1
|
Nie J, Huang H, Wu S, Lin T, Zhang L, Lv L, Shi Y, Guo Y, Zhang Q, Li Y, Kong W, Li H, Yang Z, Li W, Xu L, Ma N, Zhang Z, Sun C, Sui X. Molecular regulation and domestication of parthenocarpy in cucumber. NATURE PLANTS 2025:10.1038/s41477-024-01899-2. [PMID: 39814959 DOI: 10.1038/s41477-024-01899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025]
Abstract
Parthenocarpy is a pivotal trait that enhances the yield and quality of fruit crops by enabling the development of seedless fruits. Here we unveil a molecular framework for the regulation and domestication of parthenocarpy in cucumber (Cucumis sativus L.). We previously discovered a natural non-parthenocarpic mutant and demonstrated that the AP2-like transcription factor NON-PARTHENOCARPIC FRUIT 1 (NPF1) is a central regulator of parthenocarpy through activating YUC4 expression and promoting auxin biosynthesis in ovules. A Phe-to-Ser substitution at amino acid residue 7 results in a stable form of NPF1 that is localized in the nucleus. An A-to-G polymorphism (SNP-383) within an NPF1-binding site in the YUC4 promoter significantly enhances the activation of NPF1 towards YUC4, leading to an increased rate of parthenocarpy. Additionally, NPF1 influences bitterness by reducing cucurbitacin C biosynthesis through the suppression of Bt expression. Our results suggest a two-step evolutionary model for parthenocarpy and fruit bitterness during cucumber domestication.
Collapse
Affiliation(s)
- Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Hongyu Huang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Sheng Wu
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | - Tao Lin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lidong Zhang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuzi Shi
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Qian Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yuhe Li
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Weiliang Kong
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Hujian Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenbo Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lingjun Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Chuanqing Sun
- Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, China.
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Pan J, Sohail H, Sharif R, Hu Q, Song J, Qi X, Chen X, Xu X. Cucumber JASMONATE ZIM-DOMAIN 8 interaction with transcription factor MYB6 impairs waterlogging-triggered adventitious rooting. PLANT PHYSIOLOGY 2024; 197:kiae351. [PMID: 38918826 DOI: 10.1093/plphys/kiae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Waterlogging is a serious abiotic stress that drastically decreases crop productivity by damaging the root system. Jasmonic acid (JA) inhibits waterlogging-induced adventitious root (AR) formation in cucumber (Cucumis sativus L.). However, we still lack a profound mechanistic understanding of how JA governs AR formation under waterlogging stress. JASMONATE ZIM-DOMAIN (JAZ) proteins are responsible for repressing JA signaling in a transcriptional manner. In this study, we showed that overexpressing CsJAZ8 inhibited the formation of ARs triggered by waterlogging. Molecular analyses revealed that CsJAZ8 inhibited the activation of the R2R3-MYB transcription factor CsMYB6 via direct interaction. Additionally, silencing of CsMYB6 negatively impacted AR formation under waterlogging stress, as CsMYB6 could directly bind to the promoters of 1-aminocyclopropane-1-carboxylate oxidase 2 gene CsACO2 and gibberellin 20-oxidase gene CsGA20ox2, facilitating the transcription of these genes. The overexpression of CsACO2 and CsGA20ox2 led to increased levels of ethylene and gibberellin, which facilitated AR formation under waterlogging conditions. On the contrary, silencing these genes resulted in contrasting phenotypes of AR formation. These results highlight that the transcriptional cascade of CsJAZ8 and CsMYB6 plays a critical role in regulating hormonal-mediated cucumber waterlogging-triggered AR formation by inhibiting ethylene and gibberellin accumulation. We anticipate that our findings will provide insights into the molecular mechanisms that drive the emergence of AR in cucumber plants under waterlogging stress.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Song
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
3
|
Chen X, Li Y, Liu M, Ai G, Zhang X, Wang J, Tian S, Yuan L. A sexually and vegetatively reproducible diploid seedless watermelon inducer via ClHAP2 mutation. NATURE PLANTS 2024; 10:1446-1452. [PMID: 39367255 DOI: 10.1038/s41477-024-01799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/09/2024] [Indexed: 10/06/2024]
Abstract
Seedless watermelon production relies on triploid cultivation or the application of plant growth regulators. However, challenges such as chromosomal imbalances in triploid varieties and concerns about food safety with growth regulator application impede progress. To tackle these challenges, we developed a sexually and vegetatively reproducible inducer line of diploid seedless watermelon by disrupting the double fertilization process. This innovative approach has enabled the successful induction of diploid seedless watermelon across diverse varieties.
