1
|
Hu S, Zeng X, Liu Y, Li Y, Qu M, Jiao WB, Han Y, Kang C. Global characterization of somatic mutations and DNA methylation changes during vegetative propagation in strawberries. Genome Res 2024; 34:1582-1594. [PMID: 39406501 PMCID: PMC11529994 DOI: 10.1101/gr.279378.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Somatic mutations arise and accumulate during tissue culture and vegetative propagation, potentially affecting various traits in horticultural crops, but their characteristics are still unclear. Here, somatic mutations in regenerated woodland strawberry derived from tissue culture of shoot tips under different conditions and 12 cultivated strawberry individuals are analyzed by whole genome sequencing. The mutation frequency of single nucleotide variants is significantly increased with increased hormone levels or prolonged culture time in the range of 3.3 × 10-8-3.0 × 10-6 mutations per site. CG methylation shows a stable reduction (0.71%-8.03%) in regenerated plants, and hypoCG-DMRs are more heritable after sexual reproduction. A high-quality haplotype-resolved genome is assembled for the strawberry cultivar "Beni hoppe." The 12 "Beni hoppe" individuals randomly selected from different locations show 4731-6005 mutations relative to the reference genome, and the mutation frequency varies among the subgenomes. Our study has systematically characterized the genetic and epigenetic variants in regenerated woodland strawberry plants and different individuals of the same strawberry cultivar, providing an accurate assessment of somatic mutations at the genomic scale and nucleotide resolution in plants.
Collapse
Affiliation(s)
- Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Zeng
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China
| | - Yuguo Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongping Li
- School of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Minghao Qu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongchao Han
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China;
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Hu H, Zhang R, Zhao Y, Yang J, Zhao H, Zhao L, Wang L, Cheng Z, Zhao W, Wang B, Larkin RM, Chen L. Cell wall remodeling confers plant architecture with distinct wall structure in Nelumbo nucifera. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39427333 DOI: 10.1111/tpj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Lotus (Nelumbo nucifera G.) is a perennial aquatic horticultural plant with diverse architectures. Distinct plant architecture (PA) has certain attractive and practical qualities, but its genetic morphogenesis in lotus remains elusive. In this study, we employ genome-wide association analysis (GWAS) for the seven traits of petiole length (PLL), leaf length (LL), leaf width (LW), peduncle length (PLF), flower diameter (FD), petal length (PeL), and petal width (PeW) in 301 lotus accessions. A total of 90 loci are identified to associate with these traits across 4 years of trials. Meanwhile, we perform RNA sequencing (RNA-seq) to analyze the differential expression of the gene (DEG) transcripts between large and small PA (LPA and SPA) of lotus stems (peduncles and petioles). As a result, eight key candidate genes are identified that are all primarily involved in plant cell wall remodeling significantly associated with PA traits by integrating the results of DEGs and GWAS. To verify this result, we compare the cell wall compositions and structures of LPA versus SPA in representative lotus germplasms. Intriguingly, compared with the SPA lotus, the LPA varieties have higher content of cellulose and hemicellulose, but less filling substrates of pectin and lignin. Additionally, we verified longer cellulose chains and higher cellulose crystallinity with less interference in LPA varieties. Taken together, our study illustrates how plant cell wall remodeling affects PA in lotus, shedding light on the genetic architecture of this significant ornamental trait and offering a priceless genetic resource for future genomic-enabled breeding.
