1
|
Pan M, Shi H, Qi T, Cai L, Ge Q. The biological characteristics of long cell-free DNA in spent embryos culture medium as noninvasive biomarker in in-vitro embryo selection. Gene 2024; 927:148667. [PMID: 38857715 DOI: 10.1016/j.gene.2024.148667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
An improved understanding of the cfDNA fragmentomics has proved it as a promising biomarker in clinical applications. However, biological characteristics of cfDNA in spent embryos culture medium (SECM) remain unsolved obstacles before the application in non-invasive in-vitro embryo selection. In this study, we developed a Tn5 transposase and ligase integrated dual-library construction sequencing strategy (TDual-Seq) and revealed the fragmentomic profile of cfDNA of all sizes in early embryonic development. The detected ratio of long cfDNA (>500 bp) was improved from 4.23 % by traditional NGS to 12.80 % by TDual-Seq. End motif analysis showed long cfDNA molecules have a more dominance of fragmentation intracellularly in apoptotic cells with higher predominance of G-end, while shorter cfDNA undergo fragmentation process both intracellularly and extracellularly. Moreover, the mutational pattern of cfDNA and the correlated GO biological process were well differentiated in cleavage and blastocyst embryos. Finally, we developed a multiparametric index (TQI) that employs the fragmentomic profiles of cfDNA, and achieved an area under the ROC curve of 0.927 in screening top quality embryos. TDual-Seq strategy has facilitated characterizing the fragmentomic profile of cfDNA of all sizes in SECM, which are served as a class of non-invasive biomarkers in the evaluation of embryo quality in in-vitro fertilization. And this improved strategy has opened up potential clinical utilities of long cfDNA analysis.
Collapse
Affiliation(s)
- Min Pan
- School of Medicine, Southeast University, Nanjing, China; State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huajuan Shi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ting Qi
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lingbo Cai
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Tian Y, Li M, Yang J, Chen H, Lu D. Preimplantation genetic testing in the current era, a review. Arch Gynecol Obstet 2024; 309:1787-1799. [PMID: 38376520 DOI: 10.1007/s00404-024-07370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements. DEVELOPMENT OF PGT Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome. PURPOSE OF REVIEW In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed. CONCLUSIONS This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.
Collapse
Affiliation(s)
- Yafei Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- MOE Engineering Research Center of Gene Technology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200433, China
| | - Mingan Li
- Center for Reproductive Medicine, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu Province, China
| | - Jingmin Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, 400020, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Daru Lu
- MOE Engineering Research Center of Gene Technology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200433, China.
- NHC Key Laboratory of Birth Defects and Reproductive Health, (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, 400020, China.
| |
Collapse
|
3
|
Mao D, Xu J, Sun L. Impact of trophectoderm biopsy for preimplantation genetic testing on obstetric and neonatal outcomes: a meta-analysis. Am J Obstet Gynecol 2024; 230:199-212.e5. [PMID: 37595823 DOI: 10.1016/j.ajog.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE This study aimed to investigate whether trophectoderm biopsy for preimplantation genetic testing is associated with an increased risk of adverse obstetrical and neonatal outcomes compared with conventional in vitro fertilization or intracytoplasmic sperm injection without preimplantation genetic testing. DATA SOURCES Entries between January 1990 and August 2022 were searched using MEDLINE, Embase, Web of Science, the Cochrane Library, and Google Scholar. STUDY ELIGIBILITY CRITERIA Publications comparing the outcomes of pregnancies after preimplantation genetic testing using trophectoderm biopsy and in vitro fertilization or intracytoplasmic sperm injection were included. Only human studies with a cohort or case-control design or randomized controlled trials were eligible for inclusion. METHODS The study selection process was performed independently by 2 investigators. The quality of the observational studies was assessed using the Newcastle-Ottawa Scale, and the Cochrane risk-of-bias tool version 2 was used to grade the level of bias in randomized controlled trials. The pooled odds ratio and 95% confidence interval were calculated using a random-effects model when substantial heterogeneity occurred (indicated by I2 of >50% and P<.1). Otherwise, a fixed-effects model was used. RESULTS This meta-analysis included 13 studies involving 11,469 live births after preimplantation genetic testing treatment with trophectoderm biopsy before embryo transfer and 20,438 live births after in vitro fertilization or intracytoplasmic sperm injection only. The odds ratio of preterm delivery was higher in the trophectoderm-biopsied group than in the routine in vitro fertilization or intracytoplasmic sperm injection group (pooled odds ratio, 1.12; 95% confidence interval, 1.03-1.21); however, the difference did not exist after sensitivity analysis (odds ratio, 0.97; 95% confidence interval, 0.84-1.11). The risk of low birthweight did not increase among the biopsied pregnancies (pooled odds ratio, 1.01; 95% confidence interval, 0.85-1.20). No marked difference was observed in the risk of other obstetrical or neonatal outcomes between the biopsy and control groups. Furthermore, no difference was noted in the perinatal outcomes between trophectoderm-biopsied and nonbiopsied groups in the subgroup analyses by intracytoplasmic sperm injection, frozen-thawed transfer, or single embryo transfer. CONCLUSION Trophectoderm biopsy for preimplantation genetic testing treatment did not alter the risk of obstetrical or neonatal outcomes compared with conventional in vitro fertilization or intracytoplasmic sperm injection without preimplantation genetic testing. However, this study was limited by the large observational evidence base, and more randomized controlled trials are needed to further confirm these findings.
Collapse
Affiliation(s)
- Di Mao
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Jian Xu
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ling Sun
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou City, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Chen C, Shi H, Niu W, Bao X, Yang J, Jin H, Song W, Sun Y. The preimplantation genetic testing for monogenic disorders strategy for blocking the transmission of hereditary cancers through haplotype linkage analysis by karyomapping. J Assist Reprod Genet 2023; 40:2933-2943. [PMID: 37751120 PMCID: PMC10656414 DOI: 10.1007/s10815-023-02939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
PURPOSE Providing feasible preimplantation genetic testing strategies for monogenic disorders (PGT-M) for prevention and control of genetic cancers. METHODS Inclusion of families with a specific pathogenic mutation or a clear family history of genetic cancers. Identification of the distribution of hereditary cancer-related mutations in families through genetic testing. After a series of assisted reproductive measures such as down-regulation, stimulation, egg retrieval, and in vitro fertilization, a biopsy of trophectoderm cells from a blastocyst was performed for single-cell level whole-genome amplification (WGA). Then, the detection of chromosomal aneuploidies was performed by karyomapping. Construction of a haplotype-based linkage analysis to determine whether the embryo carries the mutation. Meanwhile, we performed CNV testing. Finally, embryos can be selected for transfer, and the results will be verified in 18-22 weeks after pregnancy. RESULTS Six couples with a total of 7 cycles were included in our study. Except for cycle 1 of case 5 which did not result in a transferable embryo, the remaining 6 cycles produced transferable embryos and had a successful pregnancy. Four couples have had amniotic fluid tests to confirm that the fetus does not carry the mutation, while 1 couple was not tested due to insufficient pregnancy weeks. And the remaining couples had to induce labor due to fetal megacystis during pregnancy. CONCLUSION Our strategy has been proven to be feasible. It can effectively prevent transmission of hereditary cancer-related mutations to offspring during the prenatal stage.
Collapse
Affiliation(s)
- Chuanju Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingya Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Cenetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Dokras A, Barlow D. Preimplantation genetic testing for monogenic diseases-bench to bedside reflections. Fertil Steril 2022; 118:849-851. [PMID: 36192232 DOI: 10.1016/j.fertnstert.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Anuja Dokras
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Barlow
- Emeritus Professor, The University of Glasgow, Fellow of Oriel College, Oxford, United Kingdom
| |
Collapse
|
6
|
Ryu J, Statz JP, Chan W, Burch FC, Brigande JV, Kempton B, Porsov EV, Renner L, McGill T, Burwitz BJ, Hanna CB, Neuringer M, Hennebold JD. CRISPR/Cas9 editing of the MYO7A gene in rhesus macaque embryos to generate a primate model of Usher syndrome type 1B. Sci Rep 2022; 12:10036. [PMID: 35710827 PMCID: PMC9203743 DOI: 10.1038/s41598-022-13689-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Mutations in the MYO7A gene lead to Usher syndrome type 1B (USH1B), a disease characterized by congenital deafness, vision loss, and balance impairment. To create a nonhuman primate (NHP) USH1B model, CRISPR/Cas9 was used to disrupt MYO7A in rhesus macaque zygotes. The targeting efficiency of Cas9 mRNA and hybridized crRNA-tracrRNA (hyb-gRNA) was compared to Cas9 nuclease (Nuc) protein and synthetic single guide (sg)RNAs. Nuc/sgRNA injection led to higher editing efficiencies relative to mRNA/hyb-gRNAs. Mutations were assessed by preimplantation genetic testing (PGT) and those with the desired mutations were transferred into surrogates. A pregnancy was established from an embryo where 92.1% of the PGT sequencing reads possessed a single G insertion that leads to a premature stop codon. Analysis of single peripheral blood leukocytes from the infant revealed that half the cells possessed the homozygous single base insertion and the remaining cells had the wild-type MYO7A sequence. The infant showed sensitive auditory thresholds beginning at 3 months. Although further optimization is needed, our studies demonstrate that it is feasible to use CRISPR technologies for creating NHP models of human diseases.
Collapse
Affiliation(s)
- Junghyun Ryu
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - John P Statz
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - William Chan
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- University of Texas Southwestern Medical School, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Fernanda C Burch
- Assisted Reproductive Technologies Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - John V Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Beth Kempton
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Edward V Porsov
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lauren Renner
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Trevor McGill
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Carol B Hanna
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Assisted Reproductive Technologies Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Martha Neuringer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA.
