1
|
Radomsky T, Anderson RC, Millar RP, Newton CL. Restoring function to inactivating G protein-coupled receptor variants in the hypothalamic-pituitary-gonadal axis 1. J Neuroendocrinol 2024; 36:e13418. [PMID: 38852954 DOI: 10.1111/jne.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/30/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
G protein-coupled receptors (GPCRs) are central to the functioning of the hypothalamic-pituitary-gonadal axis (HPG axis) and include the rhodopsin-like GPCR family members, neurokinin 3 receptor, kappa-opioid receptor, kisspeptin 1 receptor, gonadotropin-releasing hormone receptor, and the gonadotropin receptors, luteinizing hormone/choriogonadotropin receptor and follicle-stimulating hormone receptor. Unsurprisingly, inactivating variants of these receptors have been implicated in a spectrum of reproductive phenotypes, including failure to undergo puberty, and infertility. Clinical induction of puberty in patients harbouring such variants is possible, but restoration of fertility is not always a realisable outcome, particularly for those patients suffering from primary hypogonadism. Thus, novel pharmaceuticals and/or a fundamental change in approach to treating these patients are required. The increasing wealth of data describing the effects of coding-region genetic variants on GPCR function has highlighted that the majority appear to be dysfunctional as a result of misfolding of the encoded receptor protein, which, in turn, results in impaired receptor trafficking through the secretory pathway to the cell surface. As such, these intracellularly retained receptors may be amenable to 'rescue' using a pharmacological chaperone (PC)-based approach. PCs are small, cell permeant molecules hypothesised to interact with misfolded intracellularly retained proteins, stabilising their folding and promoting their trafficking through the secretory pathway. In support of the use of this approach as a viable therapeutic option, it has been observed that many rescued variant GPCRs retain at least a degree of functionality when 'rescued' to the cell surface. In this review, we examine the GPCR PC research landscape, focussing on the rescue of inactivating variant GPCRs with important roles in the HPG axis, and describe what is known regarding the mechanisms by which PCs restore trafficking and function. We also discuss some of the merits and obstacles associated with taking this approach forward into a clinical setting.
Collapse
Affiliation(s)
- Tarryn Radomsky
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert P Millar
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- School of Medicine, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Allouch A, Al-Barazenji T, Al-Shafai M, Abdallah AM. The landscape of genetic variations in non-syndromic primary ovarian insufficiency in the MENA region: a systematic review. Front Endocrinol (Lausanne) 2024; 14:1289333. [PMID: 38737775 PMCID: PMC11082268 DOI: 10.3389/fendo.2023.1289333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 05/14/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) is a primary cause of infertility with variable clinical manifestations. POI is a multifactorial disease with both environmental and known genetic etiologies, but data on the genetic variations associated with POI in the Middle East and North Africa (MENA) region are scarce. The aim of this study was to systematically review all known genetic causes of POI in the MENA region. Methods The PubMed, Science Direct, ProQuest, and Embase databases were searched from inception to December 2022 for all reports of genetic variants associated with POI in the MENA region. Clinical and genetic data were collected from eligible articles, and ClinVar and PubMed (dbSNP) were searched for variants. Results Of 1,803 studies, 25 met the inclusion criteria. Fifteen studies were case-control studies and ten were case reports representing 1,080 non-syndromic POI patients in total. Seventy-nine variants in 25 genes associated with POI were reported in ten MENA countries. Of the 79 variants, 46 were rare and 33 were common variants. Of the 46 rare variants, 19 were pathogenic or likely pathogenic according to ACMG classification guidelines and ClinVar. No clear phenotype-genotype association was observed. Male family members carrying pathogenic variants also had infertility problems. Discussion To our best knowledge, this is the first systematic review of the genetic variants associated with POI in the MENA region. Further functional studies are needed to assess the disease-causing molecular mechanisms of these variants. Knowledge of the genetic basis of POI in the Middle East could facilitate early detection of the condition and thus early implementation of therapeutic interventions, paving the way for precision medicine options in specific populations.
