1
|
Hanna M, Wabnitz A, Grewal P. Sex and stroke risk factors: A review of differences and impact. J Stroke Cerebrovasc Dis 2024; 33:107624. [PMID: 38316283 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVES There is an increase in stroke incidence risk over the lifetime of women, given their longer life expectancy. However, an alarming trend for sex disparities, particularly in certain stroke risk factors, shows a concerning need for focus on sex differences in stroke prevention and treatment for women. In this article, we are addressing sex differences in both traditional and sex-specific stroke risk factors. METHODS We searched PubMed from inception to December 2022 for articles related to sex differences and risk factors for stroke. We reviewed full-text articles for relevance and ultimately included 152 articles for this focused review. RESULTS Women are at increased risk for stroke from both traditional and non-traditional stroke risk factors. As women age, they have a higher disease burden of atrial fibrillation, increased risk of stroke related to diabetes, worsening lipid profiles, and higher prevalence of hypertension and obesity compared to men. Further, women carry sex hormone-specific risk factors for stroke, including the age of menarche, menopause, pregnancy, and its complications, as well as hormonal therapy. Men have a higher prevalence of tobacco use and atrial fibrillation, as well as an increased risk for stroke related to hyperlipidemia. Additionally, men have sex-specific risks related to low testosterone levels. CONCLUSIONS By identifying biological sex-specific risk factors for stroke, developing robust collaborations, researching, and applying the knowledge for risk reduction strategies, we can begin to tailor prevention and reduce the global burden of stroke morbidity and mortality.
Collapse
Affiliation(s)
- Mckay Hanna
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Ashley Wabnitz
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Parneet Grewal
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
2
|
Johansson T, Fowler P, Ek WE, Skalkidou A, Karlsson T, Johansson Å. Oral Contraceptives, Hormone Replacement Therapy, and Stroke Risk. Stroke 2022; 53:3107-3115. [PMID: 35735009 DOI: 10.1161/strokeaha.121.038659] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Millions of women worldwide use exogenous hormones as oral contraceptives or hormone replacement therapy. Still, time-dependent and long-term consequences of exogenous hormones on stroke risk remains unclear. METHODS We examined the association between self-reported oral contraceptive and hormone replacement therapy use and stroke risk in 257 194 women from the UK Biobank, born between 1939 and 1970. Outcomes included any type of stroke, ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. Exposures were analyzed as time-varying variables in Cox regression models. RESULTS During first year of oral contraceptive use, an increased event rate of any stroke was observed (hazard ratio [HR], 2.49 [95% CI, 1.44-4.30]), while the hazards were found to be comparable during remaining years of use (HR, 1.00 [95% CI, 0.86-1.14]), compared with nonusers. Similarly, first year of hormone replacement therapy use was associated with higher hazard rates of any stroke (HR, 2.12 [95% CI, 1.66-2.70]), as well as cause-specific stroke, including ischemic stroke (HR, 1.93 [95% CI, 1.05-3.57]) and subarachnoid hemorrhage (HR, 2.17 [95% CI, 1.25-3.78]), which remained increased for any stroke during remaining years of use (HR, 1.18 [95% CI, 1.05-1.31]), and after discontinuation (HR, 1.16 [95% CI, 1.02-1.32]). CONCLUSIONS Oral contraceptive use and hormone replacement therapy were associated with an increased risk of stroke, especially during the first year of use, possibly due to immediate changes in hemostatic balance. This study provides new insights on the effects of hormone exposure on stroke risk and provide evidence of not only an overall risk but also a pronounced effects seen in the beginning of treatment.
Collapse
Affiliation(s)
- Therese Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden. (T.J., W.E.E., T.K., A.J.).,Centre for Women's Mental Health during the Reproductive Lifespan - Womher, Uppsala University, Sweden. (T.J.)
| | - Philip Fowler
- Department of Statistics, Uppsala University, Sweden. (P.F.)
| | - Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden. (T.J., W.E.E., T.K., A.J.)
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Sweden. (A.S.)
| | - Torgny Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden. (T.J., W.E.E., T.K., A.J.)