Collapse
Affiliation(s)
- Xiner Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Yuxiu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Man Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Gongli Ai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Xian Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Jiafa Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Shujuan Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China
| | - Li Yuan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
4
|
Wang M, Jiang N, Xu Y, Chen X, Wang C, Wang C, Wang S, Xu K, Chai S, Yu Q, Zhang Z, Zhang H. CmBr confers fruit bitterness under CPPU treatment in melon. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2724-2737. [PMID: 38816932 PMCID: PMC11536449 DOI: 10.1111/pbi.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Many biotic or abiotic factors such as CPPU (N-(2-chloro-pyridin-4-yl)-N'-phenylurea), a growth regulator of numerous crops, can induce bitterness in cucurbits. In melon, cucurbitacin B is the major compound leading to bitterness. However, the molecular mechanism underlying CuB biosynthesis in response to different conditions remains unclear. Here, we identified a set of genes involved in CPPU-induced CuB biosynthesis in melon fruit and proposed CmBr gene as the major regulator. Using CRISPR/Cas9 gene editing, we confirmed CmBr's role in regulating CuB biosynthesis under CPPU treatment. We further discovered a CPPU-induced MYB-related transcription factor, CmRSM1, which specifically binds to the Myb motif within the CmBr promoter and activates its expression. Moreover, we developed an introgression line by introducing the mutated Cmbr gene into an elite variety and eliminated CPPU-induced bitterness, demonstrating its potential application in breeding. This study offers a valuable tool for breeding high-quality non-bitter melon varieties and provides new insights into the regulation of secondary metabolites under environmental stresses.
Collapse
Affiliation(s)
- Mingyan Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Naiyu Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Yuanchao Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
| | - Xinxiu Chen
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Cui Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Chuangjiang Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Shiqi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Kuipeng Xu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Qing Yu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| | - Huimin Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)College of Horticulture, Qingdao Agricultural UniversityQingdao266109China
| |
Collapse
|
5
|
Shi Q, Li X, Yang S, Zhao X, Yue Y, Yang Y, Yu Y. Dynamic temporal transcriptome analysis reveals grape VlMYB59- VlCKX4 regulatory module controls fruit set. HORTICULTURE RESEARCH 2024; 11:uhae183. [PMID: 39247886 PMCID: PMC11374532 DOI: 10.1093/hr/uhae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 09/10/2024]
Abstract
Fruit set is a key stage in determining yield potential and guaranteeing quality formation and regulation. N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU) has been widely applied in grape production, the most iconic of which is the promotion of grape fruit set. However, current studies still lack the molecular mechanism of CPPU-induced grape fruit set. Here, the dynamic, high-resolution stage-specific transcriptome profiles were generated based on two different treatments and five developmental periods during fruit set in 'Kyoho' grape (Vitis vinifera L. × V. labrusca L.). Pairwise comparison and functional category analysis showed that phytohormone action cytokinin was significantly enriched during the CPPU-induced grape fruit set, but not the natural one. Value differentially expressed gene (VDEG) was a newly proposed analysis strategy for mining genes related to the grape fruit set. Notably, the cytokinin metabolic process was significantly enriched among up-regulated VDEGs. Of importance, a key VDEG VlCKX4 related to the cytokinin metabolic process was identified as related to the grape fruit set. Overexpression of VlCKX4 gene promoted the Arabidopsis plants that produce more and heavier siliques. The transcription factor VlMYB59 directly bound to the promoter of VlCKX4 and activated its expression. Moreover, overexpression of VlMYB59 gene also promoted the Arabidopsis fruit set. Overall, VlMYB59 responded to CPPU treatment and directly activated the expression of VlCKX4, thus promoting the fruit set. A regulatory pathway of the VlMYB59-VlCKX4 module in the fruit set was uncovered, which provides important insights into the molecular mechanisms of the fruit set and good genetic resources for high fruit set rate breeding.