Collapse
Affiliation(s)
- Asma Allouch
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Sanghavi P, Chandel D. The Effect of FSHR (G2039A) Polymorphism on Müllerian Duct Development and Hormonal Profile of Women with Primary Amenorrhea. J Reprod Infertil 2023; 24:240-247. [PMID: 38164425 PMCID: PMC10757686 DOI: 10.18502/jri.v24i4.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/24/2023] [Indexed: 01/03/2024] Open
Abstract
Background The function of follicle-stimulating hormone (FSH) is mediated by binding to its G-protein coupled receptor (GPCR) which is expressed on granulosa cells of the ovary. The purpose of the current study was to examine the impact of FSHR G2039A polymorphism (rs6166; Ser680Asn) on clinical and radiology profiles of women with primary amenorrhea (PA) in Gujarat, India. Methods A total of 90 women (45 controls and 45 cases) were recruited for the study after obtaining informed consent. The DNA extraction was performed on the venous blood samples collected from the participants, followed by polymerase chain reaction (PCR). The presence of polymorphism was then analyzed using restriction fragment polymorphism (RFLP) with the BSeNI enzyme. The statistical analysis was conducted using an independent t-test, chi-square test, and ANOVA. Significance was determined by a p<0.05. Results Results revealed that homozygous wild type genotype was observed in 46.7% (n=21) of the control group and 11.1% (n=5) of the case group. Heterozygous genotype was observed in 33.3% (n=15) of the control group and 55.6% (n=25) of the case group (p<0.001). Homozygous mutant genotype was observed in 20% (n=9) of the control group and 33.3% (n=15) of the case group (p<0.01). The hormonal profile revealed that serum levels of FSH and luteinizing hormone (LH) were significantly higher (p<0.05) in the AA and AG genotypes compared to the GG genotypes. Conclusion The FSHR rs6166 G2039A was associated with PA in women, and the A allele could be considered a causative risk factor in developing the condition.
Collapse
Affiliation(s)
- Priyanka Sanghavi
- - Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, India
| | - Divya Chandel
- - Department of Zoology, Biomedical Technology and Human Genetics, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, India
| |
Collapse
|
4
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Mu Z, Shen S, Lei L. Resistant ovary syndrome: Pathogenesis and management strategies. Front Med (Lausanne) 2022; 9:1030004. [PMCID: PMC9626816 DOI: 10.3389/fmed.2022.1030004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Resistant ovary syndrome (ROS) is a rare and difficult gynecological endocrine disorder that poses a serious risk to women’s reproductive health. The clinical features are normal sex characteristics, regular female karyotype, and usual ovarian reserve, but elevated endogenous gonadotropin levels and low estrogen levels with primary or secondary amenorrhea. Although there have been many case reports of the disease over the past 50 years, the pathogenesis of the disease is still poorly understood, and there are still no effective clinical management strategies. In this review, we have collected all the current reports on ROS and summarized the pathogenesis and treatment strategies for this disease, intending to provide some clinical references for the management and treatment of this group of patients and provide the foothold for future studies.
Collapse
|
6
|
George AJ, Dong B, Lail H, Gomez M, Hoffiz YC, Ware CB, Fang N, Murphy AZ, Hrabovszky E, Wanders D, Mabb AM. The E3 ubiquitin ligase RNF216/TRIAD3 is a key coordinator of the hypothalamic-pituitary-gonadal axis. iScience 2022; 25:104386. [PMID: 35620441 PMCID: PMC9126796 DOI: 10.1016/j.isci.2022.104386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS. Rnf216/Triad3 controls GnRH production and intrinsic hypothalamic cell activity Rnf216/Triad3 knockout male mice have greater reproductive impairments than females Rnf216/Triad3 controls the HPG axis differently in males and females Rnf216/Triad3 knockout male mice have reactive microglia in the hypothalamus
Collapse
|
7
|
Chen X, Chen L, Wang Y, Shu C, Zhou Y, Wu R, Jin B, Yang L, Sun J, Qi M, Shu J. Identification and characterization of novel compound heterozygous variants in FSHR causing primary ovarian insufficiency with resistant ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:1013894. [PMID: 36704038 PMCID: PMC9871476 DOI: 10.3389/fendo.2022.1013894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is among the foremost causes of women infertility due to premature partial or total loss of ovarian function. Resistant ovary syndrome (ROS) is a subtype of POI manifested as normal ovarian reserve but insensitive to gonadotropin stimulation. Inactivating variants of follicle-stimulating hormone receptor (FSHR), a class A G-protein coupled receptor, have been associated with POI and are inherited via an autosomal recessive pattern. In this study, we investigated the genetic causes of a primary infertility patient manifested as POI with ROS, and elucidated the structural and functional impact of variants of uncertain significance. Next-generation sequencing (NGS) combined with Sanger sequencing revealed novel compound heterozygous FSHR variants: c.1384G>C/p.Ala462Pro and c.1862C>T/p.Ala621Val, inherited from her father and mother, respectively. The two altered amino acid sequences, localized in the third and seventh transmembrane helix of FSHR, were predicted as deleterious by in silico prediction. In vitro experiments revealed that the p.Ala462Pro variant resulted in barely detectable levels of intracellular signaling both in cAMP-dependent CRE-reporter activity and ERK activation and displayed a severely reduced plasma membrane receptor expression. In contrast, the p.Ala621Val variant resulted in partial loss of receptor activation without disruption of cell surface expression. In conclusion, two unreported inactivating FSHR variants potentially responsible for POI with ROS were first identified. This study expands the current phenotypic and genotypic spectrum of POI.