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
7
|
Mamas T, Kakourou G, Vrettou C, Traeger-Synodinos J. Hemoglobinopathies and preimplantation diagnostics. Int J Lab Hematol 2022; 44 Suppl 1:21-27. [PMID: 35443077 DOI: 10.1111/ijlh.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
Hemoglobinopathies constitute some of the most common inherited disorders worldwide. Manifestations are very severe, patient management is difficult and treatment is not easily accessible. Preimplantation genetic testing for monogenic disorders (PGT-M) is a valuable reproductive option for hemoglobinopathy carrier-couples as it precludes the initiation of an affected pregnancy. PGT-M is performed on embryos generated by assisted reproductive technologies and only those found to be free of the monogenic disorder are transferred to the uterus. PGT-M has been applied for 30 years now and β-thalassemia is one of the most common indications. PGT may also be applied for human leukocyte antigen typing to identify embryos that are unaffected and also compatible with an affected sibling in need of hemopoietic stem cell transplantation. PGT-M protocols have evolved from PCR amplification-based, where a small number of loci were analysed, to whole genome amplification-based, the latter increasing diagnostic accuracy, enabling the development of more generic strategies and facilitating multiple diagnoses in one embryo. Currently, numerous PGT-M cycles are performed for the simultaneous diagnosis of hemoglobinopathies and screening for chromosomal abnormalities in the embryo in an attempt to further improve success rates and increase deliveries of unaffected babies.
Collapse
Affiliation(s)
- Thalia Mamas
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Kakourou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
8
|
Chen Y, Gao Y, Jia J, Chang L, Liu P, Qiao J, Tang F, Wen L, Huang J. DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos. J Clin Invest 2021; 131:e146051. [PMID: 34128477 DOI: 10.1172/jci146051] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
The discovery of embryonic cell-free DNA (cfDNA) in spent embryo culture media (SECM) has brought hope for noninvasive preimplantation genetic testing. However, the cellular origins of SECM cfDNA are not sufficiently understood, and methods for determining maternal DNA contamination are limited. Here, we performed whole-genome DNA methylation sequencing for SECM cfDNA. Our results demonstrated that SECM cfDNA was derived from blastocysts, cumulus cells, and polar bodies. We identified the cumulus-specific differentially methylated regions (DMRs) and oocyte/polar body-specific DMRs, and established an algorithm for deducing the cumulus, polar body, and net maternal DNA contamination ratios in SECM. We showed that DNA methylation sequencing accurately detected chromosome aneuploidy in SECM and distinguished SECM samples with low and high false negative rates and gender discordance rates, after integrating the origin analysis. Our work provides insights into the characterization of embryonic DNA in SECM and provides a perspective for noninvasive preimplantation genetic testing in reproductive medicine.
Collapse
Affiliation(s)
- Yidong Chen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Gao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jialin Jia
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Liang Chang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Ping Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China
| | - Jin Huang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, and.,Biomedical Pioneering Innovation Center and Center for Reproductive Medicine, Third Hospital, Peking University, Beijing, China.,Key Laboratory of Assisted Reproduction and Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| |
Collapse
|
9
|
Vitrification yields higher cryo-survival rate than slow freezing in biopsied bovine in vitro produced blastocysts. Theriogenology 2021; 171:44-54. [PMID: 34023618 DOI: 10.1016/j.theriogenology.2021.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/15/2023]
Abstract
Vitrification and slow freezing are the two commonly used embryo cryopreservation methods. In most studies, vitrification of intact embryos has proven superior in several respects, including cell and embryo survival and pregnancy rate. However, there is a lack of data for comparing these two methods in in vitro produced (IVP) bovine blastocysts, which have been subjected to the retrieval of trophectoderm (TE) biopsy. Day 7 IVP blastocysts were pooled and randomized into four groups: 1) non-biopsy (NB), 2) biopsy (B), 3) biopsy-vitrification (BV), 4) biopsy-slow freeze (BSF). The blastocysts in the B, BV, and BSF groups were subjected to TE biopsy. For the B group, this was followed by 5 hours (h) incubation and subsequent scoring of the biopsy-survival (re-expansion) rate before processing for further analyses. For the BV and BSF groups, the biopsy procedure was followed by 2 h incubation, allowing for a quick re-expansion, after which the blastocysts were subjected to vitrification and slow freezing, respectively. After warming and thawing, respectively, they were then incubated for 5 h followed by scoring the cryo-survival (re-expansion) rates before processing for further analyses. These included quantification of ICM and TE cells, cleaved caspase-3- and TUNEL-positive cells, quantitative PCR on cellular stress markers (SOD1 and PRDX1), and ultrastructural analysis. The biopsy-survival rate in the B group was 94% (307/326). The cryo-survival rate in BV (86%, 138/161) was higher than that in BSF (57%, 81/142; P < 0.001). No differences were noted between the average ICM, TE, and total cell numbers of the groups. The percentages of cleaved caspase-3-positive cells were higher in BV vs. NB (P < 0.05), in BSF vs. NB (P < 0.001), and in BSF vs. B (P < 0.001). The percentages of TUNEL-positive cells were higher in BV vs. NB (P < 0.05) and in BSF vs. NB (P < 0.001). The levels of mRNA abundance for SOD1 and PRDX1 in B, BV, and BSF were not different from that in NB. The ultrastructural analysis of blastocysts in the BV and BSF groups showed distension of extracellular spaces and appearance of intracellular vacuoles in the ICM, distension of mitochondria, and disorganization of mitochondrial cristae in both ICM and TE, and weakened tight junctions between adjacent TE cells. In summary, our findings demonstrate that vitrification yields a higher cryo-survival rate than slow freezing in biopsied bovine IVP blastocysts. However, biopsy-vitrification and biopsy-slow-freeze values are comparable in terms of ICM, TE, and total blastocyst cell numbers, as well as cleaved caspase-3- and TUNEL-positive cell rates. Moreover, biopsy and cryopreservation performed alone had no effect on ICM, TE, total blastocyst cell numbers, or TUNEL-positive cell rates. Biopsy and vitrification performed alone had no effect on the cleaved caspase-3 positive cell rates, whereas slow freezing resulted in an increased rate. Furthermore, double traumatization with a combination of biopsy and cryopreservation, either vitrification or slow freezing, resulted in increased rates of cleaved caspase-3- and TUNEL-positive cells.
Collapse
|
10
|
Mai AD, Harton GL, Quang VN, Van HN, Thi NH, Thuy NP, Le Thi TH, Minh DN, Quoc QT. Development and clinical application of a preimplantation genetic testing for monogenic disease (PGT-M) for beta thalassemia in Vietnam. J Assist Reprod Genet 2021; 38:365-374. [PMID: 33216308 PMCID: PMC7884556 DOI: 10.1007/s10815-020-02006-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The purpose of this research is to study the clinical outcomes using a next-generation sequencing-based protocol allowing for simultaneous testing of mutations in the beta thalassemia (HBB) gene, including single nucleotide polymorphism (SNP) markers for PGT-M along with low-pass whole genome analysis of chromosome aneuploidies for PGT-A. METHODS A combined PGT-M (thalassemia) plus PGT-A system was developed for patients undergoing IVF in Vietnam. Here we developed a system for testing numerous thalassemia mutations plus SNP-based testing for backup mutation analysis and contamination control using next-generation sequencing (NGS). Low -pass next-generation sequencing was used to assess aneuploidy in some of the clinical PGT cases. Patients underwent IVF followed by embryo biopsy at the blastocyst stage for combined PGT-A/M. RESULTS Two cases have completed the entire process including transfer of embryos, while a further nine cases have completed the IVF and PGT-M/A analysis but have not completed embryo transfer. In the two cases with embryo transfer, both patients achieved pregnancy with an unaffected, euploid embryo confirmed through prenatal diagnosis. In the further nine cases, 39 embryos were biopsied and all passed QC for amplification. There were 8 unaffected embryos, 31 carrier embryos, and 11 affected embryos. A subset of 24 embryos also had PGT-A analysis with 22 euploid embryos and 2 aneuploid embryos. CONCLUSIONS Here we report the development and clinical application of a combined PGT-M for HBB and PGT-A for gross chromosome aneuploidies from 11 patients with detailed laboratory findings along with 2 cases that have completed embryo transfer.
Collapse
Affiliation(s)
- Anh Dao Mai
- Genetic Testing Service Joint Stock Company, 249A Thuy Khue street, Tay Ho district, Hanoi, Vietnam
| | - Gary L Harton
- PerkinElmer Health Sciences Australia, 40 West Thebarton Rd., Thebarton, SA, 5031, Australia.
| | - Vinh Nguyen Quang
- Genetic Testing Service Joint Stock Company, 249A Thuy Khue street, Tay Ho district, Hanoi, Vietnam
| | - Huynh Nguyen Van
- Genetic Testing Service Joint Stock Company, 249A Thuy Khue street, Tay Ho district, Hanoi, Vietnam
| | - Nhung Hoang Thi
- Genetic Testing Service Joint Stock Company, 249A Thuy Khue street, Tay Ho district, Hanoi, Vietnam
| | - Nga Pham Thuy
- Reproductive Health Assistant and Andrology Department, Hanoi Obstetrics &Gynecology Hospital, 929 La Thanh street, Ngoc Khanh ward, Ba Dinh district, Hanoi, Vietnam
| | - Thu Hien Le Thi
- Andrology and Fertility Hospital of Hanoi, 431 Tam Trinh street, Hoang Mai district, Hanoi, Vietnam
| | - Duc Nguyen Minh
- Andrology and Fertility Hospital of Hanoi, 431 Tam Trinh street, Hoang Mai district, Hanoi, Vietnam
| | - Quan Tran Quoc
- Genetic Testing Service Joint Stock Company, 249A Thuy Khue street, Tay Ho district, Hanoi, Vietnam
| |
Collapse
|
11
|
Abstract
Approximately 50% of the causes of infertility are of genetic origin. The objective of this study was to analyze the role of genetics in human reproduction by reviewing the main genetic causes of infertility and the use of preimplantation genetic testing in Brazil. This literature review comprised articles in English and Portuguese published on databases PubMed, Scielo, and Bireme from 1990 to 2019. Randomized clinical trials and specialized guidelines were given preference whenever possible. Genetic cause can be traced back to up to 20% of the cases of severe azoospermia or oligozoospermia. Subjects with these conditions are good candidates for genetic screening. In women, genetic causes of infertility (fragile X syndrome, X-trisomy, and Turner's syndrome, some of which diagnosed with karyotyping) culminate with premature ovarian failure. Genetic screening helps advise couples of the risk of experiencing early reproductive capacity loss and of the chances of their offspring carrying genetic disorders. In addition to enhancing the prevention of serious diseases in the offspring of couples at increased risk of genetic diseases, preimplantation genetic screening improves the success rates of assisted reproduction procedures by allowing the selection of euploid embryos for transfer. The interface between genetics and human reproduction has gained significant relevance, but discussions are still needed on which procedures are clinically and ethically acceptable and how they should be regulated.
