1
|
Hu S, Zeng X, Liu Y, Li Y, Qu M, Jiao WB, Han Y, Kang C. Global characterization of somatic mutations and DNA methylation changes during vegetative propagation in strawberries. Genome Res 2024; 34:1582-1594. [PMID: 39406501 PMCID: PMC11529994 DOI: 10.1101/gr.279378.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Somatic mutations arise and accumulate during tissue culture and vegetative propagation, potentially affecting various traits in horticultural crops, but their characteristics are still unclear. Here, somatic mutations in regenerated woodland strawberry derived from tissue culture of shoot tips under different conditions and 12 cultivated strawberry individuals are analyzed by whole genome sequencing. The mutation frequency of single nucleotide variants is significantly increased with increased hormone levels or prolonged culture time in the range of 3.3 × 10-8-3.0 × 10-6 mutations per site. CG methylation shows a stable reduction (0.71%-8.03%) in regenerated plants, and hypoCG-DMRs are more heritable after sexual reproduction. A high-quality haplotype-resolved genome is assembled for the strawberry cultivar "Beni hoppe." The 12 "Beni hoppe" individuals randomly selected from different locations show 4731-6005 mutations relative to the reference genome, and the mutation frequency varies among the subgenomes. Our study has systematically characterized the genetic and epigenetic variants in regenerated woodland strawberry plants and different individuals of the same strawberry cultivar, providing an accurate assessment of somatic mutations at the genomic scale and nucleotide resolution in plants.
Collapse
Affiliation(s)
- Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Zeng
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China
| | - Yuguo Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongping Li
- School of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Minghao Qu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongchao Han
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China;
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Nkongolo K, Michael P. Reduced representation bisulfite sequencing (RRBS) analysis reveals variation in distribution and levels of DNA methylation in white birch ( Betula papyrifera) exposed to nickel. Genome 2024; 67:351-367. [PMID: 39226484 DOI: 10.1139/gen-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Research in understanding the role of genetics and epigenetics in plant adaptations to environmental stressors such as metals is still in its infancy. The objective of the present study is to assess the effect of nickel on DNA methylation level and distribution in white birch (Betula papyrifera Marshall) using reduced representation bisulfite sequencing (RRBS). The distribution of methylated C sites of each sample revealed that the level of methylation was much higher in CG context varying between 54% and 65%, followed by CHG (24%-31.5%), and then CHH with the methylation rate between 3.3% and 5.2%. The analysis of differentially methylated regions (DMR) revealed that nickel induced both hypermethylation and hypomethylation when compared to water. Detailed analysis showed for the first time that nickel induced a higher level of hypermethylation compared to controls, while potassium triggers a higher level of hypomethylation compared to nickel. Surprisingly, the analysis of the distribution of DMRs revealed that 38%-42% were located in gene bodies, 20%-24% in exon, 19%-20% in intron, 16%-17% in promoters, and 0.03%-0.04% in transcription start site. RRBS was successful in detecting and mapping DMR in plants exposed to nickel.
Collapse
Affiliation(s)
- Kabwe Nkongolo
- Biomolecular Sciences Program and School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Paul Michael
- Biomolecular Sciences Program and School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
3
|
Zi N, Ren W, Guo H, Yuan F, Liu Y, Fry E. DNA Methylation Participates in Drought Stress Memory and Response to Drought in Medicago ruthenica. Genes (Basel) 2024; 15:1286. [PMID: 39457410 PMCID: PMC11507442 DOI: 10.3390/genes15101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Drought is currently a global environmental problem, which inhibits plant growth and development and seriously restricts crop yields. Many plants exposed to drought stress can generate stress memory, which provides some advantages for resisting recurrent drought. DNA methylation is a mechanism involved in stress memory formation, and many plants can alter methylation levels to form stress memories; however, it remains unclear whether Medicago ruthenica exhibits drought stress memory, as the epigenetic molecular mechanisms underlying this process have not been described in this species. Methods: We conducted methylome and transcriptome sequencing to identify gene methylation and expression changes in plants with a history of two drought stress exposures. Results: Methylation analysis showed that drought stress resulted in an approximately 4.41% decrease in M. ruthenica genome methylation levels. The highest methylation levels were in CG dinucleotide contexts, followed by CHG contexts, with CHH contexts having the lowest levels. Analysis of associations between methylation and transcript levels showed that most DNA methylation was negatively correlated with gene expression except methylation within CHH motifs in gene promoter regions. Genes were divided into four categories according to the relationship between methylation and gene expression; the up-regulation of hypo-methylated gene expression accounted for the vast majority (692 genes) and included genes encoding factors key for abscisic acid (ABA) and proline synthesis. The hypo-methylation of the promoter and body regions of these two gene groups induced increased gene transcription levels. Conclusions: In conclusion, DNA methylation may contribute to drought stress memory formation and maintenance in M. ruthenica by increasing the transcription levels of genes key for ABA and proline biosynthesis.