Collapse
Affiliation(s)
- Xiaopan Chen
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Jing Shu, ; Xiaopan Chen,
| | - Linjie Chen
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Yang Wang
- Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, China
| | - Chongyi Shu
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yier Zhou
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ruifang Wu
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Bihui Jin
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Leixiang Yang
- Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Junhui Sun
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jing Shu, ; Xiaopan Chen,
| |
Collapse
|
8
|
Abstract
Primary ovarian insufficiency (POI) is determined by exhaustion of follicles in the ovaries, which leads to infertility before the age of 40 years. It is characterized by a strong familial and heterogeneous genetic background. Therefore, we will mainly discuss the genetic basis of POI in this review. We identified 107 genes related to POI etiology in mammals described by several independent groups. Thirty-four of these genes (AARS2, AIRE, ANTXR1, ATM, BMPR1B, CLPP, CYP17A1, CYP19A1, DCAF17, EIF2B, ERAL1, FANCA, FANCC, FMR1, FOXL2, GALT, GNAS, HARS2, HSD17B4, LARS2, LMNA, MGME1, NBN, PMM2, POLG, PREPL, RCBTB1, RECQL2/3/4, STAR, TWNK, and XRCC4/9) have been linked to syndromic POI and are mainly implicated in metabolism function and meiosis/DNA repair. In addition, the majority of genes associated with nonsyndromic POI, widely expanded by high-throughput techniques over the last decade, have been implicated in ovarian development and meiosis/DNA repair pathways (ATG7, ATG9, ANKRD31, BMP8B, BMP15, BMPR1A, BMPR1B, BMPR2, BNC1, BRCA2, CPEB1, C14ORF39, DAZL, DIAPH2, DMC1, ERCC6, FANCL, FANCM, FIGLA, FSHR, GATA4, GDF9, GJA4, HELQ, HSF2BP, HFM1, INSL3, LHCGR, LHX8, MCM8, MCM9, MEIOB, MSH4, MSH5, NANOS3, NOBOX, NOTCH2, NR5A1, NUP107, PGRMC1, POLR3H, PRDM1, PRDM9, PSMC3IP, SOHLH1, SOHLH2, SPIDR, STAG3, SYCE1, TP63, UBR2, WDR62, and XRCC2), whereas a few are related to metabolic functions (EIF4ENIF1, KHDRBS1, MRPS22, POLR2C). Some genes, such as STRA8, FOXO3A, KIT, KITL, WNT4, and FANCE, have been shown to cause ovarian insufficiency in rodents, but mutations in these genes have yet to be elucidated in women affected by POI. Lastly, some genes have been rarely implicated in its etiology (AMH, AMHR2, ERRC2, ESR1, INHA, LMN4, POF1B, POU5F1, REC8, SMC1B). Considering the heterogeneous genetic and familial background of this disorder, we hope that an overview of literature data would reinforce that genetic screening of those patients is worthwhile and helpful for better genetic counseling and patient management.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Hanyroup S, Anderson RC, Nataraja S, Yu HN, Millar RP, Newton CL. Rescue of Cell Surface Expression and Signaling of Mutant Follicle-Stimulating Hormone Receptors. Endocrinology 2021; 162:6311857. [PMID: 34192304 DOI: 10.1210/endocr/bqab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/19/2022]
Abstract
Mutations in G protein-coupled receptors (GPCRs) underlie numerous diseases. Many cause receptor misfolding and failure to reach the cell surface. Pharmacological chaperones are cell-permeant small molecules that engage nascent mutant GPCRs in the endoplasmic reticulum, stabilizing folding and "rescuing" cell surface expression. We previously demonstrated rescue of cell surface expression of luteinizing hormone receptor mutants by an allosteric agonist. Here we demonstrate that a similar approach can be employed to rescue mutant follicle-stimulating hormone receptors (FSHRs) with poor cell surface expression using a small-molecule FSHR agonist, CAN1404. Seventeen FSHR mutations described in patients with reproductive dysfunction were expressed in HEK 293T cells, and cell surface expression was determined by enzyme-linked immunosorbent assay of epitope-tagged FSHRs before/after treatment with CAN1404. Cell surface expression was severely reduced to ≤18% of wild-type (WT) for 11, modestly reduced to 66% to 84% of WT for 4, and not reduced for 2. Of the 11 with severely reduced cell surface expression, restoration to ≥57% of WT levels was achieved for 6 by treatment with 1 µM CAN1404 for 24 h, and a corresponding increase in FSH-induced signaling was observed for 4 of these, indicating restored functionality. Therefore, CAN1404 acts as a pharmacological chaperone and can rescue cell surface expression and function of certain mutant FSHRs with severely reduced cell surface expression. These findings aid in advancing the understanding of the effects of genetic mutations on GPCR function and provide a proof of therapeutic principle for FSHR pharmacological chaperones.
