID: 33187241 PMCID: PMC7697895 DOI: 10.3390/brainsci10110838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
The understanding of the genetic, biochemical, and structural determinants underlying tau aggregation is pivotal in the elucidation of the pathogenic process driving tauopathies and the design of effective therapies. Relevant information on the molecular basis of human neurodegeneration in vivo can be obtained using the nematode Caenorhabditis elegans (C. elegans). To this end, two main approaches can be applied: the overexpression of genes/proteins leading to neuronal dysfunction and death, and studies in which proteins prone to misfolding are exogenously administered to induce a neurotoxic phenotype. Thanks to the easy generation of transgenic strains expressing human disease genes, C. elegans allows the identification of genes and/or proteins specifically associated with pathology and the specific disruptions of cellular processes involved in disease. Several transgenic strains expressing human wild-type or mutated tau have been developed and offer significant information concerning whether transgene expression regulates protein production and aggregation in soluble or insoluble form, onset of the disease, and the degenerative process. C. elegans is able to specifically react to the toxic assemblies of tau, thus developing a neurodegenerative phenotype that, even when exogenously administered, opens up the use of this assay to investigate in vivo the relationship between the tau sequence, its folding, and its proteotoxicity. These approaches can be employed to screen drugs and small molecules that can interact with the biogenesis and dynamics of formation of tau aggregates and to analyze their interactions with other cellular proteins.
Collapse
|
16
|
Tauopathy-associated tau modifications selectively impact neurodegeneration and mitophagy in a novel C. elegans single-copy transgenic model. Mol Neurodegener 2020; 15:65. [PMID: 33168053 PMCID: PMC7654055 DOI: 10.1186/s13024-020-00410-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022] Open
Abstract
Background A defining pathological hallmark of the progressive neurodegenerative disorder Alzheimer’s disease (AD) is the accumulation of misfolded tau with abnormal post-translational modifications (PTMs). These include phosphorylation at Threonine 231 (T231) and acetylation at Lysine 274 (K274) and at Lysine 281 (K281). Although tau is recognized to play a central role in pathogenesis of AD, the precise mechanisms by which these abnormal PTMs contribute to the neural toxicity of tau is unclear. Methods Human 0N4R tau (wild type) was expressed in touch receptor neurons of the genetic model organism C. elegans through single-copy gene insertion. Defined mutations were then introduced into the single-copy tau transgene through CRISPR-Cas9 genome editing. These mutations included T231E, to mimic phosphorylation of a commonly observed pathological epitope, and K274/281Q, to mimic disease-associated lysine acetylation – collectively referred as “PTM-mimetics” – as well as a T231A phosphoablation mutant. Stereotypical touch response assays were used to assess behavioral defects in the transgenic strains as a function of age. Genetically-encoded fluorescent biosensors were expressed in touch neurons and used to measure neuronal morphology, mitochondrial morphology, mitophagy, and macro autophagy. Results Unlike existing tau overexpression models, C. elegans single-copy expression of tau did not elicit overt pathological phenotypes at baseline. However, strains expressing disease associated PTM-mimetics (T231E and K274/281Q) exhibited reduced touch sensation and neuronal morphological abnormalities that increased with age. In addition, the PTM-mimetic mutants lacked the ability to engage neuronal mitophagy in response to mitochondrial stress. Conclusions Limiting the expression of tau results in a genetic model where modifications that mimic pathologic tauopathy-associated PTMs contribute to cryptic, stress-inducible phenotypes that evolve with age. These findings and their relationship to mitochondrial stress provides a new perspective into the pathogenic mechanisms underlying AD. Supplementary information The online version contains supplementary material available at 10.1186/s13024-020-00410-7.