Collapse
Affiliation(s)
- Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Xufei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
- Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Shengdi Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
- Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Xiaochun Zhao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yihan Yue
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yingjun Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, Henan Province, China
| |
Collapse
|
6
|
Sharif R, Zhu Y, Huang Y, Sohail H, Li S, Chen X, Qi X. microRNA regulates cytokinin induced parthenocarpy in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108681. [PMID: 38776825 DOI: 10.1016/j.plaphy.2024.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/30/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Parthenocarpy is one of the most important agronomic traits for fruit yield in cucumbers. However, the precise gene regulation and the posttranscriptional mechanism are elusive. In the presented study, one parthenocarpic line DDX and non-parthenocarpic line ZK were applied to identify the microRNAs (miRNAs) involved in parthenocarpic fruit formation. The differential expressed miRNAs among parthenocarpic fruit of forchlorfenuron (CPPU) treated ZK (ZK-CPPU), pollinated ZK (ZK-P), non-pollinated DDX (DDX-NP) were compared with the non-parthenocarpic fruits of non-pollinated ZK (ZK-NP). It indicated 98 miRNAs exhibited differential expression were identified. Notably, a significant proportion of these miRNAs were enriched in the signal transduction pathway of plant hormones, as identified by the KEGG pathway analysis. qRT-PCR validation indicated that CsmiR156 family was upregulated in the ZK-NP while downregulated in ZK-CPPU, ZK-P, and DDX-NP at 1 day after anthesis. Meanwhile, the opposite trend was observed for CsmiR164a. In ZK-CPPU, ZK-P, and DDX-NP, CsmiRNA156 genes (CsSPL16 and CsARR9-like) were upregulated while CsmiRNA164a genes (CsNAC6, CsCUC1, and CsNAC100) were downregulated. The GUS and dual luciferase assay validated that CsmiR156a inhibited while CsmiR164a induced their target genes' transcription. This study presents novel insights into the involvement of CsmiR156a and CsmiR164a in the CK-mediated posttranscriptional regulation of cucumber parthenocarpy, which will aid future breeding programs.
Collapse
Affiliation(s)
- Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yamei Zhu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Yaoyue Huang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Hamza Sohail
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Su Li
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
7
|
Sun Y, Yue Y, Li X, Li S, Shi Q, Yu Y. Transcription factor VviWOX13C regulates fruit set by directly activating VviEXPA37/38/39 in grape (Vitis vinifera L). PLANT CELL REPORTS 2023; 43:19. [PMID: 38150069 DOI: 10.1007/s00299-023-03107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
KEY MESSAGE VviWOX13C plays a key regulatory role in the expansin during fruit set. Expansins as a type of non-enzymatic cell wall proteins, are responsible for the loosening and extension in cell walls leading to the enlargement of the plant cells. However, the current studies are still lacking in expansin genes associated with promoting fruit set. Here, 29 members of the expansin gene family were identified in the whole genome of grapes (Vitis vinifera L.), and the functional prediction of expansins was based on the gene annotated information. Results showed that the 29 members of grape expansin gene family could be mainly divided into four subfamilies (EXPA, EXPB, LIKE A, and LIKE B), distributed on 16 chromosomes. Replication analysis showed that there were four segmental duplications and two tandem duplications. Each expansins sequence contained two conserved domain features of grape EXPs (DPBB_1 and Expansin_C) through protein sequence analysis. The transcriptome sequencing results revealed that VviEXPA37, VviEXPA38, and VviEXPA39 were induced and upregulated by CPPU. Furthermore, transcriptional regulatory prediction network indicated that VviWOX13C targeted regulates VviEXPA37, VviEXPA38, and VviEXPA39 simultaneously. EMSA and dual luciferase assays demonstrated that VviWOX13C directly activated the expression of VviEXPA37, VviEXPA38, and VviEXPA39 by directly binding to its promoter. These results provide a basis for further studies on the function and regulatory mechanisms of expansin genes in fruit set.
Collapse
Affiliation(s)
- Yadan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yihan Yue
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Xufei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Songqi Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Qiaofang Shi
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China
| | - Yihe Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.
| |
Collapse
|
8
|
Tian S, Zhang Z, Qin G, Xu Y. Parthenocarpy in Cucurbitaceae: Advances for Economic and Environmental Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3462. [PMID: 37836203 PMCID: PMC10574560 DOI: 10.3390/plants12193462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Parthenocarpy is an important agricultural trait that not only produces seedless fruits, but also increases the rate of the fruit set under adverse environmental conditions. The study of parthenocarpy in Cucurbitaceae crops has considerable implications for cultivar improvement. This article provides a comprehensive review of relevant studies on the parthenocarpic traits of several major Cucurbitaceae crops and offers a perspective on future developments and research directions.
Collapse
Affiliation(s)
- Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Zeliang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| |
Collapse
|