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden. (T.J., W.E.E., T.K., A.J.)
| |
Collapse
|
3
|
Chen Y, Herrold AA, Gallagher V, Martinovich Z, Bari S, Vike NL, Vesci B, Mjaanes J, McCloskey LR, Reilly JL, Breiter HC. Preliminary Report: Localized Cerebral Blood Flow Mediates the Relationship between Progesterone and Perceived Stress Symptoms among Female Collegiate Club Athletes after Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:1809-1820. [PMID: 33470158 PMCID: PMC8336258 DOI: 10.1089/neu.2020.7217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Female athletes are under-studied in the field of concussion research, despite evidence of higher injury prevalence and longer recovery time. Hormonal fluctuations caused by the natural menstrual cycle (MC) or hormonal contraceptive (HC) use impact both post-injury symptoms and neuroimaging findings, but the relationships among hormone, symptoms, and brain-based measures have not been jointly considered in concussion studies. In this preliminary study, we compared cerebral blood flow (CBF) measured with arterial spin labeling between concussed female club athletes 3-10 days after mild traumatic brain injury (mTBI) and demographic, HC/MC matched controls (CON). We tested whether CBF statistically mediates the relationship between progesterone serum levels and post-injury symptoms, which may support a hypothesis for progesterone's role in neuroprotection. We found a significant three-way relationship among progesterone, CBF, and perceived stress score (PSS) in the left middle temporal gyrus for the mTBI group. Higher progesterone was associated with lower (more normative) PSS, as well as higher (more normative) CBF. CBF mediates 100% of the relationship between progesterone and PSS (Sobel p value = 0.017). These findings support a hypothesis for progesterone having a neuroprotective role after concussion and highlight the importance of controlling for the effects of sex hormones in future concussion studies.
Collapse
Affiliation(s)
- Yufen Chen
- Center for Translational Imaging, Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Virginia Gallagher
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Zoran Martinovich
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sumra Bari
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole L. Vike
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Vesci
- Northwestern Health Services Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Jeffrey Mjaanes
- Northwestern Health Services Sports Medicine, Northwestern University, Evanston, Illinois, USA
| | - Leanne R. McCloskey
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James L. Reilly
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans C. Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Barnes JN, Charkoudian N. Integrative cardiovascular control in women: Regulation of blood pressure, body temperature, and cerebrovascular responsiveness. FASEB J 2020; 35:e21143. [PMID: 33151577 DOI: 10.1096/fj.202001387r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Over the past several decades, it has become increasingly clear that women have distinct cardiovascular profiles compared to men. In this review, our goal is to provide an overview of the literature regarding the influences of female sex and reproductive hormones (primarily estradiol) on mechanisms of cardiovascular control relevant to regulation of blood pressure, body temperature, and cerebral blood flow. Young women tend to have lower resting blood pressure compared with men. This sex difference is reversed at menopause, when women develop higher sympathetic nerve activity and the risk of systemic hypertension increases sharply as postmenopausal women age. Vascular responses to thermal stress, including cutaneous vasodilation and vasoconstriction, are also affected by reproductive hormones in women, where estradiol appears to promote vasodilation and heat dissipation. The influence of reproductive hormones on cerebral blood flow and sex differences in the ability of the cerebral vasculature to increase its blood flow (cerebrovascular reactivity) are relatively new areas of investigation. Sex and hormonal influences on integrative blood flow regulation have further implications during challenges to physiological homeostasis, including exercise. We propose that increasing awareness of these sex-specific mechanisms is important for optimizing health care and promotion of wellness in women across the life span.
