1
|
Alexander JM, Vazquez-Ramirez L, Lin C, Antonoudiou P, Maguire J, Wagner F, Jacob MH. Inhibition of GSK3α,β rescues cognitive phenotypes in a preclinical mouse model of CTNNB1 syndrome. EMBO Mol Med 2024; 16:2109-2131. [PMID: 39103699 PMCID: PMC11393422 DOI: 10.1038/s44321-024-00110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
CTNNB1 syndrome is a rare monogenetic disorder caused by CTNNB1 de novo pathogenic heterozygous loss-of-function variants that result in cognitive and motor disabilities. Treatment is currently lacking; our study addresses this critical need. CTNNB1 encodes β-catenin which is essential for normal brain function via its dual roles in cadherin-based synaptic adhesion complexes and canonical Wnt signal transduction. We have generated a Ctnnb1 germline heterozygous mouse line that displays cognitive and motor deficits, resembling key features of CTNNB1 syndrome in humans. Compared with wild-type littermates, Ctnnb1 heterozygous mice also exhibit decreases in brain β-catenin, β-catenin association with N-cadherin, Wnt target gene expression, and Na/K ATPases, key regulators of changes in ion gradients during high activity. Consistently, hippocampal neuron functional properties and excitability are altered. Most important, we identify a highly selective inhibitor of glycogen synthase kinase (GSK)3α,β that significantly normalizes the phenotypes to closely meet wild-type littermate levels. Our data provide new insights into brain molecular and functional changes, and the first evidence for an efficacious treatment with therapeutic potential for individuals with CTNNB1 syndrome.
Collapse
Affiliation(s)
- Jonathan M Alexander
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Leeanne Vazquez-Ramirez
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Crystal Lin
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Pantelis Antonoudiou
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Jamie Maguire
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA
| | - Florence Wagner
- The Broad Institute of MIT and Harvard, Center for the Development of Therapeutics, Cambridge, MA, 02142, USA
- Photys Therapeutics, Waltham, MA, USA
| | - Michele H Jacob
- Tufts University School of Biomedical Sciences, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
2
|
Moeinafshar A, Tehrani Fateh S, Sadeghi H, Karimzadeh P, Mirfakhraie R, Hashemi-Gorji F, Larki P, Miryounesi M, Ghasemi MR. Alopecia areata-like pattern of baldness: the most recent update and the expansion of novel phenotype and genotype in the CTNNB1 gene. Neurol Sci 2023; 44:4041-4048. [PMID: 37369877 DOI: 10.1007/s10072-023-06922-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant genetic disorder caused by genetic alterations in the CTNNB1 gene. CTNNB1 is a gene that encodes β-catenin, an effector protein in the canonical Wnt pathway involved in stem cell differentiation and proliferation, synaptogenesis, and a wide range of essential cellular mechanisms. Mutations in this gene are also found in specific malignancies as well as exudative vitreoretinopathy. To date, only a limited number of cases of this disease have been reported, and though they share some phenotypic manifestations such as intellectual disability, developmental delay, microcephaly, behavioral abnormalities, and dystonia, the variety of phenotypic traits of these patients shows extreme heterogeneity. In this study, two cases of NEDSDV with de novo CTNNB1 mutations: c.1420C>T(p.R474X) and c.1377_1378Del(p.Ala460Serfs*29), found with whole exome sequencing (WES) have been reported and the clinical and paraclinical characteristics of these patients have been described. Due to such a wide range of clinical characteristics, the identification of new patients and novel variants is of great importance in order to establish a more complete phenotypic spectrum, as well as to conclude the genotype-phenotype correlations in these cases.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Hossein Sadeghi
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Mofid children's Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hashemi-Gorji
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Larki
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Ghasemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhuang W, Ye T, Wang W, Song W, Tan T. CTNNB1 in neurodevelopmental disorders. Front Psychiatry 2023; 14:1143328. [PMID: 37009120 PMCID: PMC10061110 DOI: 10.3389/fpsyt.2023.1143328] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
CTNNB1 is the gene that encodes β-catenin which acts as a key player in the Wnt signaling pathway and regulates cellular homeostasis. Most CTNNB1-related studies have been mainly focused on its role in cancer. Recently, CTNNB1 has also been found involved in neurodevelopmental disorders (NDDs), such as intellectual disability, autism, and schizophrenia. Mutations of CTNNB1 lead to the dysfunction of the Wnt signaling pathway that regulates gene transcription and further disturbs synaptic plasticity, neuronal apoptosis, and neurogenesis. In this review, we discuss a wide range of aspects of CTNNB1 and its physiological and pathological functions in the brain. We also provide an overview of the most recent research regarding CTNNB1 expression and its function in NDDs. We propose that CTNNB1 would be one of the top high-risk genes for NDDs. It could also be a potential therapeutic target for the treatment of NDDs.