Collapse
Affiliation(s)
| | - Fernanda Polisseni
- Surgery Department, Medical School - Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | |
Collapse
|
12
|
Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update 2020; 26:16-42. [PMID: 31774124 DOI: 10.1093/humupd/dmz033] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preimplantation genetic testing (PGT) encompasses methods that allow embryos to be tested for severe inherited conditions or for chromosome abnormalities, relevant to embryo health and viability. In order to obtain embryonic genetic material for analysis, a biopsy is required, involving the removal of one or more cells. This invasive procedure greatly increases the costs of PGT and there have been concerns that embryo viability could be compromised in some cases. The recent discovery of DNA within the blastocoele fluid (BF) of blastocysts and in spent embryo culture media (SCM) has led to interest in the development of non-invasive methods of PGT (niPGT). OBJECTIVE AND RATIONALE This review evaluates the current scientific evidence regarding non-invasive genetic assessment of preimplantation embryos. The success of different PGT methodologies in collecting and analysing extra-embryonic DNA is evaluated, and consideration is given to the potential biological and technical hindrances to obtaining a reliable clinical diagnosis. SEARCH METHODS Original research and review papers concerning niPGT were sourced by searching PubMed and Google Scholar databases until July 2019. Searches comprised the keywords: 'non-invasive'; 'cell-free DNA'; 'blastocentesis'; 'blastocoel fluid'; 'spent culture media'; 'embryo culture medium'; 'preimplantation genetic testing'; 'preimplantation genetic diagnosis'; 'preimplantation genetic screening'; and 'aneuploidy'. OUTCOMES Embryonic DNA is frequently detectable in BF and SCM of embryos produced during IVF treatment. Initial studies have achieved some success when performing cytogenetic and molecular genetic analysis. However, in many cases, the efficiency has been restricted by technical complications associated with the low quantity and quality of the DNA. Reported levels of ploidy agreement between SCM/BF samples and biopsied embryonic cells vary widely. In some cases, a discrepancy with respect to cytogenetic data obtained after trophectoderm biopsy may be attributable to embryonic mosaicism or DNA contamination (usually of maternal origin). Some research indicates that aneuploid cells are preferentially eliminated from the embryo, suggesting that their DNA might be over-represented in SCM and BF samples; this hypothesis requires further investigation. WIDER IMPLICATIONS Available data suggest that BF and SCM samples frequently provide DNA templates suitable for genetic analyses, offering a potential means of PGT that is less expensive than traditional methods, requires less micromanipulation skill and poses a lower risk to embryos. Critically, DNA isolation and amplification protocols must be optimised to reproducibly obtain an accurate clinical diagnosis, whilst minimising the impact of confounding factors such as contamination. Further investigations are required to understand the mechanisms underlying the release of embryonic DNA and to determine the extent to which this material reflects the true genetic status of the corresponding embryo. Currently, the clinic al potential of niPGT remains unknown.
Collapse
Affiliation(s)
- Megan Leaver
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.,Juno Genetics, Winchester House, Heatley Road, Oxford Science Park, Oxford OX4 4GE, UK
| |
Collapse
|
13
|
Abstract
Importance Preimplantation genetic testing for aneuploidy (PGT-A) has undergone many technical developments over recent years, including changes in biopsy timings, methodology, and genetic analysis techniques. The evidence surrounding the efficaciousness of PGT-A is sporadic and inconsistent; as such, significant doubt and concern remain regarding its widespread implementation. Objective This review seeks to describe the historical development of PGT-A and to analyze and summarize the current published literature. Conclusions At times during its infancy, PGT-A failed to display conclusive improvements in results; with newer technologies, PGT-A appears to yield superior outcomes, including reductions in miscarriages and multiple gestations. Clinicians and patients should assess the use of PGT-A on a case-by-case basis, with laboratories encouraged to utilize blastocyst biopsy and next-generation sequencing when conducting PGT-A. Further studies providing cumulative live birth rates and time to live birth are required if PGT-A is to be proven as producing superior outcomes. Relevance PGT-A has the potential ability to impact in vitro fertilization success rates, and as it is increasingly adopted worldwide, it is crucial that clinicians are aware of the evidence for its continued use.
Collapse
|
14
|
Esmaeili M, Bazrgar M, Gourabi H, Ebrahimi B, Boroujeni PB, Fakhri M. Noninvasive sexing of human preimplantation embryos using RT-PCR in the spent culture media: A proof-of-concept study. Eur J Obstet Gynecol Reprod Biol 2020; 252:89-93. [PMID: 32590167 DOI: 10.1016/j.ejogrb.2020.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Preimplantation genetic testing (PGT) routinely requires biopsy which is an invasive approach. The aim of this study was to examine a noninvasive approach for sexing of preimplantation embryos using polymerase chain reaction (PCR)/reverse transcriptase-PCR (RT-PCR) based on the presence of SRY DNA/RNA in the spent culture medium. Two groups were evaluated: in group 1, 40 embryos of routine PGT volunteers were cultured individually after biopsy and in group 2, 31 embryos were cultured individually until Day-5 post-fertilization. Each group was further divided into three subgroups: RNA extraction (RE), nucleic acid (NA) and DNase treated (DT). In the NA and DT subgroups, cDNA synthesis was performed directly on culture medium with or without DNase treatment in DT and NA subgroups, respectively. The results of sexing based on the PCR/RT-PCR in the culture medium, were compared with the results of sexing by fluorescence in situ hybridization (FISH) technique. In group 1, all samples were correctly diagnosed. In group 2, five female samples were misdiagnosed. Test's sensitivity, specificity and accuracy were 100 %, 94.44 % and 96.88 %, in RE, 100 %, 81.82 % and 93.55 % in DT and 100 %, 71.43 % and 85.71 % in NA, respectively. Preimplantation sexing without embryo biopsy, in the spent embryo culture media using RNA amplification based methods including RE and DT seem to be more reliable while nucleic acid based method, NA, led to the highest misdiagnoses probably due to DNA contamination. Since all male samples were correctly diagnosed in all subgroups of this preliminary study, preimplantation noninvasive sexing on culture medium seems feasible, however all sources of nucleic acid contamination must be carefully avoided.
Collapse
Affiliation(s)
- Mahnaz Esmaeili
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, Department of Genetics, University of Science and Culture, ACECR, Tehran, Iran
| | - Masood Bazrgar
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parnaz Borjian Boroujeni
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mostafa Fakhri
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
15
|
Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod Biomed Online 2020; 40:779-796. [PMID: 32417199 DOI: 10.1016/j.rbmo.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
Abstract
Preimplantation genetic testing (PGT) is increasingly used worldwide. It currently entails the use of invasive techniques, i.e. polar body, blastomere, trophectoderm biopsy or blastocentesis, to obtain embryonic DNA, with major technical limitations and ethical issues. Evidence suggests that invasive PGT can lead to genetic misdiagnosis in the case of embryo mosaicism, and, consequently, to the selection of affected embryos for implantation or to the destruction of healthy embryos. Recently, spent culture medium (SCM) has been proposed as an alternative source of embryonic DNA. An increasing number of studies have reported the detection of cell-free DNA in SCM and highlighted the diagnostic potential of non-invasive SCM-based PGT for assessing the genetic status of preimplantation human embryos obtained by IVF. The reliability of this approach for clinical applications, however, needs to be determined. In this systematic review, published evidence on non-invasive SCM-based PGT is presented, and its current benefits and limitations compared with invasive PGT. Then, ways of optimizing and standardizing procedures for non-invasive SCM-based PGT to prevent technical biases and to improve performance in future studies are discussed. Finally, clinical perspectives of non-invasive PGT are presented and its future applications in reproductive medicine highlighted.
Collapse
Affiliation(s)
- Sophie Brouillet
- Université Grenoble-Alpes, Inserm 1036, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et Biotechnologies de Grenoble (BIG), Laboratoire Biologie du Cancer et de l'Infection (BCI), Grenoble 38000, France; Centre Hospitalier Universitaire de Grenoble, Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation- Centre d'étude et de conservation des œufs et du sperme humains (CECOS), La Tronche 38700, France; INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France
| | - Guillaume Martinez
- Université Grenoble-Alpes, Inserm, Institute for Advanced Biosciences (IAB), équipe Génétique Epigénétique et Thérapie de l'Infertilité (GETI), Grenoble 38000, France; Centre Hospitalier Universitaire de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Laboratoire de Génétique Chromosomique, La Tronche 38700, France
| | - Charles Coutton
- Université Grenoble-Alpes, Inserm, Institute for Advanced Biosciences (IAB), équipe Génétique Epigénétique et Thérapie de l'Infertilité (GETI), Grenoble 38000, France; Centre Hospitalier Universitaire de Grenoble, Hôpital Couple Enfant, Département de Génétique et Procréation, Laboratoire de Génétique Chromosomique, La Tronche 38700, France
| | - Samir Hamamah
- INSERM U1203, Equipe "Développement Embryonnaire Précoce Humain et Pluripotence", Institut de Médecine Régénératrice et de Biothérapie, Hôpital Saint-Eloi, Montpellier 34295, France; CHU Montpellier, ART/PGD Division, Hôpital Arnaud de Villeneuve, Montpellier, Cedex 5, Montpellier 34295, France.