Collapse
Affiliation(s)
- Jill N Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisha Charkoudian
- US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
5
|
Ramesh SS, Christopher R, Indira Devi B, Bhat DI. The vascular protective role of oestradiol: a focus on postmenopausal oestradiol deficiency and aneurysmal subarachnoid haemorrhage. Biol Rev Camb Philos Soc 2019; 94:1897-1917. [DOI: 10.1111/brv.12541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shruthi S. Ramesh
- Department of NeurochemistryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| | - Rita Christopher
- Department of NeurochemistryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| | - Bhagavatula Indira Devi
- Department of NeurosurgeryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| | - Dhananjaya I. Bhat
- Department of NeurosurgeryNational Institute of Mental Health and Neuro Sciences Bengaluru‐560029 Karnataka India
| |
Collapse
|
6
|
Barnes JN, Harvey RE, Eisenmann NA, Miller KB, Johnson MC, Kruse SM, Lahr BD, Joyner MJ, Miller VM. Cerebrovascular reactivity after cessation of menopausal hormone treatment. Climacteric 2019; 22:182-189. [PMID: 30661405 DOI: 10.1080/13697137.2018.1538340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Women who are currently using menopausal hormone therapy (MHT) have higher cerebrovascular reactivity when compared with postmenopausal women who are not taking MHT; however, the effect of cessation of MHT on cerebrovascular reactivity is not known. Given that MHT can have structural and activational effects on vascular function, this study was performed to characterize cerebrovascular reactivity following cessation of MHT in women at low risk for cerebrovascular disease. METHODS Cerebrovascular reactivity was measured in a subset of women from the Kronos Early Estrogen Prevention Study (KEEPS) 3 years after cessation of the study drug (oral conjugated equine estrogen, transdermal 17β-estradiol, or placebo [PLA]). RESULTS Age, body mass index, and blood pressure were comparable among groups. At rest, the middle cerebral artery velocity (MCAv), cerebrovascular conductance index, mean arterial pressure, and cerebral pulsatility index did not differ among groups. Slope-based summary measures of cerebrovascular reactivity did not differ significantly among groups. However, utilizing repeated-measures modeling, there was a significant upward shift in MCAv responses (p = 0.029) in the combined MHT group compared with the PLA group. CONCLUSION MHT has a marginal sustained effect on cerebrovascular reactivity when measured 3 years after cessation of hormone treatment.
Collapse
Affiliation(s)
- J N Barnes
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA.,b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - R E Harvey
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA.,c College of Medicine and Science , Mayo Clinic , Rochester , MN , USA
| | - N A Eisenmann
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA
| | - K B Miller
- a Department of Kinesiology , University of Wisconsin-Madison , Madison , WI , USA
| | - M C Johnson
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - S M Kruse
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - B D Lahr
- d Department of Health Science Research , Mayo Clinic , Rochester , MN , USA
| | - M J Joyner
- b Department of Anesthesiology , Mayo Clinic , Rochester , MN , USA
| | - V M Miller
- e Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , MN , USA.,f Department of Surgery , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
7
|
Abstract
Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Cristina Duque
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Neurology, Coimbra University Hospital Center, Coimbra, Portugal
| | - Steven K Feske
- Division of Stroke, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Farzaneh A Sorond
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Braz ID, Fisher JP. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J Physiol 2016; 594:4471-83. [PMID: 26435295 PMCID: PMC4983626 DOI: 10.1113/jp271081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
Abstract
Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved.
Collapse
Affiliation(s)
- Igor D Braz
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
9
|
Qureshi AI, Malik AA, Saeed O, Defillo A, Sherr GT, Suri MFK. Hormone replacement therapy and the risk of subarachnoid hemorrhage in postmenopausal women. J Neurosurg 2015; 124:45-50. [PMID: 26162033 DOI: 10.3171/2014.12.jns142329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The incidence of subarachnoid hemorrhage (SAH) increases after menopause. Anecdotal data suggest that hormone replacement therapy (HRT) may reduce the rate of SAH and aneurysm formation in women. The goal of this study was to determine the effect of HRT on occurrence of SAH in a large prospective cohort of postmenopausal women. METHODS The data were analyzed for 93, 676 women 50-79 years of age who were enrolled in the observational arm of the Women's Health Initiative Study. The effect of HRT on risk of SAH was determined over a period of 12 ± 1 years (mean ± SD) using Cox proportional hazards analysis after adjusting for potential confounders. Additional analysis was performed to identify the risk associated with "estrogen only" and "estrogen and progesterone" HRT among women. RESULTS Of the 93, 676 participants, 114 (0.1%) developed SAH during the follow-up period. The rate of SAH was higher among women on active HRT compared with those without HRT used (0.14% vs 0.11%, absolute difference 0.03%, p < 0.0001). In unadjusted analysis, participants who reported active use of HRT were 60% more likely to suffer an SAH (RR 1.6, 95% CI 1.1-2.3). Compared with women without HRT use, the risk of SAH continued to be higher among women reporting active use of HRT (RR 1.5, 95% CI 1.0-2.2) after adjusting for age, systolic blood pressure, cigarette smoking, alcohol consumption, body mass index, race/ethnicity, diabetes, and cardiovascular disease. The risk of SAH was nonsignificantly higher among women on "estrogen only" HRT (RR 1.4, 95% CI 0.91-2.0) than "estrogen and progesterone" HRT(RR 1.2, 95% CI 0.8-2.1) after adjusting for the above-mentioned confounders. CONCLUSIONS Postmenopausal women, particularly those at risk for SAH due to presence of unruptured aneurysms, family history, or cardiovascular risk factors, should be counseled against use of HRT.
