1
|
Iannuzzi V, Bacalini MG, Franceschi C, Giuliani C. The role of genetics and epigenetics in sex differences in human survival. GENUS 2023. [DOI: 10.1186/s41118-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AbstractSex differences in human survival have been extensively investigated in many studies that have in part uncovered the biological determinants that promote a longer life in females with respect to males. Moreover, researches performed in the past years have prompted increased awareness about the biological effects of environmental factors that can modulate the magnitude of the sex gap in survival. Besides the genetic background, epigenetic modifications like DNA methylation, that can modulate cell function, have been particularly studied in this framework. In this review, we aim to summarize the role of the genetic and epigenetic mechanisms in promoting female advantage from the early in life (“INNATE” features), and in influencing the magnitude of the gap in sex differences in survival and ageing (“VARIABLE” features). After briefly discussing the biological bases of sex determination in humans, we will provide much evidence showing that (i) “innate” mechanisms common to all males and to all females (both genetic and epigenetic) play a major role in sex differences in lifespan; (ii) “variable” genetic and epigenetic patterns, that vary according to context, populations and exposures to different environments, can affect the magnitude of the gap in sex differences in survival. Then we will describe recent findings in the use of epigenetic clocks to uncover sex differences in biological age and thus potentially in mortality. In conclusion, we will discuss how environmental factors cannot be kept apart from the biological factors providing evidence from the field of human ecology.
Collapse
|
2
|
Laaksonen J, Mishra PP, Seppälä I, Raitoharju E, Marttila S, Mononen N, Lyytikäinen LP, Kleber ME, Delgado GE, Lepistö M, Almusa H, Ellonen P, Lorkowski S, März W, Hutri-Kähönen N, Raitakari O, Kähönen M, Salonen JT, Lehtimäki T. Mitochondrial genome-wide analysis of nuclear DNA methylation quantitative trait loci. Hum Mol Genet 2021; 31:1720-1732. [PMID: 35077545 PMCID: PMC9122653 DOI: 10.1093/hmg/ddab339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mitochondria have a complex communication network with the surrounding cell and can alter nuclear DNA methylation (DNAm). Variation in the mitochondrial DNA (mtDNA) has also been linked to differential DNAm. Genome-wide association studies have identified numerous DNAm quantitative trait loci, but these studies have not examined the mitochondrial genome. Herein, we quantified nuclear DNAm from blood and conducted a mitochondrial genome-wide association study of DNAm, with an additional emphasis on sex- and prediabetes-specific heterogeneity. We used the Young Finns Study (n = 926) with sequenced mtDNA genotypes as a discovery sample and sought replication in the Ludwigshafen Risk and Cardiovascular Health study (n = 2317). We identified numerous significant associations in the discovery phase (P < 10−9), but they were not replicated when accounting for multiple testing. In total, 27 associations were nominally replicated with a P < 0.05. The replication analysis presented no evidence of sex- or prediabetes-specific heterogeneity. The 27 associations were included in a joint meta-analysis of the two cohorts, and 19 DNAm sites associated with mtDNA variants, while four other sites showed haplogroup associations. An expression quantitative trait methylation analysis was performed for the identified DNAm sites, pinpointing two statistically significant associations. This study provides evidence of a mitochondrial genetic control of nuclear DNAm with little evidence found for sex- and prediabetes-specific effects. The lack of a comparable mtDNA data set for replication is a limitation in our study and further studies are needed to validate our results.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- To whom correspondence should be addressed at: Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, Tampere FI-33014, Finland. Tel: +358 504080774; E-mail:
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Gerontology Research Center, Tampere University, Tampere 33520, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena 07743, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena 07743, Germany
- SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg 86156, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8010, Austria
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere 33520, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku 20520, Finland
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33520, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- MAS-Metabolic Analytical Services Oy, Helsinki 00990, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
3
|
Laaksonen J, Mishra PP, Seppälä I, Lyytikäinen LP, Raitoharju E, Mononen N, Lepistö M, Almusa H, Ellonen P, Hutri-Kähönen N, Juonala M, Raitakari O, Kähönen M, Salonen JT, Lehtimäki T. Examining the effect of mitochondrial DNA variants on blood pressure in two Finnish cohorts. Sci Rep 2021; 11:611. [PMID: 33436758 PMCID: PMC7804469 DOI: 10.1038/s41598-020-79931-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
High blood pressure (BP) is a major risk factor for many noncommunicable diseases. The effect of mitochondrial DNA single-nucleotide polymorphisms (mtSNPs) on BP is less known than that of nuclear SNPs. We investigated the mitochondrial genetic determinants of systolic, diastolic, and mean arterial BP. MtSNPs were determined from peripheral blood by sequencing or with genome-wide association study SNP arrays in two independent Finnish cohorts, the Young Finns Study and the Finnish Cardiovascular Study, respectively. In total, over 4200 individuals were included. The effects of individual common mtSNPs, with an additional focus on sex-specificity, and aggregates of rare mtSNPs grouped by mitochondrial genes were evaluated by meta-analysis of linear regression and a sequence kernel association test, respectively. We accounted for the predicted pathogenicity of the rare variants within protein-encoding and the tRNA regions. In the meta-analysis of 87 common mtSNPs, we did not observe significant associations with any of the BP traits. Sex-specific and rare-variant analyses did not pinpoint any significant associations either. Our results are in agreement with several previous studies suggesting that mtDNA variation does not have a significant role in the regulation of BP. Future studies might need to reconsider the mechanisms thought to link mtDNA with hypertension.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland.
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Nina Hutri-Kähönen
- Department of Paediatrics, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland.,Division of Medicine, Turku University Hospital, Turku, Finland.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.,Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,MAS-Metabolic Analytical Services Oy, Helsinki, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, 33014, Tampere, Finland
| |
Collapse
|