Collapse
|
17
|
Vasudevan A, Koushika SP. Molecular mechanisms governing axonal transport: a C. elegans perspective. J Neurogenet 2020; 34:282-297. [PMID: 33030066 DOI: 10.1080/01677063.2020.1823385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axonal transport is integral for maintaining neuronal form and function, and defects in axonal transport have been correlated with several neurological diseases, making it a subject of extensive research over the past several years. The anterograde and retrograde transport machineries are crucial for the delivery and distribution of several cytoskeletal elements, growth factors, organelles and other synaptic cargo. Molecular motors and the neuronal cytoskeleton function as effectors for multiple neuronal processes such as axon outgrowth and synapse formation. This review examines the molecular mechanisms governing axonal transport, specifically highlighting the contribution of studies conducted in C. elegans, which has proved to be a tractable model system in which to identify both novel and conserved regulatory mechanisms of axonal transport.
Collapse
Affiliation(s)
- Amruta Vasudevan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
18
|
Kuznetsov IA, Kuznetsov AV. Modeling tau transport in the axon initial segment. Math Biosci 2020; 329:108468. [PMID: 32920097 DOI: 10.1016/j.mbs.2020.108468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
By assuming that tau protein can be in seven kinetic states, we developed a model of tau protein transport in the axon and in the axon initial segment (AIS). Two separate sets of kinetic constants were determined, one in the axon and the other in the AIS. This was done by fitting the model predictions in the axon with experimental results and by fitting the model predictions in the AIS with the assumed linear increase of the total tau concentration in the AIS. The calibrated model was used to make predictions about tau transport in the axon and in the AIS. To the best of our knowledge, this is the first paper that presents a mathematical model of tau transport in the AIS. Our modeling results suggest that binding of free tau to microtubules creates a negative gradient of free tau in the AIS. This leads to diffusion-driven tau transport from the soma into the AIS. The model further suggests that slow axonal transport and diffusion-driven transport of tau work together in the AIS, moving tau anterogradely. Our numerical results predict an interplay between these two mechanisms: as the distance from the soma increases, the diffusion-driven transport decreases, while motor-driven transport becomes larger. Thus, the machinery in the AIS works as a pump, moving tau into the axon.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA.
| |
Collapse
|
19
|
Traffic signaling: new functions of huntingtin and axonal transport in neurological disease. Curr Opin Neurobiol 2020; 63:122-130. [DOI: 10.1016/j.conb.2020.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
|
20
|
Bhan P, Muthaiyan Shanmugam M, Wang D, Bayansan O, Chen C, Wagner OI. Characterization of TAG‐63 and its role on axonal transport inC.elegans. Traffic 2019; 21:231-249. [DOI: 10.1111/tra.12706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Prerana Bhan
- Department of Life ScienceNational Tsing Hua University, Institute of Molecular and Cellular Biology Hsinchu Taiwan, ROC
- Research Center for Healthy AgingChina Medical University Taichung Taiwan, ROC
| | - Muniesh Muthaiyan Shanmugam
- Department of Life ScienceNational Tsing Hua University, Institute of Molecular and Cellular Biology Hsinchu Taiwan, ROC
| | - Ding Wang
- Department of Life ScienceNational Tsing Hua University, Institute of Molecular and Cellular Biology Hsinchu Taiwan, ROC
| | - Odvogmed Bayansan
- Department of Life ScienceNational Tsing Hua University, Institute of Molecular and Cellular Biology Hsinchu Taiwan, ROC
| | - Chih‐Wei Chen
- Department of Life ScienceNational Tsing Hua University, Institute of Molecular and Cellular Biology Hsinchu Taiwan, ROC
| | - Oliver I. Wagner
- Department of Life ScienceNational Tsing Hua University, Institute of Molecular and Cellular Biology Hsinchu Taiwan, ROC
| |
Collapse
|
21
|
Karch CM, Kao AW, Karydas A, Onanuga K, Martinez R, Argouarch A, Wang C, Huang C, Sohn PD, Bowles KR, Spina S, Silva MC, Marsh JA, Hsu S, Pugh DA, Ghoshal N, Norton J, Huang Y, Lee SE, Seeley WW, Theofilas P, Grinberg LT, Moreno F, McIlroy K, Boeve BF, Cairns NJ, Crary JF, Haggarty SJ, Ichida JK, Kosik KS, Miller BL, Gan L, Goate AM, Temple S. A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports 2019; 13:939-955. [PMID: 31631020 PMCID: PMC6895712 DOI: 10.1016/j.stemcr.2019.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