| |
Collapse
|
16
|
Verpoest W, Staessen C, Bossuyt PM, Goossens V, Altarescu G, Bonduelle M, Devesa M, Eldar-Geva T, Gianaroli L, Griesinger G, Kakourou G, Kokkali G, Liebenthron J, Magli MC, Parriego M, Schmutzler AG, Tobler M, van der Ven K, Geraedts J, Sermon K. Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: a randomized clinical trial. Hum Reprod 2019; 33:1767-1776. [PMID: 30085138 DOI: 10.1093/humrep/dey262] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 07/12/2018] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does preimplantation genetic testing for aneuploidy (PGT-A) by comprehensive chromosome screening (CCS) of the first and second polar body to select embryos for transfer increase the likelihood of a live birth within 1 year in advanced maternal age women aged 36-40 years planning an ICSI cycle, compared to ICSI without chromosome analysis? SUMMARY ANSWER PGT-A by CCS in the first and second polar body to select euploid embryos for transfer does not substantially increase the live birth rate in women aged 36-40 years. WHAT IS KNOWN ALREADY PGT-A has been used widely to select embryos for transfer in ICSI treatment, with the aim of improving treatment effectiveness. Whether PGT-A improves ICSI outcomes and is beneficial to the patients has remained controversial. STUDY DESIGN, SIZE, DURATION This is a multinational, multicentre, pragmatic, randomized clinical trial with intention-to-treat analysis. Of 396 women enroled between June 2012 and December 2016, 205 were allocated to CCS of the first and second polar body (study group) as part of their ICSI treatment cycle and 191 were allocated to ICSI treatment without chromosome screening (control group). Block randomization was performed stratified for centre and age group. Participants and clinicians were blinded at the time of enrolment until the day after intervention. PARTICIPANTS/MATERIALS, SETTING, METHODS Infertile couples in which the female partner was 36-40 years old and who were scheduled to undergo ICSI treatment were eligible. In those assigned to PGT-A, array comparative genomic hybridization (aCGH) analysis of the first and second polar bodies of the fertilized oocytes was performed using the 24sure array of Illumina. If in the first treatment cycle all oocytes were aneuploid, a second treatment with PB array CGH was offered. Participants in the control arm were planned for ICSI without PGT-A. Main exclusion criteria were three or more previous unsuccessful IVF or ICSI cycles, three or more clinical miscarriages, poor response or low ovarian reserve. The primary outcome was the cumulative live birth rate after fresh or frozen embryo transfer recorded over 1 year after the start of the intervention. MAIN RESULTS AND THE ROLE OF CHANCE Of the 205 participants in the chromosome screening group, 50 (24%) had a live birth with intervention within 1 year, compared to 45 of the 191 in the group without intervention (24%), a difference of 0.83% (95% CI: -7.60 to 9.18%). There were significantly fewer participants in the chromosome screening group with a transfer (relative risk (RR) = 0.81; 95% CI: 0.74-0.89) and fewer with a miscarriage (RR = 0.48; 95% CI: 0.26-0.90). LIMITATIONS, REASONS FOR CAUTION The targeted sample size was not reached because of suboptimal recruitment; however, the included sample allowed a 90% power to detect the targeted increase. Cumulative outcome data were limited to 1 year. Only 11 patients out of 32 with exclusively aneuploid results underwent a second treatment cycle in the chromosome screening group. WIDER IMPLICATIONS OF THE FINDINGS The observation that the similarity in birth rates was achieved with fewer transfers, less cryopreservation and fewer miscarriages points to a clinical benefit of PGT-A, and this form of embryo selection may, therefore, be considered to minimize the number of interventions while producing comparable outcomes. Whether these benefits outweigh drawbacks such as the cost for the patient, the higher workload for the IVF lab and the potential effect on the children born after prolonged culture and/or cryopreservation remains to be shown. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the European Society of Human Reproduction and Embryology. Illumina provided microarrays and other consumables necessary for aCGH testing of polar bodies. M.B.'s institution (UZBrussel) has received educational grants from IBSA, Ferring, Organon, Schering-Plough, Merck and Merck Belgium. M.B. has received consultancy and speakers' fees from Organon, Serono Symposia and Merck. G.G. has received personal fees and non-financial support from MSD, Ferring, Merck-Serono, Finox, TEVA, IBSA, Glycotope, Abbott and Gedeon-Richter as well as personal fees from VitroLife, NMC Healthcare, ReprodWissen, BioSilu and ZIVA. W.V., C.S., P.M.B., V.G., G.A., M.D., T.E.G., L.G., G.Ka., G.Ko., J.L., M.C.M., M.P., A.S., M.T., K.V., J.G. and K.S. declare no conflict of interest. TRIAL REGISTRATION NUMBER NCT01532284. TRIAL REGISTRATION DATE 7 February 2012. DATE OF FIRST PATIENT’S ENROLMENT 25 June 2012.
Collapse
Affiliation(s)
- Willem Verpoest
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Belgium.,Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Catherine Staessen
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, Brussels, Belgium
| | - Patrick M Bossuyt
- Academisch Medisch Centrum, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Veerle Goossens
- The European Society of Human Reproduction and Embryology, Meerstraat 60, Grimbergen, Belgium
| | - Gheona Altarescu
- Shaare-Zedek Medical Center, The Hebrew University School of Medicine, 2 Bayit Street, Jerusalem, Israël
| | - Maryse Bonduelle
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.,Centre for Medical Genetics, UZ Brussel, Laarbeeklaan, Belgium
| | - Martha Devesa
- Hospital Univeritario Dexeus, Department of Obstetrics, Gynaecolgy and Reproduction, Gran Via de Carles III 71-74, Barcelona, Spain
| | - Talia Eldar-Geva
- Shaare-Zedek Medical Center, The Hebrew University School of Medicine, 2 Bayit Street, Jerusalem, Israël
| | - Luca Gianaroli
- SISMER, Reproductive Medicine Unit, Via Mazzini 12, Bologna, Italy
| | - Georg Griesinger
- University Hospital of Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, Lübeck, Germany
| | - Georgia Kakourou
- Department of Medical Genetics, National and Kapodistrian University of Athens, 'Aghia Sophia' Children's Hospital, 75 Mikras Asias str., Goudi, Athens, Greece
| | - Georgia Kokkali
- Genesis Athens Clinic, Reproductive Medicine Unit, Papanikoli 14-16, Chalandri, Athens, Greece
| | - Jana Liebenthron
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | | | - Monica Parriego
- Hospital Univeritario Dexeus, Department of Obstetrics, Gynaecolgy and Reproduction, Gran Via de Carles III 71-74, Barcelona, Spain
| | - Andreas G Schmutzler
- Women's Hospital, Christian-Albrechts-University, Christian-Albrechts-Platz 4, Kiel, Germany.,Gyn-medicum, Centre for Reproductive Medicine, Waldweg 5, 37073 Goettingen, Germany
| | - Monica Tobler
- Gyn-medicum, Centre for Reproductive Medicine, Waldweg 5, 37073 Goettingen, Germany
| | - Katrin van der Ven
- Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Joep Geraedts
- Department of Genetics and Cell Biology, Maastricht University Medical Center, P. Debyelaan 25, Maastricht, The Netherlands
| | - Karen Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| |
Collapse
|
17
|
Trounson A. Development of in vitro fertilization in Australia. Fertil Steril 2018; 110:19-24. [DOI: 10.1016/j.fertnstert.2018.02.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 10/28/2022]
|
18
|
Sullivan-Pyke C, Dokras A. Preimplantation Genetic Screening and Preimplantation Genetic Diagnosis. Obstet Gynecol Clin North Am 2018; 45:113-125. [DOI: 10.1016/j.ogc.2017.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Chen HH, Huang CC, Cheng EH, Lee TH, Chien LF, Lee MS. Optimal timing of blastocyst vitrification after trophectoderm biopsy for preimplantation genetic screening. PLoS One 2017; 12:e0185747. [PMID: 28982142 PMCID: PMC5628850 DOI: 10.1371/journal.pone.0185747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
Is the timing of vitrification after trophectoderm (TE) biopsy associated with successful implantation and pregnancy after the embryo transfer of blastocysts subjected to preimplantation genetic screening (PGS)? In this retrospective cohort study, 1329 blastocysts from 223 patients were subjected to TE biopsy for performing array comparative genomic hybridization (CGH) tests. The PGS and frozen blastocyst transfer (FET) cycles were performed from December 2012 to May 2015. Only the good quality and expanded blastocysts on day 5 or 6 were selected for biopsy. After TE biopsy, the re-expansion grades relative to the original blastocoel were (1) collapsed blastocysts (CB), (2) 3/4 re-expansion but not full expansion (RE), and (3) full re-expansion or hatching (FE). All biopsied blastocysts were subjected to vitrification within 0.5-6 h after biopsy; the time intervals between TE biopsy and vitrification and the expansion grades at the time of vitrification were recorded. By combining two factors, namely the expansion grades and culture intervals between biopsy and vitrification, the patients were further divided into four groups, namely CB with a < 3 h culture interval (n = 34 cycles, Group I), RE and FE blastocysts with a < 3 h culture interval (n = 10 cycles, Group II); CB blastocysts with a ≥ 3 h culture interval (n = 6 cycles, Group III); and RE or FE blastocysts with a ≥ 3 h culture interval (n = 173 cycles, Group IV). The implantation (63.7%, 179/281) and clinical pregnancy (74.0%, 128/173) rates in Group IV were significantly higher than those in Group I (45.3%, 24/53; 50.0%, 17/34; P = 0.012 and 0.005, respectively). According to our findings, optimal vitrification timing > 3 hours to enable blastocysts to reach RE or FE provides improved implantation and pregnancy rates after FET. TRIAL REGISTRATION ClinicalTrials.gov NCT03065114.