Collapse
Affiliation(s)
- Sharika Hanyroup
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ross C Anderson
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | | | - Robert P Millar
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- School of Medicine, Medical and Biological Sciences Building, University of St Andrews, St Andrews, UK
| | - Claire L Newton
- Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Live birth after in vitro maturation in women with gonadotropin resistance ovary syndrome: report of two cases. J Assist Reprod Genet 2021; 38:3243-3249. [PMID: 34846627 DOI: 10.1007/s10815-021-02355-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Gonadotropin-resistant ovary syndrome (GROS) is a rare endocrine disorder that causes hypergonadotropic hypogonadism, amenorrhea, and infertility. This study reports live birth in two women with GROS who underwent fertility treatment with in vitro maturation (IVM). METHODS Both patients had primary infertility, amenorrhea (primary and secondary), typical secondary sexual characters, elevated gonadotropin levels, normal ovarian reserve, normal chromosomal characteristics, and previous nonresponsiveness gonadotropin stimulations. One patient had polymorphism of the follicle-stimulating hormone receptor, which is a predictor of poor ovarian response. Given unresponsiveness to exogenous gonadotropin stimulations, IVM with human chorionic gonadotropin priming (hCG-IVM) was performed in both patients. All transferrable embryos were vitrified. RESULTS Both patients achieved pregnancy after their first frozen embryos transfer, and each delivered a healthy baby boy. CONCLUSIONS These results suggest that IVM should be a first-line therapeutic option for patients with GROS.
Collapse
|
11
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
12
|
Bestetti I, Barbieri C, Sironi A, Specchia V, Yatsenko SA, De Donno MD, Caslini C, Gentilini D, Crippa M, Larizza L, Marozzi A, Rajkovic A, Toniolo D, Bozzetti MP, Finelli P. Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency. Hum Reprod 2021; 36:2975-2991. [PMID: 34480478 PMCID: PMC8523209 DOI: 10.1093/humrep/deab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
STUDY QUESTION Can a targeted whole exome sequencing (WES) on a cohort of women showing a primary ovarian insufficiency (POI) phenotype at a young age, combined with a study of copy number variations, identify variants in candidate genes confirming their deleterious effect on ovarian function? SUMMARY ANSWER This integrated approach has proved effective in identifying novel candidate genes unveiling mechanisms involved in POI pathogenesis. WHAT IS KNOWN ALREADY POI, a condition occurring in 1% of women under 40 years of age, affects women’s fertility leading to a premature loss of ovarian reserve. The genetic causes of POI are highly heterogeneous and several determinants contributing to its prominent oligogenic inheritance pattern still need to be elucidated. STUDY DESIGN, SIZE, DURATION WES screening for pathogenic variants of 41 Italian women with non-syndromic primary and early secondary amenorrhoea occurring before age 25 was replicated on another 60 POI patients, including 35 French and 25 American women, to reveal statistically significant shared variants. PARTICIPANTS/MATERIALS, SETTING, METHODS The Italian POI patients’ DNA were processed by targeted WES including 542 RefSeq genes expressed or functioning during distinct reproductive or ovarian processes (e.g. DNA repair, meiosis, oocyte maturation, folliculogenesis and menopause). Extremely rare variants were filtered and selected by means of a Fisher Exact test using several publicly available datasets. A case-control Burden test was applied to highlight the most significant genes using two ad-hoc control female cohorts. To support the obtained data, the identified genes were screened on a novel cohort of 60 Caucasian POI patients and the same case-control analysis was carried out. Comparative analysis of the human identified genes was performed on mouse and Drosophila melanogaster by analysing the orthologous genes in their ovarian phenotype, and two of the selected genes were fruit fly modelled to explore their role in fertility. MAIN RESULTS AND THE ROLE OF CHANCE The filtering steps applied to search for extremely rare pathogenic variants in the Italian cohort revealed 64 validated single-nucleotide variants/Indels in 59 genes in 30 out of 41 screened women. Burden test analysis highlighted 13 ovarian genes as being the most enriched and significant. To validate these findings, filtering steps and Burden analysis on the second cohort of Caucasian patients yielded 11 significantly enriched genes. Among them, AFP, DMRT3, MOV10, FYN and MYC were significant in both patient cohorts and hence were considered strong candidates for POI. Mouse and Drosophila comparative analysis evaluated a conserved role through the evolution of several candidates, and functional studies using a Drosophila model, when applicable, supported the conserved role of the MOV10 armitage and DMRT3 dmrt93B orthologues in female fertility. LARGE SCALE DATA The datasets for the Italian cohort