Collapse
Affiliation(s)
- Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Ran Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yongjing Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Lin Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Zhipeng Cheng
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Wanyue Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Bo Wang
- Wuhan Genoseq Technology Co., Ltd, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
3
|
Huang S, Yang X, Li W, Xu Z, Xie Y, Meng X, Li Z, Zhou W, Wang S, Jin L, Jin N, Lyu J, Yu J. Genome-wide analysis of the CCT gene family and functional characterization of SlCCT6 in response to drought stress in tomato. Int J Biol Macromol 2024; 280:135906. [PMID: 39332567 DOI: 10.1016/j.ijbiomac.2024.135906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
CCT transcription factors are important for photoperiod and abiotic stress regulation in Arabidopsis and rice. However, the CCT gene family has not been reported in tomato. Here, we systematically analyzed this. Thirty-one SlCCT genes were identified and divided into five groups (CMF, TIFY, PRR, S8, and COL), with members unevenly distributed across 12 chromosomes and the third chromosome exhibiting the most distribution. SlCCT was found to interact with an interacting protein (SlGI), transcription factor (MYB), and non-coding RNA (sly-miR156-5p) to jointly regulate the tomato stress response. cis-Acting element analysis of the SlCCT promoter region indicated large stress- and hormone-response elements in this family. Real-time PCR results indicated that SlPRR subfamily genes respond to various abiotic stresses and hormones. Tissue expression analysis revealed that several PRR subfamily genes are highly expressed in flowers, and subcellular localization analysis indicated an SlCCT6 nuclear location. Notably, SlCCT6 expression was significantly induced by drought, and its silencing reduced drought stress tolerance. Moreover, SlCCT6 overexpression enhanced tomato drought resistance by increasing antioxidant enzyme activity and activating stress-related genes, whereas SlCCT6 knockout decreased drought resistance. In conclusion, this provides valuable insights for future research on SlCCT functions.
Collapse
Affiliation(s)
- Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiting Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiqi Xu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Meng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhuang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenhao Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Khachaturyan M, Santer M, Reusch TBH, Dagan T. Heteroplasmy Is Rare in Plant Mitochondria Compared with Plastids despite Similar Mutation Rates. Mol Biol Evol 2024; 41:msae135. [PMID: 38934796 PMCID: PMC11245704 DOI: 10.1093/molbev/msae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
5
|
Liu Z, Shen S, Wang Y, Sun S, Yu T, Fu Y, Zhou R, Li C, Cao R, Zhang Y, Li N, Sun L, Song X. The genome of Stephania japonica provides insights into the biosynthesis of cepharanthine. Cell Rep 2024; 43:113832. [PMID: 38381605 DOI: 10.1016/j.celrep.2024.113832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Stephania japonica is an early-diverging eudicotyledon plant with high levels of cepharanthine, proven to be effective in curing coronavirus infections. Here, we report a high-quality S. japonica genome. The genome size is 688.52 Mb, and 97.37% sequences anchor to 11 chromosomes. The genome comprises 67.46% repetitive sequences and 21,036 genes. It is closely related to two Ranunculaceae species, which diverged from their common ancestor 55.90-71.02 million years ago (Mya) with a whole-genome duplication 85.59-96.75 Mya. We further reconstruct ancestral karyotype of Ranunculales. Several cepharanthine biosynthesis genes are identified and verified by western blot. Two genes (Sja03G0243 and Sja03G0241) exhibit catalytic activity as shown by liquid chromatography-mass spectrometry. Then, cepharanthine biosynthesis genes, transcription factors, and CYP450 family genes are used to construct a comprehensive network. Finally, we construct an early-diverging eudicotyledonous genome resources (EEGR) database. As the first genome of the Menispermaceae family to be released, this study provides rich resources for genomic studies.
Collapse
Affiliation(s)
- Zhuo Liu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yujie Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Shuqi Sun
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Tong Yu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rong Zhou
- Department of Food Science, Aarhus University, 8200 Aarhus, Denmark
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Rui Cao
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yanshu Zhang
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Nan Li
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Liangdan Sun
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Health Science Center, North China University of Science and Technology, Tangshan 063210, China; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology, Tangshan 063210, China; School of Public Health, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
6
|
Qi H, Yu F, Lü S, Damaris RN, Dong G, Yang P. Exploring domestication pattern in lotus: insights from dispensable genome assembly. FRONTIERS IN PLANT SCIENCE 2023; 14:1294033. [PMID: 38034573 PMCID: PMC10687544 DOI: 10.3389/fpls.2023.1294033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Lotus (Nelumbo nucifera Gaertn.), an important aquatic plant in horticulture and ecosystems, has been cultivated for more than 7000 years and domesticated into three different subgroups: flower lotus, rhizome lotus, and seed lotus. To explore the domesticated regions of each subgroup, re-sequencing data of 371 lotus accessions collected from the public database were aligned to the genome of 'China-Antique (CA)'. Unmapped reads were used to build the dispensable genome of each subgroup using a metagenome-like assembly strategy. More than 27 Mb of the dispensable genome in these three subgroups and the wild group was assembled, of which 11,761 genes were annotated. Some of the contigs in the dispensable genome were similar to the genomic segments of other lotus accessions other than 'CA'. The annotated genes in each subgroup played essential roles in specific developmental processes. Dissection of selective signals in three cultivated subgroups also demonstrated that subgroup-specific metabolic pathways, such as the brassinosteroids metabolism enrichment in FL, associated with these selected genes in each subgroup and the contigs in dispensable genome nearly located in the domesticated regions of each subgroup, respectively. Our data presented a valuable resource for facilitating lotus genomic studies, complemented the helpful information to the reference genome, and shed light on the selective signals of domesticated subgroups.