Collapse
Affiliation(s)
| | - Ahmed A Malik
- Zeenat Qureshi Stroke Institute, St. Cloud, Minnesota
| | - Omar Saeed
- Zeenat Qureshi Stroke Institute, St. Cloud, Minnesota
| | | | | | | |
Collapse
|
10
|
Cheng Y, Li Q, Zhang Y, Wen Q, Zhao J. Effects of female sex hormones on expression of the Ang-(1-7)/Mas-R/nNOS pathways in rat brain. Can J Physiol Pharmacol 2015; 93:993-8. [PMID: 26488668 DOI: 10.1139/cjpp-2015-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Female sex hormones are considered to reduce the risk of ischemic stroke. As a part of the renin-angiotensin system, angiotensin-(1-7) [Ang-(1-7)] has recently been reported to play a role in protecting neuronal tissues from ischemic stroke. Thus, we examined the effects of female sex hormones on the levels of Ang-(1-7) and its downstream pathways in the brain. Female rats were ovariectomized and 17β-estradiol (17β-EST), progesterone (PGR), or a combination of 17β-EST plus PGR were administered. Our data demonstrated that lack of female sex hormones significantly decreased the levels of Ang-(1-7) in the cerebral cortex and hippocampal CA1 area. Also, we observed a linear relationship between cortex levels of Ang-(1-7) and plasma brain natriuretic peptide levels (as an indicator for risk of ischemic stroke). We further showed that lack of female sex hormones decreased the expression of Ang-(1-7), Mas-receptor (Mas-R), and neuronal nitric oxide synthase (nNOS). Overall, our findings show for the first time that Ang-(1-7) and Mas-R/nNOS in the cortex are influenced by circulating 17β-EST and (or) PGR, whereas Ang-(1-7) and its pathways in the hippocampal CA1 area are primarily altered by 17β-EST. This suggests that female sex hormones play a role in regulating the expression of Ang-(1-7) and its pathways during ischemic brain injuries.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China.,Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China
| | - Qiaoying Li
- Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China.,Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China
| | - Yidan Zhang
- Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China.,Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China
| | - Quan Wen
- Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China.,Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China
| | - Jianjun Zhao
- Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China.,Department of Neurology, Changchun University of Chinese Medicine, Affiliated Hospital, 1478 Gongnong Road, Changchun, Jilin 130021, China
| |
Collapse
|
11
|
Krejza J, Rudzinski W, Arkuszewski M, Onuoha O, Melhem ER. Cerebrovascular reactivity across the menstrual cycle in young healthy women. Neuroradiol J 2013; 26:413-9. [PMID: 24007729 DOI: 10.1177/197140091302600406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 11/17/2022] Open
Abstract
This study evaluated the relationship of cerebrovascular reactivity in young healthy women with changes in concentrations of circulating ovarian hormones throughout the menstrual cycle. Nineteen healthy nulliparous, right-handed, regularly menstruating women (age 23-25 years) underwent color-coded duplex sonography of the common (CCA), internal (ICA) and external (ECA) carotid arteries on both sides. Mean blood flow velocity values measured before and ten minutes after intravenous administration of 1000 mg acetazolamide (ACE) were assessed in relation to the serum concentration of estrogen and progesterone on days 5, 13 and 26 of the cycle. After ACE administration flow velocity in the right CCA and ICA increased by 23% and 35% on day 5, 12% and 31% on day 13 and 30% and 47% on day 26 respectively, and the changes were significantly larger on the right side (F=6.793 and F=4.098 respectively; both p<0.05). Changes in blood flow velocity in the right CCA and ICA after ACE injection were significantly associated with ovarian hormone concentrations (F=3.828, P=0.028 and F=3.671, P=0.032 respectively). We conclude that cerebrovascular reactivity changes across the menstrual cycle are associated with ovarian steroid hormone changes, and are asymmetric. The results imply that vasculature of the right hemisphere may undergo cyclic vasodilation across the menstrual cycle and this effect should be considered in studies of cerebrovascular reactivity in women with migraine and mood disorders.