generated during the current study are publicly available at ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/): accession numbers SCV001364312 to SCV001364375. LIMITATIONS, REASONS FOR CAUTION This is a targeted WES analysis hunting variants in candidate genes previously identified by different genomic approaches. For most of the investigated sporadic cases, we could not track the parental inheritance, due to unavailability of the parents’ DNA samples; in addition, we might have overlooked additional rare variants in novel candidate POI genes extracted from the exome data. On the contrary, we might have considered some inherited variants whose clinical significance is uncertain and might not be causative for the patients’ phenotype. Additionally, as regards the Drosophila model, it will be extremely important in the future to have more mutants or RNAi strains available for each candidate gene in order to validate their role in POI pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS The genomic, statistical, comparative and functional approaches integrated in our study convincingly support the extremely heterogeneous oligogenic nature of POI, and confirm the maintenance across the evolution of some key genes safeguarding fertility and successful reproduction. Two principal classes of genes were identified: (i) genes primarily involved in meiosis, namely in synaptonemal complex formation, asymmetric division and oocyte maturation and (ii) genes safeguarding cell maintenance (piRNA and DNA repair pathways). STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Italian Ministry of Health grants ‘Ricerca Corrente’ (08C621_2016 and 08C924_2019) provided to IRCCS Istituto Auxologico Italiano, and by ‘Piano Sostegno alla Ricerca’ (PSR2020_FINELLI_LINEA_B) provided by the University of Milan; M.P.B. was supported by Telethon-Italy (grant number GG14181). There are no conflicts of interest.
Collapse
Affiliation(s)
- I Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - C Barbieri
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - A Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - S A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M D De Donno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - C Caslini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - D Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - L Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - A Marozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - A Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San, Francisco, San Francisco, CA, USA.,Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - D Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - M P Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - P Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| |
Collapse
|
13
|
Byambaragchaa M, Ahn TY, Choi SH, Kang MH, Min KS. Functional characterization of naturally-occurring constitutively activating/inactivating mutations in equine follicle-stimulating hormone receptor (eFSHR). Anim Biosci 2021; 35:399-409. [PMID: 34474536 PMCID: PMC8902225 DOI: 10.5713/ab.21.0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Follicle-stimulating hormone (FSH) is the central hormone involved in mammalian reproduction, maturation at puberty, and gamete production that mediates its function by control of follicle growth and function. The present study investigated the mutations involved in the regulation of FSH receptor (FSHR) activation. Methods We analyzed seven naturally-occurring mutations that were previously reported in human FSHR (hFSHR), in the context of equine FSHR (eFSHR); these include one constitutively activation variant, one allelic variant, and five inactivating variants. These mutations were introduced into wild-type eFSHR (eFSHR-wt) sequence to generate mutants that were designated as eFSHR-D566G, -A306T, -A189V, -N191I, -R572C, -A574V, and -R633H. Mutants were transfected into PathHunter EA-parental CHO-K1 cells expressing β-arrestin. The biological function of mutants was analyzed by quantitating cAMP accumulation in cells incubated with increasing concentrations of FSH. Results Cells expressing eFSHR-D566G exhibited an 8.6-fold increase in basal cAMP response, as compared to that in eFSHR-wt. The allelic variation mutant eFSHR-A306T was not found to affect the basal cAMP response or EC50 levels. On the other hand, eFSHR-D566G and eFSHR-A306T displayed a 1.5- and 1.4-fold increase in the maximal response, respectively. Signal transduction was found to be completely impaired in case of the inactivating mutants eFSHR-A189V, -R572C, and -A574V. When compared with eFSHR-wt, eFSHR-N191I displayed a 5.4-fold decrease in the EC50 levels (3910 ng/mL) and a 2.3-fold decrease in the maximal response. In contrast, cells expressing eFSHR-R633H displayed in a similar manner to that of the cells expressing the eFSHR-wt on signal transduction and maximal response. Conclusion The activating mutant eFSHR-D566G greatly enhanced the signal transduction in response to FSH, in the absence of agonist treatment. We suggest that the state of activation of the eFSHR can modulate its basal cAMP accumulation.