Collapse
Affiliation(s)
- Na Zi
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China;
| | - Huiqin Guo
- School of Life Science, Inner Mongolia Agriculture University, Hohhot 010010, China;
| | - Feng Yuan
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Yaling Liu
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, National Center of Pratacultural Technology Innovation, Hohhot 010010, China; (F.Y.); (Y.L.)
| | - Ellen Fry
- Department of Biology, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
4
|
Peña-Ponton C, Diez-Rodriguez B, Perez-Bello P, Becker C, McIntyre LM, van der Putten WH, De Paoli E, Heer K, Opgenoorth L, Verhoeven KJF. High-resolution methylome analysis uncovers stress-responsive genomic hotspots and drought-sensitive transposable element superfamilies in the clonal Lombardy poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5839-5856. [PMID: 38836523 PMCID: PMC11427840 DOI: 10.1093/jxb/erae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
DNA methylation is environment-sensitive and can mediate stress responses. In trees, changes in the environment might cumulatively shape the methylome landscape over time. However, because high-resolution methylome studies usually focus on single environmental cues, the stress-specificity and long-term stability of methylation responses remain unclear. Here, we studied the methylome plasticity of a Populus nigra cv. 'Italica' clone widely distributed across Europe. Adult trees from different geographic locations were clonally propagated in a common garden experiment and exposed to cold, heat, drought, herbivory, rust infection, and salicylic acid treatments. Whole-genome bisulfite sequencing revealed stress-induced and naturally occurring DNA methylation variants. In CG/CHG contexts, the same genomic regions were often affected by multiple stresses, suggesting a generic methylome response. Moreover, these variants showed striking overlap with naturally occurring methylation variants between trees from different locations. Drought treatment triggered CHH hypermethylation of transposable elements, affecting entire superfamilies near drought-responsive genes. Thus, we revealed genomic hotspots of methylation change that are not stress-specific and that contribute to natural DNA methylation variation, and identified stress-specific hypermethylation of entire transposon superfamilies with possible functional consequences. Our results underscore the importance of studying multiple stressors in a single experiment for recognizing general versus stress-specific methylome responses.
Collapse
Affiliation(s)
- Cristian Peña-Ponton
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Barbara Diez-Rodriguez
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
- Natural Resources and Climate Area, CARTIF Technology Centre, 47151 Boecillo, Valladolid, Spain
| | - Paloma Perez-Bello
- IGA Technology Services Srl. Via Jacopo Linussio 51, 33100 Udine UD, Italy
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen 6700 ES, The Netherlands
| | - Emanuele De Paoli
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Katrin Heer
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Eva Mayr-Stihl professorship of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098 Freiburg i. Br., Germany
| | - Lars Opgenoorth
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043 Marburg, Germany
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Fisher DN, Bechsgaard J, Bilde T. Exploring changes in social spider DNA methylation profiles in all cytosine contexts following infection. Heredity (Edinb) 2024:10.1038/s41437-024-00724-y. [PMID: 39266675 DOI: 10.1038/s41437-024-00724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Living at high density and with low genetic diversity are factors that should both increase the susceptibility of organisms to disease. Therefore, group living organisms, especially those that are inbred, should be especially vulnerable to infection and therefore have particular strategies to cope with infection. Phenotypic plasticity, underpinned by epigenetic changes, could allow group living organisms to rapidly respond to infection challenges. To explore the potential role of epigenetic modifications in the immune response to a group-living species with low genetic diversity, we compared the genome-wide DNA methylation profiles of five colonies of social spiders (Stegodyphus dumicola) in their natural habitat in Namibia at the point just before they succumbed to infection to a point at least six months previously where they were presumably healthier. We found increases in genome- and chromosome-wide methylation levels in the CpG, CHG, and CHH contexts, although the genome-wide changes were not clearly different from zero. These changes were most prominent in the CHG context, especially at a narrow region of chromosome 13, hinting at an as-of-yet unsuspected role of this DNA methylation context in phenotypic plasticity. However, there were few clear patterns of differential methylation at the base level, and genes with a known immune function in spiders had mean methylation changes close to zero. Our results suggest that DNA methylation may change with infection at large genomic scales, but that this type of epigenetic change is not necessarily integral to the immune response of social spiders.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK.