Collapse
Affiliation(s)
- Hsiu-Hui Chen
- Division of Infertility, Lee Women’s Hospital, Taichung, Taiwan
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Chia Huang
- Division of Infertility, Lee Women’s Hospital, Taichung, Taiwan
| | - En-Hui Cheng
- Division of Infertility, Lee Women’s Hospital, Taichung, Taiwan
| | - Tsung-Hsien Lee
- Division of Infertility, Lee Women’s Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lee-Feng Chien
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (MSL); (LFC)
| | - Maw-Sheng Lee
- Division of Infertility, Lee Women’s Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (MSL); (LFC)
| |
Collapse
|
20
|
Dimitriadou E, Melotte C, Debrock S, Esteki MZ, Dierickx K, Voet T, Devriendt K, de Ravel T, Legius E, Peeraer K, Meuleman C, Vermeesch JR. Principles guiding embryo selection following genome-wide haplotyping of preimplantation embryos. Hum Reprod 2017; 32:687-697. [PMID: 28158716 DOI: 10.1093/humrep/dex011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION How to select and prioritize embryos during PGD following genome-wide haplotyping? SUMMARY ANSWER In addition to genetic disease-specific information, the embryo selected for transfer is based on ranking criteria including the existence of mitotic and/or meiotic aneuploidies, but not carriership of mutations causing recessive disorders. WHAT IS KNOWN ALREADY Embryo selection for monogenic diseases has been mainly performed using targeted disease-specific assays. Recently, these targeted approaches are being complemented by generic genome-wide genetic analysis methods such as karyomapping or haplarithmisis, which are based on genomic haplotype reconstruction of cell(s) biopsied from embryos. This provides not only information about the inheritance of Mendelian disease alleles but also about numerical and structural chromosome anomalies and haplotypes genome-wide. Reflections on how to use this information in the diagnostic laboratory are lacking. STUDY DESIGN, SIZE, DURATION We present the results of the first 101 PGD cycles (373 embryos) using haplarithmisis, performed in the Centre for Human Genetics, UZ Leuven. The questions raised were addressed by a multidisciplinary team of clinical geneticist, fertility specialists and ethicists. PARTICIPANTS/MATERIALS, SETTING, METHODS Sixty-three couples enrolled in the genome-wide haplotyping-based PGD program. Families presented with either inherited genetic variants causing known disorders and/or chromosomal rearrangements that could lead to unbalanced translocations in the offspring. MAIN RESULTS AND THE ROLE OF CHANCE Embryos were selected based on the absence or presence of the disease allele, a trisomy or other chromosomal abnormality leading to known developmental disorders. In addition, morphologically normal Day 5 embryos were prioritized for transfer based on the presence of other chromosomal imbalances and/or carrier information. LIMITATIONS, REASONS FOR CAUTION Some of the choices made and principles put forward are specific for cleavage-stage-based genetic testing. The proposed guidelines are subject to continuous update based on the accumulating knowledge from the implementation of genome-wide methods for PGD in many different centers world-wide as well as the results of ongoing scientific research. WIDER IMPLICATIONS OF THE FINDINGS Our embryo selection principles have a profound impact on the organization of PGD operations and on the information that is transferred among the genetic unit, the fertility clinic and the patients. These principles are also important for the organization of pre- and post-counseling and influence the interpretation and reporting of preimplantation genotyping results. As novel genome-wide approaches for embryo selection are revolutionizing the field of reproductive genetics, national and international discussions to set general guidelines are warranted. STUDY FUNDING/COMPETING INTEREST(S) The European Union's Research and Innovation funding programs FP7-PEOPLE-2012-IAPP SARM: 324509 and Horizon 2020 WIDENLIFE: 692065 to J.R.V., T.V., E.D. and M.Z.E. J.R.V., T.V. and M.Z.E. have patents ZL910050-PCT/EP2011/060211-WO/2011/157846 ('Methods for haplotyping single cells') with royalties paid and ZL913096-PCT/EP2014/068315-WO/2015/028576 ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies') with royalties paid, licensed to Cartagenia (Agilent technologies). J.R.V. also has a patent ZL91 2076-PCT/EP20 one 3/070858 ('High throughout genotyping by sequencing') with royalties paid. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Eftychia Dimitriadou
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| | - Cindy Melotte
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Debrock
- University Hospitals Leuven, Leuven University Fertility Center, Herestraat 49, 3000 Leuven, Belgium
| | - Masoud Zamani Esteki
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| | - Kris Dierickx
- Centre for Biomedical Ethics and Law, KU Leuven, 3000 Leuven, Belgium
| | - Thierry Voet
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium.,Single-cell Genomics Centre, Welcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Koen Devriendt
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| | - Thomy de Ravel
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| | - Karen Peeraer
- University Hospitals Leuven, Leuven University Fertility Center, Herestraat 49, 3000 Leuven, Belgium
| | - Christel Meuleman
- University Hospitals Leuven, Leuven University Fertility Center, Herestraat 49, 3000 Leuven, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Centre for Human Genetics, University Hospitals Leuven, O&N I Herestraat 49 - box 602, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Abstract
Preimplantation genetic diagnosis was first successfully performed in 1989 as an alternative to prenatal diagnosis for couples at risk of transmitting a genetic or chromosomal abnormality, such as cystic fibrosis, to their child. From embryos generated in vitro, biopsied cells are genetically tested. From the mid-1990s, this technology has been employed as an embryo selection tool for patients undergoing in vitro fertilisation, screening as many chromosomes as possible, in the hope that selecting chromosomally normal embryos will lead to higher implantation and decreased miscarriage rates. This procedure, preimplantation genetic screening, was initially performed using fluorescent in situ hybridisation, but 11 randomised controlled trials of screening using this technique showed no improvement in in vitro fertilisation delivery rates. Progress in genetic testing has led to the introduction of array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing for preimplantation genetic screening, and three small randomised controlled trials of preimplantation genetic screening using these new techniques indicate a modest benefit. Other trials are still in progress but, regardless of their results, preimplantation genetic screening is now being offered globally. In the near future, it is likely that sequencing will be used to screen the full genetic code of the embryo.
Collapse
Affiliation(s)
- Joyce C Harper
- Joyce Harper, Embryology, IVF and Reproductive Genetics Group, Institute for Women's Health, University College London, London, UK
| |
Collapse
|
22
|
Liu W, Liu J, Du H, Ling J, Sun X, Chen D. Non-invasive pre-implantation aneuploidy screening and diagnosis of beta thalassemia IVSII654 mutation using spent embryo culture medium. Ann Med 2017; 49:319-328. [PMID: 27786563 DOI: 10.1080/07853890.2016.1254816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cell-free nuclear DNA has been isolated from spent embryo culture medium. Whether this small amount of DNA can be amplified at the whole genome level and the concordance rate of karyotypes and specific alleles between biopsied cells and media has not been evaluated. METHODS Seven couples were recruited, 88 donated embryos and their corresponding media were collected for whole genome amplification (WGA). The efficiency of WGA, the concordance of chromosome status, and the HBB gene IVSII654 allele between biopsied cells and media were investigated. RESULTS After WGA, the DNA detection rate was 90.90% with a mean concentration of 26.15 ng/μl. The full chromosome concordance rate between biopsied cells and medium was 64.52%, and it increased to 90.00% for diploid blastocyst samples. Analysis of the mutated IVSII654 locus and SNP linkage verified that the DNA present in the medium originated from embryonic cells. CONCLUSION We confirmed that nuclear DNA is present in spent culture medium and that the majority of this DNA can be amplified for subsequent analysis. Our results showed that non-invasive embryo genetic testing at the chromosomal-level using medium can concordant to the biopsied cells, but it needs further optimized before use in clinical applications. KEY MESSAGES The aggressive biopsy step during PGD/PGS procedure would have a negative effect on the future development of the embryo. Cell-free nuclear DNA has been observed in spent embryo culture medium, which holds promise for the development of non-invasive PGD/PGS approaches. The presence of DNA in medium, its efficiency for WGA, and the concordance between chromosome status and the HBB gene IVSII654 allele as diagnosed from biopsied cells or medium were investigated. Non-invasive embryo genetic testing at the chromosomal-level and allele site using medium can concordant to the biopsied cells, but it needs further optimized before use in clinical applications.
Collapse
Affiliation(s)
- WeiQiang Liu
- a Department of Clinical Laboratory of Gynecology and Obstetrics, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province , Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , PR China
| | - JianQiao Liu
- b Department of Reproductive Medicine , Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , PR China
| | - HongZi Du
- b Department of Reproductive Medicine , Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , PR China
| | - JiaWei Ling
- b Department of Reproductive Medicine , Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , PR China
| | - XiaoFang Sun
- a Department of Clinical Laboratory of Gynecology and Obstetrics, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province , Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , PR China
| | - DunJin Chen
- a Department of Clinical Laboratory of Gynecology and Obstetrics, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province , Third Affiliated Hospital of Guangzhou Medical University , Guangzhou , PR China
| |
Collapse
|
23
|
Liu W, Zhang H, Hu D, Lu S, Sun X. The performance of MALBAC and MDA methods in the identification of concurrent mutations and aneuploidy screening to diagnose beta-thalassaemia disorders at the single- and multiple-cell levels. J Clin Lab Anal 2017; 32. [PMID: 28548214 DOI: 10.1002/jcla.22267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/27/2017] [Indexed: 11/07/2022] Open
Abstract
AIM To select an optimal whole-genome amplification (WGA) method to improve the efficiency of the preimplantation genetic diagnosis and screening (PGD/PGS) of beta-thalassaemia disorders. METHODS Fifty-seven fibroblast samples with defined beta-thalassaemia variations and forty-eight single-blastomere samples were amplified from single-, two-, and five-cell samples by multiple annealing and looping-based amplification cycles (MALBAC) and the multiple displacement amplification (MDA) method. Low-depth, high-throughput sequencing was performed to evaluate and compare the coefficiencies of the chromosomal copy number variation (CNV) detection rate and the allele dropout (ADO) rate between these two methods. RESULTS At the single-cell level, the success rates of the CNV detection in the fibroblast samples were 100% in the MALBAC group and 91.67% in the MDA group; the coefficient of variation in the CNV detection in the MALBAC group was significantly superior to that in the MDA group (0.15 vs 0.37). The total ADO rate in the HBB allele detection was 4.55% in the MALBAC group, which was significantly lower than the 22.5% rate observed in the MDA group. However, when five or more cells were used as the starting template, the ADO rate significantly decreased, and these two methods did not differ significantly. CONCLUSIONS For the genetic diagnosis of HBB gene variation at the single-cell level, MALBAC is a more suitable method due to its higher level of uniformity and specificity. When five or more cells are used as the starting template, both methods exhibit similar efficiency, increased accuracy, and a similar success rate in PGD/PGS.