Collapse
Affiliation(s)
- Munkhzaya Byambaragchaa
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Tae-Young Ahn
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Seung-Hee Choi
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea
| | - Myung-Hwa Kang
- Department of Food Science and Nutrition, Hoseo University, Asan 31499, Korea
| | - Kwan-Sik Min
- Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Ansung 17579, Korea.,School of Animal Life Convergence Science, Institute of Genetic Engineering, Hankyong National University, Ansung 17579, Korea
| |
Collapse
|
14
|
Alkhzouz C, Bucerzan S, Miclaus M, Mirea AM, Miclea D. 46,XX DSD: Developmental, Clinical and Genetic Aspects. Diagnostics (Basel) 2021; 11:1379. [PMID: 34441313 PMCID: PMC8392837 DOI: 10.3390/diagnostics11081379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Differences in sex development (DSD) in patients with 46,XX karyotype occur by foetal or postnatal exposure to an increased amount of androgens. These disorders are usually diagnosed at birth, in newborns with abnormal genitalia, or later, due to postnatal virilization, usually at puberty. Proper diagnosis and therapy are mostly based on the knowledge of normal development and molecular etiopathogenesis of the gonadal and adrenal structures. This review aims to describe the most relevant data that are correlated with the normal and abnormal development of adrenal and gonadal structures in direct correlation with their utility in clinical practice, mainly in patients with 46,XX karyotype. We described the prenatal development of structures together with the main molecules and pathways that are involved in sex development. The second part of the review described the physical, imaging, hormonal and genetic evaluation in a patient with a disorder of sex development, insisting more on patients with 46,XX karyotype. Further, 95% of the etiology in 46,XX patients with disorders of sex development is due to congenital adrenal hyperplasia, by enzyme deficiencies that are involved in the hormonal synthesis pathway. The other cases are explained by genetic abnormalities that are involved in the development of the genital system. The phenotypic variability is very important in 46,XX disorders of sex development and the knowledge of each sign, even the most discreet, which could reveal such disorders, mainly in the neonatal period, could influence the evolution, prognosis and life quality long term.
Collapse
Affiliation(s)
- Camelia Alkhzouz
- Mother and Child Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.A.); (S.B.)
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Simona Bucerzan
- Mother and Child Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.A.); (S.B.)
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Maria Miclaus
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Andreea-Manuela Mirea
- Genetic Department, Clinical Emergency Hospital for Children Cluj-Napoca, 400370 Cluj-Napoca, Romania; (M.M.); (A.-M.M.)
| | - Diana Miclea
- Mother and Child Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.A.); (S.B.)
- Molecular Science Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
15
|
Henarejos-Castillo I, Aleman A, Martinez-Montoro B, Gracia-Aznárez FJ, Sebastian-Leon P, Romeu M, Remohi J, Patiño-Garcia A, Royo P, Alkorta-Aranburu G, Diaz-Gimeno P. Machine Learning-Based Approach Highlights the Use of a Genomic Variant Profile for Precision Medicine in Ovarian Failure. J Pers Med 2021; 11:609. [PMID: 34199109 PMCID: PMC8305607 DOI: 10.3390/jpm11070609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic, with genetic causes accounting for 10-25% of cases. Whole-exome sequencing (WES) may enable identifying contributing genes and variant profiles to stratify the population into subtypes of OF. This study sought to identify a blood-based gene variant profile using accumulation of rare variants to promote precision medicine in fertility preservation programs. A case-control (n = 118, n = 32, respectively) WES study was performed in which only non-synonymous rare variants <5% minor allele frequency (MAF; in the IGSR) and coverage ≥ 100× were considered. A profile of 66 variants of uncertain significance was used for training an unsupervised machine learning model to separate cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting application of this approach for precision medicine in fertility preservation.
Collapse
Affiliation(s)
- Ismael Henarejos-Castillo
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
| | - Alejandro Aleman
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
| | - Begoña Martinez-Montoro
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Francisco Javier Gracia-Aznárez
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
| | - Patricia Sebastian-Leon
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Monica Romeu
- Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Jose Remohi
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
- IVI-RMA Valencia, Reproductive Medicine, Plaça de la Policia Local, 3, 46015 Valencia, Spain
| | - Ana Patiño-Garcia
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
- Laboratorio de Pediatría-Unidad de Genética Clínica, Clínica Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain
| | - Pedro Royo
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Gorka Alkorta-Aranburu
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
| | - Patricia Diaz-Gimeno
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| |
Collapse
|
16
|
Benammar A, Fanchin R, Filali-Baba M, Vialard F, Fossard C, Vandame J, Pirtea P, Racowsky C, Ayoubi JM, Poulain M. Utilization of in vitro maturation in cases with a FSH receptor mutation. J Assist Reprod Genet 2021; 38:1311-1321. [PMID: 34089127 DOI: 10.1007/s10815-021-02249-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE To identify the FSH receptor (FSHR) variant and efficacy of in vitro maturation (IVM) in a 28-year-old woman with secondary amenorrhea, primary infertility, and ovarian resistance to FSH, and to analyze the genotype-to-phenotype relationship in cases of FSHR mutation for the development of an IVM algorithm for use in patients with gonadotropin resistance syndrome (GRS). METHODS Oocytes retrieved after menstruation induction with norethisterone, followed by daily estrogen and an ovulatory trigger, underwent IVM, ICSI, and culture in a time-lapse (TL) incubator. Embryo transfers were performed on day 2, and after thawing on day 5. Genes associated with disorders of sex development were sequenced for both the patient and her parents. All reported cases of FSHR mutation were analyzed to investigate genotype/phenotypic relationships. RESULTS After ovum pickup, seven of 16 oocytes matured and all fertilized. After unsuccessful day 2 transfer, our patient delivered with a thawed day 5 blastocyst, the sole embryo without abnormal TL phenotypes. Genetic analysis revealed a new composite heterozygous FSHR variant. Analysis of our patient case with published cases of GRS revealed associations among FSHR variant genotype, location on the FSHR, functionality of tested variants, and type of amenorrhea. An algorithm for application of IVM for GRS patients was developed. CONCLUSIONS We report two novel variants of the FSHR. Although IVM successfully matured some oocytes, only one resulted in an embryo with normal TL phenotypes. We recommend FSHR genetic testing in GRS patients, which will help guide their suitability for IVM.