| | - Jesper Bechsgaard
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| | - Trine Bilde
- Department of Biology, Section for Genetic Ecology and Evolution, Centre for Ecological Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Nguyen VN, Ho TT, Doan TD, Le NQK. Using a hybrid neural network architecture for DNA sequence representation: A study on N 4-methylcytosine sites. Comput Biol Med 2024; 178:108664. [PMID: 38875905 DOI: 10.1016/j.compbiomed.2024.108664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
N4-methylcytosine (4mC) is a modified form of cytosine found in DNA, contributing to epigenetic regulation. It exists in various genomes, including the Rosaceae family encompassing significant fruit crops like apples, cherries, and roses. Previous investigations have examined the distribution and functional implications of 4mC sites within the Rosaceae genome, focusing on their potential roles in gene expression regulation, environmental adaptation, and evolution. This research aims to improve the accuracy of predicting 4mC sites within the genome of Fragaria vesca, a Rosaceae plant species. Building upon the original 4mc-w2vec method, which combines word embedding processing and a convolutional neural network (CNN), we have incorporated additional feature encoding techniques and leveraged pre-trained natural language processing (NLP) models with different deep learning architectures including different forms of CNN, recurrent neural networks (RNN) and long short-term memory (LSTM). Our assessments have shown that the best model is derived from a CNN model using fastText encoding. This model demonstrates enhanced performance, achieving a sensitivity of 0.909, specificity of 0.77, and accuracy of 0.879 on an independent dataset. Furthermore, our model surpasses previously published works on the same dataset, thus showcasing its superior predictive capabilities.
Collapse
Affiliation(s)
- Van-Nui Nguyen
- University of Information and Communication Technology, Thai Nguyen University, Thai Nguyen, Viet Nam
| | - Trang-Thi Ho
- Department of Computer Science and Information Engineering, TamKang University, New Taipei, 251301, Taiwan
| | - Thu-Dung Doan
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, 110, Taiwan; AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan; Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
7
|
Rao X, Yang S, Lü S, Yang P. DNA Methylation Dynamics in Response to Drought Stress in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1977. [PMID: 39065503 PMCID: PMC11280950 DOI: 10.3390/plants13141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Drought is one of the most hazardous environmental factors due to its severe damage on plant growth, development and productivity. Plants have evolved complex regulatory networks and resistance strategies for adaptation to drought stress. As a conserved epigenetic regulation, DNA methylation dynamically alters gene expression and chromosome interactions in plants' response to abiotic stresses. The development of omics technologies on genomics, epigenomics and transcriptomics has led to a rapid increase in research on epigenetic variation in non-model crop species. In this review, we summarize the most recent findings on the roles of DNA methylation under drought stress in crops, including methylating and demethylating enzymes, the global methylation dynamics, the dual regulation of DNA methylation on gene expression, the RNA-dependent DNA methylation (RdDM) pathway, alternative splicing (AS) events and long non-coding RNAs (lnc RNAs). We also discuss drought-induced stress memory. These epigenomic findings provide valuable potential for developing strategies to improve crop drought tolerance.