Collapse
Affiliation(s)
- Wenting Zhuang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Tong Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Weihong Song,
| | - Tao Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Tao Tan,
| |
Collapse
|
4
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
5
|
Ji Y, Xia Q, Zhang H, Huo H, Cao X, Wang W, Gu Q. Whole Exome Sequencing Identified two Novel Truncation Mutations in the CTNNB1 Gene Associated with Neurodevelopmental Disorder, Language Dysfunction, and Microcephaly in Chinese Children. Child Neurol Open 2023; 10:2329048X231184184. [PMID: 37560515 PMCID: PMC10408312 DOI: 10.1177/2329048x231184184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023] Open
Abstract
Recently, the loss-of-function, heterozygous, and de novo mutations of the CTNNB1 gene have been proven to be partially responsible for intellectual disability in some patients. Herein, we report two unrelated children with neurodevelopmental disorder, abnormal facial features, speech impairments, microcephaly, and dystonia. Based on whole exome sequencing (WES), two new heterozygous and pathogenic mutations in exon 10 (c.1586dupA:p.Q530Afs*42) and exon 4 (c.257dup:p.Y86*) were identified in the CTNNB1 gene for the first time. These findings not only enrich the genetic spectrum of the CTNNB1 gene but also provide evidence for its role in neuronal development.
Collapse
Affiliation(s)
- Yongchun Ji
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Qin Xia
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Hewei Zhang
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Hongliang Huo
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Xujun Cao
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Weiwei Wang
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Qin Gu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Yan D, Sun Y, Xu N, Yu Y, Zhan Y. Genetic and clinical characteristics of 24 mainland Chinese patients with CTNNB1 loss-of-function variants. Mol Genet Genomic Med 2022; 10:e2067. [PMID: 36153650 PMCID: PMC9651608 DOI: 10.1002/mgg3.2067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) is a rare autosomal dominant syndrome, which is caused by the heterozygous germline loss-of-function variants in CTNNB1. METHODS We evaluated the clinical and genetic findings of 24 previously undescribed Chinese patients affected by CTNNB1-related disorders and explored the possible ethnicity-related phenotypic variations. RESULTS Twenty-one loss-of-function variants were identified within these 24 NEDSDV patients, including 14 novel CTNNB1 variants and 7 recurrent ones. The prominent clinical manifestations in our cohort are developmental delay/intellectual disability (100%), motor delay (100%), speech impairment (100%), dystonia (87.5%) and microcephaly (69.6%). The common facial dysmorphisms were consistent with previous reports, including wide nasal bridge (58.3%), bulbous nose (45.8%), long philtrum (45.8%) and thin upper lip (45.8%). In addition, 19 patients (79.2%) in our cohort had mild visual defects, while one affected individual (4.2%) had familial exudative vitreoretinopathy. Notably, we discovered that 20 patients (83.3%) exhibited various behavioral abnormalities, which is described in Chinese patients for the first time. CONCLUSION We provided the largest known Chinese cohort with pathogenic CTNNB1 variants, which not only helps to expand the variant spectrum of CTNNB1 gene, but further delineates the typical phenotype of this disorder in Chinese population.
Collapse
Affiliation(s)
- Dan Yan
- Center of Clinical GeneticsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric ResearchShanghaiChina
| | - Yu Sun
- Center of Clinical GeneticsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric ResearchShanghaiChina
| | - Na Xu
- Center of Clinical GeneticsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric ResearchShanghaiChina
| | - Yongguo Yu
- Center of Clinical GeneticsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric ResearchShanghaiChina,Department of Pediatric Endocrinology and Genetic MetabolismXinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric ResearchShanghaiChina
| | - Yongkun Zhan
- Center of Clinical GeneticsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric ResearchShanghaiChina
| | | |
Collapse
|
7
|
Morè L, Privitera L, Perrett P, Cooper DD, Bonnello MVG, Arthur JSC, Frenguelli BG. CREB serine 133 is necessary for spatial cognitive flexibility and long-term potentiation. Neuropharmacology 2022; 219:109237. [PMID: 36049536 DOI: 10.1016/j.neuropharm.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 10/31/2022]
Abstract
The transcription factor cAMP response element binding protein (CREB) is widely regarded as orchestrating the genomic response that underpins a range of physiological functions in the central nervous system, including learning and memory. Of the means by which CREB can be regulated, emphasis has been placed on the phosphorylation of a key serine residue, S133, in the CREB protein, which is required for CREB-mediated transcriptional activation in response to a variety of activity-dependent stimuli. Understanding the role of CREB S133 has been complicated by molecular genetic techniques relying on over-expression of either dominant negative or activating transgenes that may distort the physiological role of endogenous CREB. A more elegant recent approach targeting S133 in the endogenous CREB gene has yielded a mouse with constitutive replacement of this residue with alanine (S133A), but has generated results (no behavioural phenotype and no effect on gene transcription) at odds with contemporary views as to the role of CREB S133, and which may reflect compensatory changes associated with the constitutive mutation. To avoid this potential complication, we generated a post-natal and forebrain-specific CREB S133A mutant in which the expression of the mutation was under the control of CaMKIIα promoter. Using male and female mice we show that CREB S133 is necessary for spatial cognitive flexibility, the regulation of basal synaptic transmission, and for the expression of long-term potentiation (LTP) in hippocampal area CA1. These data point to the importance of CREB S133 in neuronal function, synaptic plasticity and cognition in the mammalian brain.