Collapse
Affiliation(s)
- Achraf Benammar
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France.
| | - Renato Fanchin
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Meryem Filali-Baba
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - François Vialard
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France.,Genetics Federation, CHI de Poissy St Germain en Laye, 78303, Poissy, France
| | - Camille Fossard
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Jessica Vandame
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Paul Pirtea
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Catherine Racowsky
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France
| | - Jean-Marc Ayoubi
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France.,Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| | - Marine Poulain
- Department of Gyneacology, Obstetrics and Reproductive Medicine, Hospital Foch, 92150, Suresnes, France.,Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350, Jouy-en-Josas, France
| |
Collapse
|
17
|
Billhaq DH, Lee S. The Role of the Guanosine Nucleotide-Binding Protein in the Corpus Luteum. Animals (Basel) 2021; 11:1524. [PMID: 34073800 PMCID: PMC8225084 DOI: 10.3390/ani11061524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum is a temporary endocrine gland in the ovary. In the ovarian cycle, repeated patterns of specific cellular proliferation, differentiation, and transformation occur that accompany the formation and regression of the corpus luteum. Molecular mechanism events in the ovarian microenvironment, such as angiogenesis and apoptosis, are complex. Recently, we focused on the role of RAS protein in the ovarian corpus luteum. RAS protein plays a vital role in the modulation of cell survival, proliferation, and differentiation by molecular pathway signaling. Additionally, reproductive hormones regulate RAS activity in the cellular physiological function of ovarian follicles during pre-ovulatory maturation and ovulation. Thus, we have reviewed the role of RAS protein related to the biological events of the corpus luteum in the ovary.
Collapse
Affiliation(s)
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
18
|
Expression of steroidogenic enzymes and TGFβ superfamily members in follicular cells of prepubertal gilts with distinct endocrine profiles. ZYGOTE 2021; 30:65-71. [PMID: 33966679 DOI: 10.1017/s0967199421000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Regulation of the transforming growth factor beta (TGFβ) superfamily by gonadotrophins in swine follicular cells is not fully understood. This study evaluated the expression of steroidogenic enzymes and members of the TGFβ superfamily in prepubertal gilts allocated to three treatments: 1200 IU eCG at D -3 (eCG); 1200 IU eCG at D -6 plus 500 IU hCG at D -3 (eCG + hCG); and the control, composed of untreated gilts. Blood samples and ovaries were collected at slaughter (D0) and follicular cells were recovered thereafter. Relative gene expression was determined by real-time PCR. Serum progesterone levels were greater in the eCG + hCG group compared with the other groups (P < 0.01). No differences were observed in the expression of BMP15, BMPR1A, BMPR2, FSHR, GDF9, LHCGR and TGFBR1 (P > 0.05). Gilts from the eCG group presented numerically greater mean expression of CYP11A1 mRNA than in the control group that approached statistical significance (P = 0.08) and greater expression of CYP19A1 than in both the eCG and the control groups (P < 0.05). Expression of BMPR1B was lower in the eCG + hCG treatment group compared with the control (P < 0.05). In conclusion, eCG treatment increased the relative expression of steroidogenic enzymes, whereas treatment with eCG + hCG increased serum progesterone levels. Although most of the evaluated TGFβ members were not regulated after gonadotrophin treatment, the downregulation of BMPR1B observed after treatment with eCG + hCG and suggests a role in luteinization regulation.