Collapse
Affiliation(s)
- J Krejza
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland Medical Center; Baltimore, MD, USA -
| | | | | | | | | |
Collapse
|
12
|
Haast RAM, Gustafson DR, Kiliaan AJ. Sex differences in stroke. J Cereb Blood Flow Metab 2012; 32:2100-7. [PMID: 23032484 PMCID: PMC3519418 DOI: 10.1038/jcbfm.2012.141] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/27/2012] [Accepted: 09/02/2012] [Indexed: 02/08/2023]
Abstract
Sex differences in stroke are observed across epidemiologic studies, pathophysiology, treatments, and outcomes. These sex differences have profound implications for effective prevention and treatment and are the focus of this review. Epidemiologic studies reveal a clear age-by-sex interaction in stroke prevalence, incidence, and mortality. While premenopausal women experience fewer strokes than men of comparable age, stroke rates increase among postmenopausal women compared with age-matched men. This postmenopausal phenomenon, in combination with living longer, are reasons for women being older at stroke onset and suffering more severe strokes. Thus, a primary focus of stroke prevention has been based on sex steroid hormone-dependent mechanisms. Sex hormones affect different (patho)physiologic functions of the cerebral circulation. Clarifying the impact of sex hormones on cerebral vasculature using suitable animal models is essential to elucidate male-female differences in stroke pathophysiology and development of sex-specific treatments. Much remains to be learned about sex differences in stroke as anatomic and genetic factors may also contribute, revealing its multifactorial nature. In addition, the aftermath of stroke appears to be more adverse in women than in men, again based on older age at stroke onset, longer prehospital delays, and potentially, differences in treatment.
Collapse
Affiliation(s)
- Roy A M Haast
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Deborah R Gustafson
- Section for Psychiatry and Neurochemistry, Neuropsychiatric Epidemiology Unit, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Departments of Neurology and Medicine, State University of New York—Downstate Medical Center, Brooklyn, New York, USA
| | - Amanda J Kiliaan
- Department of Anatomy, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Debert CT, Ide K, Poulin MJ. Effects of estrogen and progesterone on cerebrovascular responses to euoxic hypercapnia in women. Climacteric 2011; 15:621-31. [DOI: 10.3109/13697137.2011.631231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Schreihofer DA, Deutsch C, Lovekamp-Swan T, Sullivan JC, Dorrance AM. Effect of high soy diet on the cerebrovasculature and endothelial nitric oxide synthase in the ovariectomized rat. Vascul Pharmacol 2010; 52:236-42. [PMID: 20197113 PMCID: PMC2921790 DOI: 10.1016/j.vph.2010.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/21/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
High soy (HS) diets are neuroprotective and promote vascular dilatation in the periphery. We hypothesized that an HS diet would promote vascular dilatation in the cerebrovasculature by mimicking estradiol's actions on the endothelial nitric oxide synthase (eNOS) system including increasing eNOS expression and decreasing caveolin-1 expression to increase nitric oxide (NO) production. Ovariectomized rats were fed HS or a soy-free diet (SF)+/-low physiological estradiol (E2) for 4weeks. Neither E2 nor HS altered middle cerebral artery (MCA) structure or vascular responses to acetylcholine, serotonin, or phenylephrine. Estradiol enhanced bradykinin-induced relaxation in an eNOS-dependent manner. Although E2 and HS increased eNOS mRNA expression in the brain and cerebrovasculature, they had no effect on eNOS protein expression or phosphorylation in the MCA. However, E2 decreased caveolin-1 protein in the MCA. In MCAs neither E2 nor HS altered estrogen receptor (ER) alpha expression, but E2 did reduce ER beta levels. These data suggest that HS diets have no effect on vascular NO production, and that E2 may modulate basal NO production by reducing the expression of caveolin-1, an allosteric inhibitor of NOS activity. However, the effects of E2 and HS on the cerebrovasculature are small and may not underlie their protective actions in pathological states.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA.