Collapse
Affiliation(s)
- Lorenzo Morè
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Lucia Privitera
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Philippa Perrett
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel D Cooper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Manuel Van Gijsel Bonnello
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | |
Collapse
|
8
|
Identification of a novel de novo mutation in the CTNNB1 gene in an Iranian patient with intellectual disability. Neurol Sci 2022; 43:2859-2863. [PMID: 35099645 DOI: 10.1007/s10072-022-05904-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
CTNNB1 encodes for the β-catenin protein, a component of the cadherin adhesion complex, which regulates cell-cell adhesion and gene expression in the canonical Wnt signaling pathway. Mutations in CTNNB1 have been reported to be associated with cancer and mental disorders. Recently, loss-of-function mutations in CTNNB1 have been observed in patients with intellectual disability and some other clinical manifestations including motor and language delays, microcephaly, and mild visual defects. We report an 8-year-old Iranian girl with intellectual disability, hypotonia, impaired vision such as vitreomacular adhesion, motor delay, and speech delay. A novel, de novo nonsense mutation (c.1014G > A; p.Trp338Ter) in exon 7 of the CTNNB1 (NM_001904) gene was detected and confirmed by whole-exome sequencing and Sanger sequencing, respectively. This study helps to expand the growing list of loss-of-function mutations known in the CTNNB1 gene.
Collapse
|
9
|
Lee S, Jang SS, Park S, Yoon JG, Kim SY, Lim BC, Chae JH. The extended clinical and genetic spectrum of CTNNB1-related neurodevelopmental disorder. Front Pediatr 2022; 10:960450. [PMID: 35935366 PMCID: PMC9353113 DOI: 10.3389/fped.2022.960450] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Loss-of-function mutations of CTNNB1 have been established as the cause of neurodevelopmental disorder with spastic diplegia and visual defects. Although most patients share key phenotypes such as global developmental delay and intellectual disability, patients with CTNNB1-related neurodevelopmental disorder show a broad spectrum of clinical features. METHODS We enrolled 13 Korean patients with CTNNB1-related neurodevelopmental disorder who visited Seoul National University Children's Hospital (5 female and 8 male patients with ages ranging from 4 to 22 years). They were all genetically confirmed as having pathogenic loss-of-function variants in CTNNB1 using trio or singleton whole exome sequencing. Variants called from singleton analyses were confirmed to be de novo through parental Sanger sequencing. RESULTS We identified 11 de novo truncating variants in CTNNB1 in 13 patients, and two pathogenic variants, c.1867C > T (p.Gln623Ter) and c.1420C > T (p.Arg474Ter), found in two unrelated patients, respectively. Five of them were novel pathogenic variants not listed in the ClinVar database. While all patients showed varying degrees of intellectual disability, impaired motor performance, and ophthalmologic problems, none of them had structural brain abnormalities or seizure. In addition, there were three female patients who showed autistic features, such as hand stereotypy, bruxism, and abnormal breathing. A literature review revealed a female predominance of autistic features in CTNNB1-related neurodevelopmental disorder. CONCLUSION This is one of the largest single-center cohorts of CTNNB1-related neurodevelopmental disorder. This study investigated variable clinical features of patients and has expanded the clinical and genetic spectrum of the disease.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
10
|
Wickham RJ, Genné-Bacon EA, Jacob MH. The Spine Lab: A Short-Duration, Fully-Remote Course-Based Undergraduate Research Experience. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2021; 20:A28-A39. [PMID: 35540947 PMCID: PMC9053429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
Course-based undergraduate research experiences (CUREs) are increasingly common approaches to provide students with authentic laboratory experiences. Typically, CUREs are semester-long, in-person experiences that can be financially and time prohibitive for some institutions, faculty, and students. Here, we developed a short-duration, fully-online CURE, the Spine Lab, to provide an opportunity for students to conduct original research. In this CURE, we focused on synaptic spines in the mammalian brain; synapses are the unit structure that functions in rapid information processing. The students worked together in pairs and as a class to analyze cortical neuron spine density and structural morphology changes between a mouse line with learning impairments (forebrain-specific β-catenin knockouts [β-cat cKOs]) and control (Ctl) littermates. The students showed their results in an online poster presentation. Their findings show that spine density is significantly reduced, while spine structural maturation is unaltered in the β-cat cKO. Defining pathophysiological changes caused by CTNNB1/β-catenin loss-of-function provides important insights relevant to human disorders caused by disruptive mutations in this gene. To assess the benefits of this CURE, students completed a pre- and post-test assessment including a content quiz, STEM identity survey, and a standardized CURE survey. Participation in the Spine Lab correlated with improved content and STEM identity scores, and decreased negative attitudes about science. Moreover, direct comparison to the CURE database reveals that the Spine Lab produces comparable benefits to traditional CUREs. This work as a whole suggests that short-duration, fully-online CUREs can provide benefit to students and could be an inclusive tool to improve student outcomes.