Collapse
Affiliation(s)
- WeiQiang Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - HuiMin Zhang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dan Hu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - SiJia Lu
- Yikon Genomics Co. Ltd., Jiangsu, China
| | - XiaoFang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Pre-implantation genetic diagnosis. Best Pract Res Clin Obstet Gynaecol 2017; 39:74-88. [DOI: 10.1016/j.bpobgyn.2016.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
|
25
|
Clinical application of next-generation sequencing in preimplantation genetic diagnosis cycles for Robertsonian and reciprocal translocations. J Assist Reprod Genet 2016; 33:899-906. [PMID: 27167073 DOI: 10.1007/s10815-016-0724-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE The purpose of this study was to apply next-generation sequencing (NGS) technology to identify chromosomally normal embryos for transfer in preimplantation genetic diagnosis (PGD) cycles for translocations. METHODS A total of 21 translocation couples with a history of infertility and repeated miscarriage presented at our PGD clinic for 24-chromosome embryo testing using copy number variation sequencing (CNV-Seq). RESULTS Testing of 98 embryo samples identified 68 aneuploid (69.4 %) and 30 (30.6 %) euploid embryos. Among the aneuploid embryos, the most common abnormalities were segmental translocation imbalances, followed by whole autosomal trisomies and monosomies, segmental imbalances of non-translocation chromosomes, and mosaicism. In all unbalanced embryos resulting from reciprocal translocations, CNV-Seq precisely identified both segmental imbalances, extending from the predicted breakpoints to the chromosome termini. From the 21 PGD cycles, eight patients had all abnormal embryos and 13 patients had at least one normal/balanced and euploid embryo available for transfer. In nine intrauterine transfer cycles, seven healthy babies have been born. In four of the seven children tested at 18 weeks gestation, the karyotypes matched with the original PGD results. CONCLUSION In clinical PGD translocation cycles, CNV-Seq displayed the hallmarks of a comprehensive diagnostic technology for high-resolution 24-chromosome testing of embryos, capable of identifying true euploid embryos for transfer.
Collapse
|
26
|
Cimadomo D, Capalbo A, Ubaldi FM, Scarica C, Palagiano A, Canipari R, Rienzi L. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7193075. [PMID: 26942198 PMCID: PMC4749789 DOI: 10.1155/2016/7193075] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/15/2015] [Accepted: 01/05/2016] [Indexed: 01/23/2023]
Abstract
Preimplantation Genetic Diagnosis and Screening (PGD/PGS) for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential.
Collapse
Affiliation(s)
- Danilo Cimadomo
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Via G. de Notaris 2/b, 00197 Rome, Italy
- Dipartimento di Scienze Anatomiche, University of Rome “La Sapienza”, Istologiche, Medico Legali e dell'Apparato Locomotore, Sezione Istologia ed Embriologia Medica, Via Antonio Scarpa 16, 00161 Rome, Italy
| | - Antonio Capalbo
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Via G. de Notaris 2/b, 00197 Rome, Italy
- GENETYX, Molecular Biology Laboratory, Via Fermi 1, 36063 Marostica, Italy
| | - Filippo Maria Ubaldi
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Via G. de Notaris 2/b, 00197 Rome, Italy
- GENETYX, Molecular Biology Laboratory, Via Fermi 1, 36063 Marostica, Italy
| | - Catello Scarica
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Via G. de Notaris 2/b, 00197 Rome, Italy
- Dipartimento di Scienze Anatomiche, University of Rome “La Sapienza”, Istologiche, Medico Legali e dell'Apparato Locomotore, Sezione Istologia ed Embriologia Medica, Via Antonio Scarpa 16, 00161 Rome, Italy
| | - Antonio Palagiano
- Seconda Università di Napoli, Via Antonio Vivaldi 43, 81100 Caserta, Italy
| | - Rita Canipari
- Dipartimento di Scienze Anatomiche, University of Rome “La Sapienza”, Istologiche, Medico Legali e dell'Apparato Locomotore, Sezione Istologia ed Embriologia Medica, Via Antonio Scarpa 16, 00161 Rome, Italy
| | - Laura Rienzi
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Via G. de Notaris 2/b, 00197 Rome, Italy
- GENETYX, Molecular Biology Laboratory, Via Fermi 1, 36063 Marostica, Italy
| |
Collapse
|
27
|
Kirkegaard K, Sundvall L, Erlandsen M, Hindkjær JJ, Knudsen UB, Ingerslev HJ. Timing of human preimplantation embryonic development is confounded by embryo origin. Hum Reprod 2015; 31:324-31. [PMID: 26637491 PMCID: PMC4716807 DOI: 10.1093/humrep/dev296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION To what extent do patient- and treatment-related factors explain the variation in morphokinetic parameters proposed as embryo viability markers? SUMMARY ANSWER Up to 31% of the observed variation in timing of embryo development can be explained by embryo origin, but no single factor elicits a systematic influence. WHAT IS KNOWN ALREADY Several studies report that culture conditions, patient characteristics and treatment influence timing of embryo development, which have promoted the perception that each clinic must develop individual models. Most of the studies have, however, treated embryos from one patient as independent observations, and only very few studies that evaluate the influence from patient- and treatment-related factors on timing of development or time-lapse parameters as predictors of viability have controlled for confounding, which implies a high risk of overestimating the statistical significance of potential correlations. STUDY DESIGN, SIZE, DURATION Infertile patients were prospectively recruited to a cohort study at a hospital fertility clinic from February 2011 to May 2013. Patients aged <38 years without endometriosis were eligible if ≥8 oocytes were retrieved. Patients were included only once. All embryos were monitored for 6 days in a time-lapse incubator. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 1507 embryos from 243 patients were included. The influence of fertilization method, BMI, maternal age, FSH dose and number of previous cycles on timing of t2-t5, duration of the 2- and 3-cell stage, and development of a blastocoel (tEB) and full blastocoel (tFB) was tested in multivariate, multilevel linear regression analysis. Predictive parameters for live birth were tested in a logistic regression analysis for 223 single transferred blastocysts, where time-lapse parameters were investigated along with patient and embryo characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Moderate intra-class correlation coefficients (0.16-0.31) were observed for all parameters except duration of the 3-cell stage, which demonstrates that embryos from one patient elicit clustering at a patient level. No single patient- and treatment-related factor was found to systematically influence the timing from cleavage to blastocyst stage, which indicates that no individual patient-related factor can be identified that separately explains the clustering throughout the entire developmental stages. The blastocyst parameters were more affected by patient-related factors than cleavage stage parameters, as tEB occurred significantly later with older age (0.29 h/year (95% confidence interval: CI 0.03; 0.56)), while both tEB and tFB occurred significantly later with increasing dose of FSH (tEB: 0.12 h/100 IU FSH (95% CI 0.01;0.24); tFB 0.14 h/100 IU FSH (95% CI 0.03;0.27)) and with more previous attempts (tEB: 1.2 h/attempt (95% CI 0.01;2.5); tFB 1.4 h/attempt (0.10;2.7)). Fertilization method affected timing of the first division, with ICSI embryos cleaving significantly faster than IVF embryos (-3.6% (95% CI -6.4; -0.77)), whereas no difference was found in the subsequent divisions. The univariable regression analysis identified female age, cumulative FSH dose, degree of blastocyst expansion, score of the inner cell mass and timing of full blastocyst formation as predictors of live birth. The timing of full blastocyst formation (tFB) did not remain significant when adjusting for age, number of previous cycles and cumulative FSH dose, which were the parameters shown to influence tFB in the mixed regression model. LIMITATIONS, REASONS FOR CAUTION Only good prognosis patients were enrolled, so these results may not be generalized to all infertile women. Not all patient-related factors were investigated. WIDER IMPLICATIONS OF THE FINDINGS Our findings underline the importance of treating embryos as dependent observations and suggest a high risk of patient-based confounding in retrospective studies. The impact of confounders and the embryo origin needs to be addressed in order to apply appropriate statistical models in observational studies. Furthermore, this observation emphasizes the need for RCTs for evaluating use of time-lapse parameters for embryo selection. STUDY FUNDING/COMPETING INTERESTS Funding for the cohort study was provided by the Lippert Foundation, the Toyota Foundation, the Aase og Einar Danielsen foundation and NordicInfu Care research grant. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from MSD and Ferring. K.K. is funded by a grant from the Danish Council for Independent Research Medical Sciences. The authors declare no competing interest.
Collapse
Affiliation(s)
- K Kirkegaard
- Department of Clinical Biochemistry, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark Clinical institute, Health, Aarhus University, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark
| | - L Sundvall
- Clinical institute, Health, Aarhus University, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark Centre for Preimplantation Genetic Diagnosis/The Fertility Clinic, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark
| | - M Erlandsen
- Department of Public Health, Section for Biostatistics, Aarhus University, Aarhus, Denmark
| | - J J Hindkjær
- Centre for Preimplantation Genetic Diagnosis/The Fertility Clinic, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark
| | - U B Knudsen
- Clinical institute, Health, Aarhus University, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark Centre for Preimplantation Genetic Diagnosis/The Fertility Clinic, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark
| | - H J Ingerslev
- Clinical institute, Health, Aarhus University, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark Centre for Preimplantation Genetic Diagnosis/The Fertility Clinic, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200 Aarhus N, Denmark
| |
Collapse
|
28
|
Preimplantation genetic diagnosis: an update on current technologies and ethical considerations. Reprod Med Biol 2015; 15:69-75. [PMID: 29259423 DOI: 10.1007/s12522-015-0224-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022] Open
Abstract
The aim of reproductive medicine is to support the birth of healthy children. Advances in assisted reproductive technologies and genetic analysis have led to the introduction of preimplantation genetic diagnosis (PGD) for embryos. Indications for PGD have been a major topic in the fields of ethics and law. Concerns vary by nation, religion, population, and segment, and the continued rapid development of new technologies. In contrast to the ethical augment, technology has been developing at an excessively rapid speed. The most significant recent technological development provides the ability to perform whole genome amplification and sequencing of single embryonic cells by microarray or next-generation sequencing methods. As new affordable technologies are introduced, patients are presented with a growing variety of PGD options. Simultaneously, the ethical guidelines for the indications for testing and handling of genetic information must also rapidly correspond to the changes.
Collapse
|
29
|
Palini S, De Stefani S, Primiterra M, Galluzzi L. Pre-implantation genetic diagnosis and screening: now and the future. Gynecol Endocrinol 2015; 31:755-9. [PMID: 26291813 DOI: 10.3109/09513590.2015.1068752] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since 1989, the year of the first pre-implantation genetic diagnosis (PGD), many developments occurred both in assisted reproduction techniques and in molecular tools. While PGD is a well-established and documented application, pre-implantation genetic screening (PGS) for the detection of aneuploid embryos is still debated due to the presence of mosaicism in the embryo, but especially to the knowledge of the limits that label an embryo as healthy or as appropriate to the life. The aim of this review is to present the state-of-the-art in the field of PGD and PGS, illustrating its benefits and limitations, along with biopsy techniques and the use of new high-throughput technologies.