| | | | | | | | | |
Collapse
|
15
|
Schneider C, Jick SS, Meier CR. Risk of cardiovascular outcomes in users of estradiol/dydrogesterone or other HRT preparations. Climacteric 2009; 12:445-53. [DOI: 10.1080/13697130902780853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Huang CY, Fu CY, Tseng JY, Yang TS, Chao KC. The effects of continuous combined oral estradiol and norethisterone on pulsatility index in internal carotid and uterine arteries in early postmenopausal Taiwanese women---a preliminary study. Taiwan J Obstet Gynecol 2009; 48:60-4. [PMID: 19346194 DOI: 10.1016/s1028-4559(09)60037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study analyzed whether continuous combined oral estradiol and norethisterone had any effect on the pulsatility index (PI) of the internal carotid and uterine arteries in Taiwanese early postmenopausal women. MATERIALS AND METHODS A group of 40 healthy postmenopausal women with no history of hormone therapy (HT) participated in this study and were randomly subdivided into two groups: HT treatment group (n = 20) and placebo group (n = 20). PI was evaluated with color Doppler ultrasound at the beginning of the study and after 4 months of HT (2 mg 17beta-estradiol + 1 mg norethisterone acetate) or placebo. RESULTS There was no significant change in the PI of the internal carotid and the uterine arteries after 4 months of HT. CONCLUSION This HT regimen showed no significant negative impact on vascular resistance in Taiwanese early postmenopausal women. Results are compatible with the updated recommendations on HT stating that there is little cardiovascular risk when HT is initiated within a few years of the menopause.
Collapse
Affiliation(s)
- Chen-Yu Huang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Effects of estrogen and progestin on the CO2 sensitivity of hemispheric cerebral blood volume. Menopause 2008; 15:346-51. [PMID: 17975517 DOI: 10.1097/gme.0b013e31813c688d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE High CO2 sensitivity is one of the major characteristics of the cerebrovascular bed. It has been shown to be influenced by many differrent factors (eg, sex hormones). DESIGN The effect of ovariectomy and subsequent female sexual hormone treatment on the steady-state hemispheric cerebral blood volume and CO2 responsiveness of the hemispheric blood vessels was studied on anesthetized, ventilated, normotensive, normoxic rats. Cerebral blood volume was measured with Tomita's photoelectric method with Sandor's modification. RESULTS Steady-state cerebral blood volume values in ovariectomized rats did not differ from those found in control animals. The CO2 responsiveness of hemispheric blood vessels was higher in ovariectomized and progestin-treated, but not estrogen-treated, animals compared with controls. CONCLUSIONS Our results demonstrate that the CO2 sensitivity of the hemispheric vessels is sex hormone dependent. Estrogen and progestin treatment have opposite effects on this cerebral circulatory parameter.
Collapse
|
18
|
Nevo O, Soustiel JF, Thaler I. Cerebral blood flow is increased during controlled ovarian stimulation. Am J Physiol Heart Circ Physiol 2007; 293:H3265-9. [PMID: 17965286 DOI: 10.1152/ajpheart.00633.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen appears to enhance cerebral blood flow (CBF). An association between CBF and physiologically altered hormonal levels due to menstrual cycle, menopause, or exogenous manipulations such as ovariectomy or hormone replacement therapy has been demonstrated. The purpose of this study was to determine the association between ovarian stimulation and CBF in vivo by measuring blood flow in the internal carotid artery (ICA) after pituitary suppression and during controlled ovarian stimulation in women undergoing in vitro fertilization treatment cycles. ICA volume flows were measured by angle-independent dual-beam ultrasound Doppler in 12 women undergoing controlled ovarian stimulation. Measurements were performed after pituitary/ovarian suppression, in the late follicular phase, and at midluteal phase. Blood flow in the ICA increased by 22.2% and 32% in the late follicular and midluteal phases compared with the respective values obtained during ovarian suppression (P < 0.0005 and P < 0.0001, respectively). There was a significant correlation between increments in estrogen levels and increments in CBF when the late follicular phase was compared with the ovarian suppression period (r = 0.8, P < 0.001). Mean blood flow velocity significantly increased (by 15.7% and 16.9%, respectively) and cerebral vascular resistance significantly decreased (by 17.6% and 26.5%) during the late follicular and midluteal phases compared with respective measures during ovarian suppression. There was a significant correlation between an increase in estrogen levels and a decrease in cerebral vascular resistance when the late follicular phase was compared with the ovarian suppression period (r = -0.6, P < 0.05). These changes imply sex hormone-associated intracranial vasodilation leading to increased CBF during controlled ovarian stimulation.