Collapse
Affiliation(s)
- Robert J. Wickham
- Psychology Department, Elizabethtown College, Elizabethtown, PA 17022
| | - Elizabeth A. Genné-Bacon
- Center for Science Education, Department of Medical Education, Tufts University School of Medicine, Boston, MA 02111
| | - Michele H. Jacob
- Department of Neuroscience, Sackler Biomedical Graduate School, Tufts University School of Medicine, Boston, MA 02111
| |
Collapse
|
11
|
Alexander JM, Pirone A, Jacob MH. Excessive β-Catenin in Excitatory Neurons Results in Reduced Social and Increased Repetitive Behaviors and Altered Expression of Multiple Genes Linked to Human Autism. Front Synaptic Neurosci 2020; 12:14. [PMID: 32296324 PMCID: PMC7136516 DOI: 10.3389/fnsyn.2020.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple human autism risk genes are predicted to converge on the β-catenin (β-cat)/Wnt pathway. However, direct tests to link β-cat up- or down-regulation with autism are largely lacking, and the associated pathophysiological changes are poorly defined. Here we identify excessive β-cat as a risk factor that causes expression changes in several genes relevant to human autism. Our studies utilize mouse lines with β-cat dysregulation in forebrain excitatory neurons, identified as cell types with a convergent expression of autism-linked genes in both human and mouse brains. We show that mice expressing excessive β-cat display behavioral and molecular changes, including decreased social interest, increased repetitive behaviors, reduced parvalbumin and altered expression levels of additional genes identified as potential risk factors for human autism. These behavioral and molecular phenotypes are averted by reducing β-cat in neurons predisposed by gene mutations to express elevated β-cat. Using next-generation sequencing of the prefrontal cortex (PFC), we identify 87 dysregulated genes that are shared between mouse lines with excessive β-cat and autism-like behaviors, but not mouse lines with reduced β-cat and normal social behavior. Our findings provide critical new insights into β-cat, Wnt pathway dysregulation in the brain causing behavioral phenotypes relevant to the disease and the molecular etiology which includes several human autism risk genes.
Collapse
Affiliation(s)
- Jonathan Michael Alexander
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Antonella Pirone
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Michele H Jacob
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
12
|
Ke Z, Chen Y. Case Report: A de novo CTNNB1 Nonsense Mutation Associated With Neurodevelopmental Disorder, Retinal Detachment, Polydactyly. Front Pediatr 2020; 8:575673. [PMID: 33425807 PMCID: PMC7793974 DOI: 10.3389/fped.2020.575673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023] Open
Abstract
CTNNB1 gene mutation was firstly reported related to intellectual disability in 2012, to explore the clinical phenotype and genotype characteristics of CTNNB1 mutation, we collected and analyzed the clinical data of a child with a neurodevelopmental disorder caused by a mutation of CTNNB1. The child had dysmorphic features, microcephaly, hypotonia, polydactyly, retinal detachment, and neurodevelopmental disorder, with a de novo mutation of CTNNB1 c.1603C > T, p.R535X. The patient was diagnosed as Neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV) and was given rehabilitation training. After 4 months of rehabilitation training, she improved in gross motor function. We found that CTNNB1 mutation can cause neurodevelopmental disorder, which could be accompanied by retinal detachment and polydactyly. The retinal detachment had only been reported in two Asian patients, and we firstly reported the phenotype of polydactyly in the CTNNB1 mutation. This report not only helps to expand the clinical phenotype spectrum of the CTNNB1 gene mutation but also prompts a new insight into genetic diagnosis in patients with a neurodevelopmental disorder, retinal detachment, and polydactyly.
Collapse
Affiliation(s)
- Zhongling Ke
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanhui Chen
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|