Collapse
Affiliation(s)
- Huanhuan Qi
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | | | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Ong PW, Lin YP, Chen HW, Lo CY, Burlyaeva M, Noble T, Nair RM, Schafleitner R, Vishnyakova M, Bishop-von-Wettberg E, Samsonova M, Nuzhdin S, Ting CT, Lee CR. Environment as a limiting factor of the historical global spread of mungbean. eLife 2023; 12:e85725. [PMID: 37204293 PMCID: PMC10299821 DOI: 10.7554/elife.85725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/18/2023] [Indexed: 05/20/2023] Open
Abstract
While the domestication process has been investigated in many crops, the detailed route of cultivation range expansion and factors governing this process received relatively little attention. Here, using mungbean (Vigna radiata var. radiata) as a test case, we investigated the genomes of more than 1000 accessions to illustrate climatic adaptation's role in dictating the unique routes of cultivation range expansion. Despite the geographical proximity between South and Central Asia, genetic evidence suggests mungbean cultivation first spread from South Asia to Southeast, East and finally reached Central Asia. Combining evidence from demographic inference, climatic niche modeling, plant morphology, and records from ancient Chinese sources, we showed that the specific route was shaped by the unique combinations of climatic constraints and farmer practices across Asia, which imposed divergent selection favoring higher yield in the south but short-season and more drought-tolerant accessions in the north. Our results suggest that mungbean did not radiate from the domestication center as expected purely under human activity, but instead, the spread of mungbean cultivation is highly constrained by climatic adaptation, echoing the idea that human commensals are more difficult to spread through the south-north axis of continents.
Collapse
Affiliation(s)
- Pei-Wen Ong
- Institute of Plant Biology, National Taiwan UniversityTaipeiTaiwan
| | - Ya-Ping Lin
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
- World Vegetable CenterTainanTaiwan
| | - Hung-Wei Chen
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| | - Cheng-Yu Lo
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| | - Marina Burlyaeva
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)St. PetersburgRussian Federation
| | - Thomas Noble
- Department of Agriculture and FisheriesWarwickAustralia
| | | | | | - Margarita Vishnyakova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)St. PetersburgRussian Federation
| | - Eric Bishop-von-Wettberg
- Department of Plant and Soil Science and Gund Institute for the Environment, University of VermontBurlingtonUnited States
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussian Federation
| | - Maria Samsonova
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussian Federation
| | - Sergey Nuzhdin
- University of Southern CaliforniaLos AngelesUnited States
| | - Chau-Ti Ting
- Department of Life Science, National Taiwan UniversityTaipeiTaiwan
| | - Cheng-Ruei Lee
- Institute of Plant Biology, National Taiwan UniversityTaipeiTaiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
8
|
Qi H, Yu F, Deng J, Zhang L, Yang P. The high-quality genome of lotus reveals tandem duplicate genes involved in stress response and secondary metabolites biosynthesis. HORTICULTURE RESEARCH 2023; 10:uhad040. [PMID: 37159801 PMCID: PMC10163359 DOI: 10.1093/hr/uhad040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/23/2023] [Indexed: 05/11/2023]
Affiliation(s)
- Huanhuan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China
| | - Jiao Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430026, China
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | | | | |
Collapse
|
9
|
Chen L, Song H, Xin J, Dong G, Xu F, Su Y, Yang M, Sun H. Comprehensive genome-wide identification and functional characterization of MAPK cascade gene families in Nelumbo. Int J Biol Macromol 2023; 233:123543. [PMID: 36740124 DOI: 10.1016/j.ijbiomac.2023.123543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascade signaling pathway plays pivotal roles in various plant biological processes. However, systematic study of MAPK cascade gene families is yet to be conducted in lotus. Herein, 198 putative MAPK genes, including 152 MAP3Ks, 15 MKKs, and 31 MPKs genes were identified in Nelumbo. Segmental duplication was identified as the predominant factor driving MAPK cascade gene family expansion in lotus. MAPK