Collapse
Affiliation(s)
| | | | | | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; (X.R.); (S.Y.); (S.L.)
| |
Collapse
|
8
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
9
|
Rodriguez-Izquierdo A, Carrasco D, Anand L, Magnani R, Catarecha P, Arroyo-Garcia R, Rodriguez Lopez CM. Epigenetic differences between wild and cultivated grapevines highlight the contribution of DNA methylation during crop domestication. BMC PLANT BIOLOGY 2024; 24:504. [PMID: 38840239 PMCID: PMC11155169 DOI: 10.1186/s12870-024-05197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
The domestication process in grapevines has facilitated the fixation of desired traits. Nowadays, vegetative propagation through cuttings enables easier preservation of these genotypes compared to sexual reproduction. Nonetheless, even with vegetative propagation, various phenotypes are often present within the same vineyard due to the accumulation of somatic mutations. These mutations are not the sole factors influencing phenotype. Alongside somatic variations, epigenetic variation has been proposed as a pivotal player in regulating phenotypic variability acquired during domestication. The emergence of these epialleles might have significantly influenced grapevine domestication over time. This study aims to investigate the impact of domestication on methylation patterns in cultivated grapevines. Reduced-representation bisulfite sequencing was conducted on 18 cultivated and wild accessions. Results revealed that cultivated grapevines exhibited higher methylation levels than their wild counterparts. Differential Methylation Analysis between wild and cultivated grapevines identified a total of 9955 differentially methylated cytosines, of which 78% were hypermethylated in cultivated grapevines. Functional analysis shows that core methylated genes (consistently methylated in both wild and cultivated accessions) are associated with stress response and terpenoid/isoprenoid metabolic processes. Meanwhile, genes with differential methylation are linked to protein targeting to the peroxisome, ethylene regulation, histone modifications, and defense response. Collectively, our results highlight the significant roles that epialleles may have played throughout the domestication history of grapevines.
Collapse
Affiliation(s)
- Alberto Rodriguez-Izquierdo
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - David Carrasco
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group (EEGG), Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, KY, USA
| | - Roberta Magnani
- Environmental Epigenetics and Genetics Group (EEGG), Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, KY, USA
| | - Pablo Catarecha
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Rosa Arroyo-Garcia
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC - Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain.
| | - Carlos M Rodriguez Lopez
- Environmental Epigenetics and Genetics Group (EEGG), Department of Horticulture, College of Agriculture, Food and environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
López ME, Denoyes B, Bucher E. Epigenomic and transcriptomic persistence of heat stress memory in strawberry (Fragaria vesca). BMC PLANT BIOLOGY 2024; 24:405. [PMID: 38750420 PMCID: PMC11096098 DOI: 10.1186/s12870-024-05093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, Geneva, 1205, Switzerland
| | - Béatrice Denoyes
- INRAE, Biologie du Fruit et Pathologie, Univ. Bordeaux, Villenave d'Ornon, F-33140, France
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope, Nyon, 1260, Switzerland.
| |
Collapse
|
11
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
12
|
Sammarco I, Díez Rodríguez B, Galanti D, Nunn A, Becker C, Bossdorf O, Münzbergová Z, Latzel V. DNA methylation in the wild: epigenetic transgenerational inheritance can mediate adaptation in clones of wild strawberry (Fragaria vesca). THE NEW PHYTOLOGIST 2024; 241:1621-1635. [PMID: 38058250 DOI: 10.1111/nph.19464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.