Collapse
Affiliation(s)
- Ori Nevo
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel 31096
| | | | | |
Collapse
|
19
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ostberg JE, Storry C, Donald AE, Attar MJH, Halcox JPJ, Conway GS. A dose-response study of hormone replacement in young hypogonadal women: effects on intima media thickness and metabolism. Clin Endocrinol (Oxf) 2007; 66:557-64. [PMID: 17371475 DOI: 10.1111/j.1365-2265.2007.02772.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Young hypogonadal women appear to have an increased risk of cardiovascular disease. We studied the influence of increasing doses of hormone replacement therapy (HRT) on markers of metabolism and vascular physiology. DESIGN Nine-month sequential dose-ranging study. PATIENTS A total of 25 young hypogonadal women (Turner Syndrome, n = 14; 46,XX gonadal dysgenesis, n = 9), hypogonadotrophic hypogonadism (n = 2), mean age 31.9 years (range 18.5-42.2). All subjects sequentially received oral 17beta-oestradiol 1,2 and 4 mg daily in a cyclical formulation for 12 weeks each. MEASUREMENTS Metabolic markers and vascular physiology measurements to assess intima media thickness (IMT); arterial stiffness: pulse wave velocity (PWV) and augmentation index (AIx); endothelial function: flow-mediated dilatation (FMD). Results Increasing doses of oestrogen resulted in a reduction in IMT (0.63 +/- 0.06 vs. 0.58 +/- 0.06 vs. 0.56 +/- 0.06 mm at 1 mg, 2 mg and 4 mg 17beta-oestradiol, respectively, P = 0.001). RESULTS were similar in women with Turner Syndrome and normal karyotype. High-density lipoprotein (HDL) cholesterol concentrations increased (1.9 +/- 0.4 vs. 2.0 +/- 0.5 vs. 2.2 +/- 0.4 mmol/l, P = 0.001) and plasma glucose (4.8 +/- 0.4 vs. 4.7 +/- 0.3 vs. 4.6 +/- 0.6 mmol/l, P = 0.038) decreased slightly with the increasing dose of HRT. There was no correlation between the changes in IMT and HDL. Increasing HRT dose had no significant impact on blood pressure, weight, other lipid parameters, insulin, C-reactive protein, interleukin-6 and fibrinogen concentrations or FMD, PWV and AIx. CONCLUSIONS Increasing doses of HRT result in a reduction in carotid IMT in young hypogonadal women, along with increased serum HDL and decreased plasma glucose. This study raises the possibility that exogenous oestrogen may be cardioprotective in young women, but this observation needs to be balanced against a prothrombotic effect which is predominant in postmenopausal women.
Collapse
Affiliation(s)
- Julia E Ostberg
- Department of Endocrinology, University College London Hospitals, London, UK
| | | | | | | | | | | |
Collapse
|
21
|
Krause DN, Duckles SP, Pelligrino DA. Influence of sex steroid hormones on cerebrovascular function. J Appl Physiol (1985) 2006; 101:1252-61. [PMID: 16794020 DOI: 10.1152/japplphysiol.01095.2005] [Citation(s) in RCA: 277] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral vasculature is a target tissue for sex steroid hormones. Estrogens, androgens, and progestins all influence the function and pathophysiology of the cerebral circulation. Estrogen decreases cerebral vascular tone and increases cerebral blood flow by enhancing endothelial-derived nitric oxide and prostacyclin pathways. Testosterone has opposite effects, increasing cerebral artery tone. Cerebrovascular inflammation is suppressed by estrogen but increased by testosterone and progesterone. Evidence suggests that sex steroids also modulate blood-brain barrier permeability. Estrogen has important protective effects on cerebral endothelial cells by increasing mitochondrial efficiency, decreasing free radical production, promoting cell survival, and stimulating angiogenesis. Although much has been learned regarding hormonal effects on brain blood vessels, most studies involve young, healthy animals. It is becoming apparent that hormonal effects may be modified by aging or disease states such as diabetes. Furthermore, effects of testosterone are complicated because this steroid is also converted to estrogen, systemically and possibly within the vessels themselves. Elucidating the impact of sex steroids on the cerebral vasculature is important for understanding male-female differences in stroke and conditions such as menstrual migraine and preeclampsia-related cerebral edema in pregnancy. Cerebrovascular effects of sex steroids also need to be considered in untangling current controversies regarding consequences of hormone replacement therapies and steroid abuse.