cascade genes in N. nucifera and N. lutea shared high degree of sequence homologies, with 84, 9, and 19 homologous MAP3K, MKK, and MPK gene pairs being detected between the two species, respectively, with most genes predominantly undergoing purifying selection. Gene expression profiling indicated that NnMAPK cascade genes were extensively involved in plant development and submergence stress response. Co-expression analysis revealed potential interaction between transcription factors (TFs) and NnMAPK cascade genes in various biological processes. NnMKK showed predicted interactions with multiple NnMAP3K or NnMPK proteins, which suggested that functional diversity of MAPK cascade genes could be as a result of their complex protein interaction mechanisms. This first systematic analysis of MAPK cascade families in lotus provides deeper insights into their evolutionary dynamics and functional properties, which potentially could be crucial for lotus genetic improvement.
Collapse
Affiliation(s)
- Lin Chen
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Heyun Song
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Xin
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fei Xu
- Applied Biotechnology Center, Wuhan University of Bioengineering, Wuhan 430415, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Mei Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| | - Heng Sun
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
10
|
Identification of the NAC Transcription Factors and Their Function in ABA and Salinity Response in Nelumbo nucifera. Int J Mol Sci 2022; 23:ijms232012394. [PMID: 36293250 PMCID: PMC9604248 DOI: 10.3390/ijms232012394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Nelumbo nucifera Gaertn. is an important perennial aquatic herb that has high ornamental, edible, medicinal, and economic value, being widely distributed and used in China. The NAC superfamily (NAM, ATAF1/2, CUC2) plays critical roles in plant growth, development, and response to abiotic and biotic stresses. Though there have been a few reports about NAC genes in lotus, systematic analysis is still relatively lacking. The present study aimed to characterize all the NAC genes in the lotus and obtain better insights on the NnNACs in response to salt stress by depending on ABA signaling. Here, 97 NAC genes were identified by searching the whole lotus genome based on the raw HMM models of the conserved NAM domain and NAC domain. They were characterized by bioinformatics analysis and divided into 18 subgroups based on the phylogenetic tree. Cis-element analysis demonstrated that NAC genes are responsive to biotic and abiotic stresses, light, low temperature, and plant hormones. Meanwhile, NAC genes had tissue expression specificity. qRT-PCR analysis indicated that NAC genes could be upregulated or downregulated by NaCl treatment, ABA, and fluoridone. In addition, NAC016, NAC025, and NAC070, whose encoding genes were significantly induced by NaCl and ABA, were located in the nucleus. Further analysis showed the three NAC proteins had transcriptional activation capabilities. The co-expression network analysis reflected that NAC proteins may form complexes with other proteins to play a role together. Our study provides a theoretical basis for further research to be conducted on the regulatory mechanisms of salinity resistance in the lotus.
Collapse
|
11
|
Studies on Lotus Genomics and the Contribution to Its Breeding. Int J Mol Sci 2022; 23:ijms23137270. [PMID: 35806274 PMCID: PMC9266308 DOI: 10.3390/ijms23137270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Lotus (Nelumbo nucifera), under the Nelumbonaceae family, is one of the relict plants possessing important scientific research and economic values. Because of this, much attention has been paid to this species on both its biology and breeding among the scientific community. In the last decade, the genome of lotus has been sequenced, and several high-quality genome assemblies are available, which have significantly facilitated functional genomics studies in lotus. Meanwhile, re-sequencing of the natural and genetic populations along with different levels of omics studies have not only helped to classify the germplasm resources but also to identify the domestication of selected regions and genes controlling different horticultural traits. This review summarizes the latest progress of all these studies on lotus and discusses their potential application in lotus breeding.
Collapse
|