Collapse
Affiliation(s)
- Iris Sammarco
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Bárbara Díez Rodríguez
- Natural Resources and Climate Area, CARTIF Technology Centre, Parque Tecnológico de Boecillo, parc. 205, 47151, Boecillo, Valladolid, Spain
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch Strasse 8, D-35043, Marburg, Germany
- Department of Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstraße 17, 79098, Freiburg i. Br., Germany
| | - Dario Galanti
- Royal Botanic Gardens, Kew, Richmond, UK
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Adam Nunn
- ecSeq Bioinformatics GmbH, Sternwartenstraße 29, 04103, Saxony, Germany
- Department of Computer Science, University of Leipzig, Härtelstraße 16-18, Leipzig, 04107, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr Bohr-Gasse 3, 1030, Vienna, Austria
- LMU Biocenter, Faculty of Biology, Ludwig Maximilians University Munich, Grosshaderner Str. 2-4, 82152, Martinsried, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czechia
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
13
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
14
|
Song Y, Peng Y, Liu L, Li G, Zhao X, Wang X, Cao S, Muyle A, Zhou Y, Zhou H. Phased gap-free genome assembly of octoploid cultivated strawberry illustrates the genetic and epigenetic divergence among subgenomes. HORTICULTURE RESEARCH 2024; 11:uhad252. [PMID: 38269295 PMCID: PMC10807706 DOI: 10.1093/hr/uhad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
The genetic and epigenetic mechanisms underlying the coexistence and coordination of the four diverged subgenomes (ABCD) in octoploid strawberries (Fragaria × ananassa) remains poorly understood. In this study, we have assembled a haplotype-phased gap-free octoploid genome for the strawberry, which allowed us to uncover the sequence, structure, and epigenetic divergences among the subgenomes. The diploid progenitors of the octoploid strawberry, apart from subgenome A (Fragaria vesca), have been a subject of public controversy. Phylogenomic analyses revealed a close relationship between diploid species Fragaria iinumae and subgenomes B, C, and D. Subgenome A, closely related to F. vesca, retains the highest number of genes, exhibits the lowest content of transposable elements (TEs), experiences the strongest purifying selection, shows the lowest DNA methylation levels, and displays the highest expression level compared to the other three subgenomes. Transcriptome and DNA methylome analyses revealed that subgenome A-biased genes were enriched in fruit development biological processes. In contrast, although subgenomes B, C, and D contain equivalent amounts of repetitive sequences, they exhibit diverged methylation levels, particularly for TEs located near genes. Taken together, our findings provide valuable insights into the evolutionary patterns of subgenome structure, divergence and epigenetic dynamics in octoploid strawberries, which could be utilized in strawberry genetics and breeding research.
Collapse
Affiliation(s)
- Yanhong Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lifeng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Gang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xia Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570000, China
| | - Houcheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
15
|
Wang Y, Zhang H, Gu J, Chen C, Liu J, Zhang Z, Hua B, Miao M. The Sink-Source Relationship in Cucumber ( Cucumis sativus L.) Is Modulated by DNA Methylation. PLANTS (BASEL, SWITZERLAND) 2023; 13:103. [PMID: 38202411 PMCID: PMC10780960 DOI: 10.3390/plants13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The optimization of the sink-source relationship is of great importance for crop yield regulation. Cucumber is a typical raffinose family oligosaccharide (RFO)-transporting crop. DNA methylation is a common epigenetic modification in plants, but its role in sink-source regulation has not been demonstrated in RFO-translocating species. Here, whole-genome bisulfite sequencing (WGBS-seq) was conducted to compare the nonfruiting-node leaves (NFNLs) and leaves of fruit setting (FNLs) at the 12th node by removing all female flowers in other nodes of the two treatments. We found considerable differentially methylated genes enriched in photosynthesis and carbohydrate metabolic processes. Comparative transcriptome analysis between FNLs and NFNLs indicated that many differentially expressed genes (DEGs) with differentially methylated regions were involved in auxin, ethylene and brassinolide metabolism; sucrose metabolism; and RFO synthesis pathways related to sink-source regulation. Moreover, DNA methylation levels of six sink-source-related genes in the pathways mentioned above decreased in leaves after 5-aza-dC-2'-deoxycytidine (5-Aza-dC, a DNA methyltransferase inhibitor) treatment on FNLs, and stachyose synthase (CsSTS) gene expression, enzyme activity and stachyose content in RFO synthesis pathway were upregulated, thereby increasing fruit length and dry weight. Taken together, our findings proposed an up-to-date inference for the potential role of DNA methylation in the sink-source relationship, which will provide important references for further exploring the molecular mechanism of DNA methylation in improving the yield of RFO transport plants.