Collapse
Affiliation(s)
- Diana N Krause
- Department of Pharmacology, School of Medicine, University of California, Irvine, 92697-4625, USA.
| | | | | |
Collapse
|
22
|
Abstract
OBJECTIVE Dramatic shifts in prescription practices during the last 30 years have left physicians confused and uncertain about the use of hormone replacement therapy (HRT) in endometrial cancer survivors. MATERIALS AND METHODS This article reviews the published literature concerning both the safety of prescribing HRT to endometrial cancer survivors and the therapy s potential risks and benefits. RESULTS Prescribing HRT to endometrial cancer survivors does not seem to be contraindicated and may even confer modest protection, depending on the doses and the specific drugs used. The potential benefits of HRT are more conflicting. Although the medical community agrees on the positive effects for bone density and relief of vasomotor symptoms, the results of our review offer no clear consensus in regard to HRT's effects on coronary heart disease, health-related quality of life, cognitive functioning, and cancer incidence. CONCLUSIONS Until the medical community can concur on the proper prescription practices in endometrial cancer survivors, an individualized patient-based approach must be taken.
Collapse
|
23
|
Krejza J, Swiat M. Letters to the Editors. Climacteric 2006; 9:66; author reply 67. [PMID: 16428127 DOI: 10.1080/13697130500487190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Persico N, Mancini F, Artini PG, de Iaco P, Volpe A, de Aloysio D, Battaglia C. Transdermal HRT and Doppler findings in normotensive and hypertensive postmenopausal patients. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2005; 26:546-51. [PMID: 16184506 DOI: 10.1002/uog.2585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVE To evaluate the effects of transdermal hormone replacement therapy (HRT) on plasma viscosity, serum levels of thromboxane B2 (TXB2) and vascular impedance in the uterine, bladder wall, internal carotid and ophthalmic arteries in normotensive and hypertensive postmenopausal patients. METHODS Thirty postmenopausal patients underwent continuous estradiol transdermal supplementation at a dose of 50 microg/day and 12-day courses of medroxyprogesterone acetate 10 mg/day every 2 months. The women were divided into two groups according to their blood pressure: normotensive women (Group 1, n=14) and hypertensive subjects (Group 2, n=16). Before starting HRT and after 6 months of therapy, the patients underwent: transvaginal ultrasonographic examination of the pelvic organs; Doppler examination of the blood flow velocities in the uterine, bladder wall, internal carotid and ophthalmic arteries; and analysis of plasma viscosity and plasma TXB2. RESULTS After 6 months of HRT plasma viscosity had decreased in both groups (mean reduction in Group 1, (14+/-1)%, P=0.005; mean reduction in Group 2, (10+/-1)%, P=0.005) as had the TXB2 levels (mean reduction in Group 1, (93+/-2)%, P<0.001; mean reduction in Group 2, (92+/-3)%, P<0.001). The mean percentage reduction in plasma viscosity was smaller in hypertensive women than in normotensive women (P<0.05). There was also a significant reduction in vascular impedance in the uterine artery (mean reduction in Group 1, (16+/-1)%, P=0.005; mean reduction in Group 2, (19+/-1)%, P=0.005), the bladder wall arteries (mean reduction in Group 1, (23+/-2)%, P=0.005; mean reduction in Group 2, (18+/-1)%, P=0.005), the internal carotid artery (mean reduction in Group 1, (25+/-1)%, P=0.005; mean reduction in Group 2, (26+/-1)%, P=0.005) and the ophthalmic artery (mean reduction in Group 1, (24+/-2)%, P=0.005; mean reduction in Group 2, (16+/-1)%, P=0.005). The percentage reduction in vascular impedance did not differ significantly between the two groups. CONCLUSIONS Our results show that transdermal HRT is effective in reducing plasma viscosity, TXB2 levels and vascular impedance in the peripheral and central vessels both in normotensive and hypertensive postmenopausal patients.
Collapse
Affiliation(s)
- N Persico
- Department of Obstetrics and Gynecology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|