Collapse
Affiliation(s)
- Simone Palini
- a IVF Unit, "Cervesi" Hospital Cattolica , Cattolica , Province of Rimini , Italy and
| | - Silvia De Stefani
- a IVF Unit, "Cervesi" Hospital Cattolica , Cattolica , Province of Rimini , Italy and
| | - Mariangela Primiterra
- a IVF Unit, "Cervesi" Hospital Cattolica , Cattolica , Province of Rimini , Italy and
| | - Luca Galluzzi
- b Department of Biomolecular Sciences , University of Urbino , Urbino , Province of Pesaro e Urbino , Italy
| |
Collapse
|
30
|
Bolton VN, Leary C, Harbottle S, Cutting R, Harper JC. How should we choose the ‘best’ embryo? A commentary on behalf of the British Fertility Society and the Association of Clinical Embryologists. HUM FERTIL 2015; 18:156-64. [DOI: 10.3109/14647273.2015.1072646] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Ottolini CS, Rogers S, Sage K, Summers MC, Capalbo A, Griffin DK, Sarasa J, Wells D, Handyside AH. Karyomapping identifies second polar body DNA persisting to the blastocyst stage: implications for embryo biopsy. Reprod Biomed Online 2015; 31:776-82. [PMID: 26380865 DOI: 10.1016/j.rbmo.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Blastocyst biopsy is now widely used for both preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). Although this approach yields good results, variable embryo quality and rates of development remain a challenge. Here, a case is reported in which a blastocyst was biopsied for PGS by array comparative genomic hybridization on day 6 after insemination, having hatched completely. In addition to a small trophectoderm sample, excluded cell fragments from the subzonal space from this embryo were also sampled. Unexpectedly, the array comparative genomic hybridization results from the fragments and trophectoderm sample were non-concordant: 47,XX,+19 and 46,XY, respectively. DNA fingerprinting by short tandem repeat and amelogenin analysis confirmed the sex chromosome difference but seemed to show that the two samples were related but non-identical. Genome-wide single nucleotide polymorphism genotyping and karyomapping identified that the origin of the DNA amplified from the fragments was that of the second polar body corresponding to the oocyte from which the biopsied embryo developed. The fact that polar body DNA can persist to the blastocyst stage provides evidence that excluded cell fragments should not be used for diagnostic purposes and should be avoided when performing embryo biopsies as there is a risk of diagnostic errors.
Collapse
Affiliation(s)
- Christian S Ottolini
- The Bridge Centre, London SE1 9RY, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK.
| | | | | | - Michael C Summers
- The Bridge Centre, London SE1 9RY, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Antonio Capalbo
- G.E.N.E.R.A., Centers for Reproductive Medicine, Marostica, Umbertide, Rome, Italy; GENETYX, Molecular Genetics Laboratory, Marostica, Italy
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Jonas Sarasa
- Reprogenetics UK, Institute of Reproductive Sciences, Oxford Business Park North, Oxford OX4 2HW, UK
| | - Dagan Wells
- Reprogenetics UK, Institute of Reproductive Sciences, Oxford Business Park North, Oxford OX4 2HW, UK; Nuffied Department of Obstetrics and Gynaecology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Alan H Handyside
- The Bridge Centre, London SE1 9RY, UK; School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; Illumina, Capital Park CPC4, Fulbourn, Cambridge CB21 5XE, UK; Institute of Integrative and Comparative Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
32
|
Kirkegaard K, Villesen P, Jensen JM, Hindkjær JJ, Kølvraa S, Ingerslev HJ, Lykke-Hartmann K. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth. Gene 2015; 571:212-20. [PMID: 26117173 DOI: 10.1016/j.gene.2015.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm biopsies were obtained from morphologically high quality blastocysts resulting in live birth and three biopsies were obtained from non-implanting blastocysts of a comparable morphology. Total RNA was extracted from all samples followed by complete transcriptome sequencing. Using a set of filtering criteria, we obtained a list of 181 genes that were differentially expressed between trophectoderm biopsies from embryos resulting in either live birth or no implantation (negative hCG), respectively. We found that 37 of the 181 genes displayed significantly differential expression (p<0.05), e.g. EFNB1, CYTL1 and TEX26 and TESK1, MSL1 and EVI5 in trophectoderm biopsies associated with live birth and non-implanting, respectively. Out of the 181 genes, almost 80% (145 genes) were up-regulated in biopsies from un-implanted embryos, whereas only 20% (36 genes) showed an up-regulation in the samples from embryos resulting in live birth. Our findings suggest the presence of molecular differences visually undetectable between implanted and non-implanted embryos, and represent a proof of principle study.
Collapse
Affiliation(s)
- Kirstine Kirkegaard
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark.
| | - Palle Villesen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Jacob Malte Jensen
- Aarhus University, Bioinformatics Research Center (BIRC), C.F. Møllers Allé 8, DK-8000, Aarhus C, Denmark
| | - Johnny Juhl Hindkjær
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Steen Kølvraa
- Department of Clinical Genetics, Vejle Hospital, DK-7100 Vejle, Denmark; Institute of Regional Health Services Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Hans Jakob Ingerslev
- Centre for Preimplantation Genetic Diagnosis, The Fertility Clinic, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark; Aarhus University, Department of Clinical Medicine, Brendstrupgaardsvej 100, DK-8200, Aarhus N, Denmark
| | - Karin Lykke-Hartmann
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Allé 4, DK-8000, Aarhus C, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
33
|
Kirkegaard K, Svane A, Nielsen J, Hindkjær J, Nielsen N, Ingerslev H. Nuclear magnetic resonance metabolomic profiling of Day 3 and 5 embryo culture medium does not predict pregnancy outcome in good prognosis patients: a prospective cohort study on single transferred embryos. Hum Reprod 2014; 29:2413-20. [DOI: 10.1093/humrep/deu236] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Milachich T. New advances of preimplantation and prenatal genetic screening and noninvasive testing as a potential predictor of health status of babies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:306505. [PMID: 24783200 PMCID: PMC3982254 DOI: 10.1155/2014/306505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 11/18/2022]
Abstract
The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF) embryos. Preimplantation genetic diagnosis (PGD) or screening (PGS) involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND) require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future.
Collapse
Affiliation(s)
- Tanya Milachich
- SAGBAL Dr. Shterev, IVF Unit, Hristo Blagoev 25-31, 1330 Sofia, Bulgaria
| |
Collapse
|
35
|
Renwick P, Ogilvie CM. Preimplantation genetic diagnosis for monogenic diseases: overview and emerging issues. Expert Rev Mol Diagn 2014; 7:33-43. [PMID: 17187482 DOI: 10.1586/14737159.7.1.33] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preimplantation genetic diagnosis (PGD) is an established reproductive option for couples at risk of conceiving a pregnancy affected with a known genetic disease, who wish to avoid an (additional) affected child, termination of pregnancy or recurrent miscarriages. Early technologies concentrated on different approaches to direct mutation testing for monogenic diseases using single cell PCR protocols, or sex selection by fluorescent in situ hybridization for X-linked monogenic disease. Development of multiplex fluorescent PCR allowed simultaneously testing of linked markers alongside the mutation test, increasing the accuracy by controlling for contamination and identifying allele drop-out. The advent of highly effective whole genome amplification methods has opened the way for new technologies such as preimplantation genetic haplotyping and microarrays, thus increasing the number of genetic defects that can be detected in preimplantation embryos; the number of cases carried out and the new indications tested increases each year. Different countries have taken very different approaches to legislating and regulating PGD, giving rise to the phenomenon of reproductive tourism. PGD is now being performed for scenarios previously not undertaken using prenatal diagnosis, some of which raise significant ethical concerns. While PGD has benefited many couples aiming to have healthy children, ethical concerns remain over inappropriate use of this technology.
Collapse
Affiliation(s)
- Pamela Renwick
- Guy's & St Thomas' Hospital Foundation Trust, Genetics Center, London SE1 9RT, UK.
| | | |
Collapse
|
36
|
Harper JC, Geraedts J, Borry P, Cornel MC, Dondorp W, Gianaroli L, Harton G, Milachich T, Kääriäinen H, Liebaers I, Morris M, Sequeiros J, Sermon K, Shenfield F, Skirton H, Soini S, Spits C, Veiga A, Vermeesch JR, Viville S, de Wert G, Macek M. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology. Eur J Hum Genet 2013; 21 Suppl 2:S1-21. [PMID: 24225486 PMCID: PMC3831061 DOI: 10.1038/ejhg.2013.219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide an update of selected topics that have evolved since 2005.
Collapse
Affiliation(s)
- Joyce C Harper
- UCL Centre for PG&D, Institute for Womens Health, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ajduk A, Zernicka-Goetz M. Quality control of embryo development. Mol Aspects Med 2013; 34:903-18. [DOI: 10.1016/j.mam.2013.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 03/05/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
|
38
|
Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod 2013; 28:2643-51. [DOI: 10.1093/humrep/det300] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
39
|
Milachich T, Timeva T, Ekmekci C, Beyazyurek C, Tac HA, Shterev A, Kahraman S. Birth of a healthy infant after preimplantation genetic diagnosis by sequential blastomere and trophectoderm biopsy for β-thalassemia and HLA genotyping. Eur J Obstet Gynecol Reprod Biol 2013; 169:261-7. [DOI: 10.1016/j.ejogrb.2013.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
40
|
Martín J, Cervero A, Mir P, Martinez-Conejero JA, Conejero Martinez JA, Pellicer A, Simón C. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil Steril 2013; 99:1054-61.e3. [PMID: 23499002 DOI: 10.1016/j.fertnstert.2013.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/24/2022]
Abstract
Largely because of efforts required to complete the Human Genome Project, DNA sequencing has undergone a steady transformation with still-ongoing developments of high-throughput sequencing machines for which the cost per reaction is falling drastically. Similarly, the fast-changing landscape of reproductive technologies has been improved by genetic approaches. Preimplantation genetic diagnosis and screening were established more than two decades ago for selecting genetically normal embryos to avoid inherited diseases and to give the highest potential to achieve stable pregnancies. Most recent additions to the IVF practices (blastocyst/trophectoderm biopsy, embryo vitrification) and adoption of new genetics tools such as array comparative genome hybridization have allowed setting up more precise and efficient programs for clinical embryo diagnosis. Nevertheless, there is always room for improvements. Remarkably, a recent explosion in the release of advanced sequencing benchtop platforms, together with a certain maturity of bioinformatics tools, has set the target goal of sequencing individual cells for embryo diagnosis to be a realistically feasible scenario for the near future. Next-generation sequencing technology should provide the opportunity to simultaneously analyze single-gene disorders and perform an extensive comprehensive chromosome screening/diagnosis by concurrently sequencing, counting, and accurately assembling millions of DNA reads.