Collapse
Affiliation(s)
- Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Huimin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, China;
| | - Jiawen Gu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Chen Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Jiexia Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.W.); (J.G.); (C.C.); (J.L.); (Z.Z.); (B.H.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Liu P, Liu R, Xu Y, Zhang C, Niu Q, Lang Z. DNA cytosine methylation dynamics and functional roles in horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhad170. [PMID: 38025976 PMCID: PMC10660380 DOI: 10.1093/hr/uhad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/20/2023] [Indexed: 12/01/2023]
Abstract
Methylation of cytosine is a conserved epigenetic modification that maintains the dynamic balance of methylation in plants under the regulation of methyltransferases and demethylases. In recent years, the study of DNA methylation in regulating the growth and development of plants and animals has become a key area of research. This review describes the regulatory mechanisms of DNA cytosine methylation in plants. It summarizes studies on epigenetic modifications of DNA methylation in fruit ripening, development, senescence, plant height, organ size, and under biotic and abiotic stresses in horticultural crops. The review provides a theoretical basis for understanding the mechanisms of DNA methylation and their relevance to breeding, genetic improvement, research, innovation, and exploitation of new cultivars of horticultural crops.
Collapse
Affiliation(s)
- Peipei Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ruie Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Caixi Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
17
|
Sereshki S, Lee N, Omirou M, Fasoula D, Lonardi S. On the prediction of non-CG DNA methylation using machine learning. NAR Genom Bioinform 2023; 5:lqad045. [PMID: 37206627 PMCID: PMC10189801 DOI: 10.1093/nargab/lqad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
DNA methylation can be detected and measured using sequencing instruments after sodium bisulfite conversion, but experiments can be expensive for large eukaryotic genomes. Sequencing nonuniformity and mapping biases can leave parts of the genome with low or no coverage, thus hampering the ability of obtaining DNA methylation levels for all cytosines. To address these limitations, several computational methods have been proposed that can predict DNA methylation from the DNA sequence around the cytosine or from the methylation level of nearby cytosines. However, most of these methods are entirely focused on CG methylation in humans and other mammals. In this work, we study, for the first time, the problem of predicting cytosine methylation for CG, CHG and CHH contexts on six plant species, either from the DNA primary sequence around the cytosine or from the methylation levels of neighboring cytosines. In this framework, we also study the cross-species prediction problem and the cross-context prediction problem (within the same species). Finally, we show that providing gene and repeat annotations allows existing classifiers to significantly improve their prediction accuracy. We introduce a new classifier called AMPS (annotation-based methylation prediction from sequence) that takes advantage of genomic annotations to achieve higher accuracy.
Collapse
Affiliation(s)
- Saleh Sereshki
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Nathan Lee
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA
| | - Michalis Omirou
- Department of Agrobiotechnology, Agricultural Microbiology Laboratory, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Dionysia Fasoula
- Department of Plant Breeding, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Stefano Lonardi
- To whom correspondence should be addressed. Tel: +1 951 827 2203; Fax: +1 951 827 4643;
| |
Collapse
|
18
|
Panda K, Mohanasundaram B, Gutierrez J, McLain L, Castillo SE, Sheng H, Casto A, Gratacós G, Chakrabarti A, Fahlgren N, Pandey S, Gehan MA, Slotkin RK. The plant response to high CO 2 levels is heritable and orchestrated by DNA methylation. THE NEW PHYTOLOGIST 2023; 238:2427-2439. [PMID: 36918471 DOI: 10.1111/nph.18876] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2 ) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2 environment while transgenerational studies are rare. We aimed to determine transgenerational growth responses in plants after exposure to high CO2 by investigating the direct progeny when returned to baseline CO2 levels. We found that both the flowering plant Arabidopsis thaliana and seedless nonvascular plant Physcomitrium patens continue to display accelerated growth rates in the progeny of plants exposed to high CO2 . We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response. More specifically, the pathway of RNA-directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2 exposure.
Collapse
Affiliation(s)
- Kaushik Panda
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Jorge Gutierrez
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Lauren McLain
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | | | - Hudanyun Sheng
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Anna Casto
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Gustavo Gratacós
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Ayan Chakrabarti
- Department of Computer Science & Engineering, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Noah Fahlgren
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Malia A Gehan
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri, MO, 65211, Columbia, USA
| |
Collapse
|