Primary tauopathies are characterized neuropathologically by inclusions containing abnormal forms of the microtubule-associated protein tau (MAPT) and clinically by diverse neuropsychiatric, cognitive, and motor impairments. Autosomal dominant mutations in the MAPT gene cause heterogeneous forms of frontotemporal lobar degeneration with tauopathy (FTLD-Tau). Common and rare variants in the MAPT gene increase the risk for sporadic FTLD-Tau, including progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). We generated a collection of fibroblasts from 140 MAPT mutation/risk variant carriers, PSP, CBD, and cognitively normal controls; 31 induced pluripotent stem cell (iPSC) lines from MAPT mutation carriers, non-carrier family members, and autopsy-confirmed PSP patients; 33 genome engineered iPSCs that were corrected or mutagenized; and forebrain neural progenitor cells (NPCs). Here, we present a resource of fibroblasts, iPSCs, and NPCs with comprehensive clinical histories that can be accessed by the scientific community for disease modeling and development of novel therapeutics for tauopathies. A collection of fibroblasts from 140 MAPT mutation carriers, PSP, CBD, and controls 31 iPSC lines reprogrammed from MAPT mutation carriers, PSP patients, and controls 33 iPSC lines engineered with CRISPR/Cas9 or TALENs Comprehensive resource for tauopathy modeling and discovery of novel therapeutics
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA.
| | - Aimee W Kao
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Karydas
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Khadijah Onanuga
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Andrea Argouarch
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chao Wang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Cindy Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Peter Dongmin Sohn
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Kathryn R Bowles
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Salvatore Spina
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jacob A Marsh
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Derian A Pugh
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Nupur Ghoshal
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in St. Louis School of Medicine, 425 South Euclid Avenue, Campus Box 8134, St. Louis, MO 63110, USA
| | - Yadong Huang
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Suzee E Lee
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William W Seeley
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Panagiotis Theofilas
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fermin Moreno
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kathryn McIlroy
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nigel J Cairns
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - John F Crary
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA; Department of Pathology, Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth S Kosik
- Department of Molecular Cellular and Developmental Biology, Neuroscience Research Institute, Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Bruce L Miller
- Division of Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Li Gan
- Gladstone Institutes of Neurological Disease, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Departments of Neuroscience, Neurology and Genetics & Genomic Sciences, Icahn School of Medicine, New York, NY 10029, USA
| | - Sally Temple
- Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA.
| | | |
Collapse
|
22
|
|
23
|
Combs B, Mueller RL, Morfini G, Brady ST, Kanaan NM. Tau and Axonal Transport Misregulation in Tauopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:81-95. [PMID: 32096030 DOI: 10.1007/978-981-32-9358-8_7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tau is a microtubule-associated protein that is involved in both normal and pathological processes in neurons. Since the discovery and characterization of tau over 40 years ago, our understanding of tau's normal functions and toxic roles in neurodegenerative tauopathies has continued to expand. Fast axonal transport is a critical process for maintaining axons and functioning synapses, critical subcellular compartments underlying neuronal connectivity. Signs of fast axonal transport disruption are pervasive in Alzheimer's disease and other tauopathies and various mechanisms have been proposed for regulation of fast axonal transport by tau. Post-translational modifications of tau including phosphorylation at specific sites, FTDP-17 point mutations, and oligomerization, confer upon tau a toxic effect on fast axonal transport. Consistent with the well-established dependence of axons on fast axonal transport, these disease-related modifications are closely associated temporally and spatially with axonal degeneration in the early disease stages. These factors position tau as a potentially critical factor mediating the disruption of fast axonal transport that precedes synaptic dysfunction and axonal degeneration at later disease stages. In this chapter, we review the evidence that tau affects fast axonal transport and examine several potential mechanisms proposed to underlie this toxicity.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Rebecca L Mueller
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.,Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA.,Marine Biological Laboratory, Woods Hole, MA, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA. .,Neuroscience Program, Michigan State University, East Lansing, MI, USA. .,Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|