Collapse
|
41
|
Greco E, Fabozzi G, Ruberti A, Zavaglia D, Giulia Minasi M. Preimplantation genetic diagnosis and the biopsy technique: Important considerations. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/arsci.2013.12002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Thomaidis L, Kitsiou-Tzeli S, Critselis E, Drandakis H, Touliatou V, Mantoudis S, Leze E, Destouni A, Traeger-Synodinos J, Kafetzis D, Kanavakis E. Psychomotor development of children born after preimplantation genetic diagnosis and parental stress evaluation. World J Pediatr 2012; 8:309-16. [PMID: 23151857 DOI: 10.1007/s12519-012-0374-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 08/08/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The increasing number of children conceived following preimplantation genetic diagnosis (PGD) necessitates the evaluation of their motor and cognitive development. The primary study objective was to evaluate the physical, developmental, and neurological outcome of children born after PGD in Greece. In addition, the secondary study objective was to compare the stress levels regarding parental roles between parents of PGD children and those of naturally conceived children. METHODS A cross-sectional study design was applied. The study population consisted of 31 children (aged 2 months to 7.5 years) born after PGD analysis and their parents. The developmental evaluation of children included a detailed physical evaluation and cognitive assessment with the Bayley Scales of Infant Development. The parent stress index was applied to evaluate comparative parental stress levels between those parents of PGD children and those of naturally conceived healthy children. RESULTS High rates of caesarean deliveries, increased incidence of prematurity, multiples and low-birth weight were observed among the 31 PGD children. Overall, 24 of the 31 PGD children had cognitive skills within normal range [general developmental quotient (GDQ): 86-115], while 6 children had lower levels of cognitive skills (GDQ<85). With regard to parental stress, PGD parents reported lower levels of parenting stress as compared to parents of naturally conceived children (P<0.01). CONCLUSIONS The enhanced frequency of poor cognitive and motor skills as well as low parental stress necessitates early detection and intervention for developmental delays among PGD children.
Collapse
Affiliation(s)
- Loretta Thomaidis
- Developmental Assessment Unit, Second Department of Pediatrics, P. & A. Kyriakou Children's Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Preimplantation genetic diagnosis: State of the ART 2011. Hum Genet 2011; 131:175-86. [PMID: 21748341 DOI: 10.1007/s00439-011-1056-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 06/23/2011] [Indexed: 12/17/2022]
|
44
|
Hur YS, Park JH, Ryu EK, Yoon HJ, Yoon SH, Hur CY, Lee WD, Lim JH. Effect of artificial shrinkage on clinical outcome in fresh blastocyst transfer cycles. Clin Exp Reprod Med 2011; 38:87-92. [PMID: 22384424 PMCID: PMC3283060 DOI: 10.5653/cerm.2011.38.2.87] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to determine the safety and clinical effect of artificial shrinkage (AS) in terms of assisted hatching of fresh blastocysts. Also, we evaluated the correlation between patient age and the effect of AS on clinical outcome. METHODS Two AS methods, using a 29-gauge needle and laser pulse, were compared. Seventy-three blastocysts were shrunk using a 29-gauge needle and the same number of other blastocysts were shrunk by a laser pulse. We evaluated the shrunken blastocysts hourly and considered them viable if they re-expanded >70%. Blastocyst transfer cycles (n=134) were divided into two groups: a control group consisted of the cycles whose intact embryos were transferred (n=100), while the AS group consisted of the cycles whose embryos were replaced following AS (n=34). The implantation and pregnancy rates of the control group and AS group were compared (p<0.05). RESULTS The re-expansion rates of the 29-gauge needle and laser pulse AS groups were similar (56 [76.7%] vs. 62 [84.9%], respectively). All of the remaining shrunken blastocysts were re-expanded within 2 hours. There was no degeneration of shrunken blastocysts. The total and clinical pregnancy rate of the AS group (23 [67.6%]; 20 [58.8%], respectively) was significantly higher than that of the control group (47 [47.0%]; 39 [39.0%], respectively). In the older patient group, there was no difference in the clinical outcomes between the AS and control groups. CONCLUSION These results suggest that AS of blastocoele cavity, followed by the transfer, would be a useful approach to improve the clinical outcome in cycles in which fresh blastocyst stage embryos are transferred.
Collapse
Affiliation(s)
- Yong Soo Hur
- Maria Fertility Hospital, Seoul, Korea
- Department of Anatomy, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jeong Hyun Park
- Department of Anatomy, Kangwon National University School of Medicine, Chuncheon, Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
More than two decades after the first clinical application, preimplantation genetic diagnosis (PGD) is an established medical procedure and an accepted alternative to conventional prenatal diagnosis for patients at high risk of transmitting a genetic disorder to their offspring. The great advantage of PGD is that the diagnostic procedure is made already at the embryo stage, before transfer to the patient, and the need for pregnancy termination is thereby avoided. However, PGD can only be performed in connection with in-vitro fertilisation followed by embryo biopsy and genetic analysis of single cells, a complex and cumbersome procedure for both the couple as well as the professionals involved in the treatment. However, for couples at high risk of having an affected child, PGD may be the most attractive alternative to conceive unaffected children.
Collapse
|
46
|
Peng W, Zhang J, Shu Y. Live birth after transfer of a twice-vitrified warmed blastocyst that had undergone trophectoderm biopsy. Reprod Biomed Online 2011; 22:299-302. [DOI: 10.1016/j.rbmo.2010.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/04/2010] [Accepted: 12/07/2010] [Indexed: 11/25/2022]
|
47
|
Harton GL, Magli MC, Lundin K, Montag M, Lemmen J, Harper JC. ESHRE PGD Consortium/Embryology Special Interest Group--best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod 2010; 26:41-6. [DOI: 10.1093/humrep/deq265] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
PGD for X-linked and gender-dependent disorders using a robust, flexible single-tube PCR protocol. Reprod Biomed Online 2010; 19:418-25. [PMID: 19778490 DOI: 10.1016/s1472-6483(10)60178-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-linked genetic diseases include a wide range of disorders such as the dystrophinopathies. Additionally in some rare genetic diseases, severity of expression is gender dependent. Prevention of such disorders usually involves prenatal diagnosis and termination of affected pregnancies, while preimplantation genetic diagnosis (PGD) represents a specialized alternative that avoids pregnancy termination. To preclude the rejection of unaffected male embryos that cannot be differentiated from those affected when using fluorescence in-situ hybridization, a flexible protocol based on multiplex fluorescence polymerase chain reaction (PCR) was standardized and validated for gender determination in single cells, which can potentially incorporate any disease-specific locus. The final panel of nine loci included four loci on the Y chromosome, two on the X chromosome plus up to three microsatellite markers to either support the gender diagnosis or to further monitor extraneous contamination. The protocol, standardized on single lymphocytes, established a PCR efficiency of >93% for all loci with maximum allele dropout rates of 4%. Microsatellite analysis excluded external contamination and confirmed biallelic inheritance. Proof of principle for the simplicity and flexibility of the assay was demonstrated through its application to clinical PGD cycles for lipoid congenital adrenal hyperplasia, which presents a more severe clinical course in males, and Duchenne muscular dystrophy.
Collapse
|
49
|
Abstract
Preimplantation genetic diagnosis (PGD) for monogenic diseases has known a considerable evolution since its first application in the early 1990s. Especially the technical aspects of the genetic diagnosis itself, the single-cell genetic analysis, has constantly evolved to reach levels of accuracy and efficiency nearing those of genetic diagnosis on regular DNA samples. In this review, we will focus on the molecular biological techniques that are currently in use in the most advanced centers for PGD for monogenic disorders, including multiplex polymerase chain reaction (PCR) and post-PCR diagnostic methods, whole genome amplification (WGA) and multiple displacement amplification (MDA). As it becomes more and more clear that when it comes to ethically difficult indications, PGD goes further than prenatal diagnosis (PND), we will also briefly discuss ethical issues.
Collapse
Affiliation(s)
- Claudia Spits
- Department of Embryology and Genetics of the Vrije Universiteit Brussel and the Centre for Medical Genetics of the UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | |
Collapse
|
50
|
Jones GM, Cram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Reprod 2008; 23:1748-59. [PMID: 18477572 DOI: 10.1093/humrep/den123] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Currently there are no markers fully predictive of developmental competence of human IVF embryos. The present study investigated a novel strategy involving blastocyst biopsy and DNA fingerprinting to link developmental competence with gene expression patterns. METHODS Patient's blastocysts were biopsied to remove 8-20 trophectoderm (TE) cells for molecular analysis prior to transfer. Biopsy samples were amplified and gene expression was evaluated using microarrays. Sibling TE biopsies and cells from resulting offspring were subjected to DNA fingerprinting to identify which blastocyst(s) in the transfer cohort developed to term. RESULTS Blastocyst biopsy did not appear to impair developmental competence. Comparative microarray analysis of cDNA from pooled 'viable' and 'non-viable' TE samples identified over 7000 transcripts expressed exclusively in 'viable' blastocysts. The most significant of these included transcripts involved in cell adhesion and cell communication, key processes that have been associated with mammalian implantation. DNA fingerprinting of three cohorts of sibling blastocysts identified those blastocyst(s) that produced term pregnancies. CONCLUSIONS The combination of blastocyst biopsy, microarray gene expression profiling and DNA fingerprinting is a powerful tool to identify diagnostic markers of competence to develop to term. This strategy may be used to develop a rapid diagnostic assay or for refining existing criteria for the selection of the single most viable blastocyst among a cohort developing in vitro.
Collapse
Affiliation(s)
- Gayle M Jones
- Monash Immunology and Stem Cell Laboratories (MISCL), Monash University, Level 3-STRIP Building 75, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|