Collapse
|
19
|
Eskenazi S, Bachelot A, Hugon-Rodin J, Plu-Bureau G, Gompel A, Catteau-Jonard S, Molina-Gomes D, Dewailly D, Dodé C, Christin-Maitre S, Touraine P. Next Generation Sequencing Should Be Proposed to Every Woman With "Idiopathic" Primary Ovarian Insufficiency. J Endocr Soc 2021; 5:bvab032. [PMID: 34095689 PMCID: PMC8169040 DOI: 10.1210/jendso/bvab032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Context Primary ovarian insufficiency (POI) affects 1% of women under 40 years of age. POI is idiopathic in more than 70% of cases. Though many candidate genes have been identified in recent years, the prevalence and pathogenicity of abnormalities are still difficult to establish. Objective Our primary objective was to evaluate the prevalence of gene variations in a large prospective multicentric POI cohort. Our secondary objective was to evaluate the correlation between phenotype and genotype. Methods Two hundred and sixty-nine well-phenotyped POI patients were screened for variants of 18 known POI genes (BMP15, DMC1, EIF2S2, FIGLA, FOXL2, FSHR, GDF9, GPR3, HFM1, LHX8, MSH5, NOBOX, NR5A1, PGRMC1, STAG3, XPNPEP2, BHLB, and FSHB) by next generation sequencing (NGS). Abnormalities were classified as "variant" or "variant of unknown signification" (VUS) according to available functional tests or algorithms (SIFT, Polyphen-2, MutationTaster). Results One hundred and two patients (38%) were identified as having at least 1 genetic abnormality. Sixty-seven patients (25%) presented at least 1 variant. Forty-eight patients presented at least 1 VUS (18%). Thirteen patients (5%) had combined abnormalities. NOBOX variants were the most common gene variants involved in POI (9%). Interestingly, we saw no significant differences in the previous family history of POI, ethnic origin, age at onset of POI, primary amenorrhea, or secondary menstrual disturbances between the different genotypes. Conclusion In our study, a high percentage of patients presented gene variants detected by NGS analysis (38%). Every POI patient should undergo NGS analysis to improve medical cares of the patients.
Collapse
Affiliation(s)
- Sarah Eskenazi
- Department of Reproductive Endocrinology, Saint-Antoine Hospital, AP-HP, Paris, France; Center for Rare Growth Disorders and Center for Developmental Disorders: CMERC.,Sorbonne University Medicine, Paris, France
| | - Anne Bachelot
- Sorbonne University Medicine, Paris, France.,Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, AP-HP, Paris, France; Center for Rare Endocrine Disorders and Center for Rare Gynecological Disorders: CMERC
| | - Justine Hugon-Rodin
- Department of Gynecology and Endocrinology, Cochin/Port-Royal Hospital, AP-HP, Paris, France.,Paris Descartes University, Paris, France.,INSERM UMR 1153, EPOPE group, Paris, France
| | - Genevieve Plu-Bureau
- Department of Gynecology and Endocrinology, Cochin/Port-Royal Hospital, AP-HP, Paris, France.,Paris Descartes University, Paris, France.,INSERM UMR 1153, EPOPE group, Paris, France
| | - Anne Gompel
- Department of Gynecology and Endocrinology, Cochin/Port-Royal Hospital, AP-HP, Paris, France.,Paris Descartes University, Paris, France
| | - Sophie Catteau-Jonard
- Department of Medical Gynaecology, CHU Lille, University of Lillle, F-59000 Lille, France
| | - Denise Molina-Gomes
- Department of Assisted Reproductive Technics, Poissy Saint-Germain-en-Laye Hospital, Poissy, France
| | - Didier Dewailly
- Department of Medical Gynaecology, CHU Lille, University of Lillle, F-59000 Lille, France
| | - Catherine Dodé
- Department of Genetics and Molecular Biology, Cochin/Port-Royal Hospital, AP-HP, Paris, France
| | - Sophie Christin-Maitre
- Department of Reproductive Endocrinology, Saint-Antoine Hospital, AP-HP, Paris, France; Center for Rare Growth Disorders and Center for Developmental Disorders: CMERC.,Sorbonne University Medicine, Paris, France.,INSERM UMR-S933, 75012 Paris, France
| | - Philippe Touraine
- Sorbonne University Medicine, Paris, France.,Department of Endocrinology and Reproductive Medicine, Pitié-Salpêtrière Hospital, AP-HP, Paris, France; Center for Rare Endocrine Disorders and Center for Rare Gynecological Disorders: CMERC
| |
Collapse
|
20
|
Zariñán T, Mayorga J, Jardón-Valadez E, Gutiérrez-Sagal R, Maravillas-Montero JL, Mejía-Domínguez NR, Martínez-Luis I, Yacini-Torres OG, Cravioto MDC, Reiter E, Ulloa-Aguirre A. A Novel Mutation in the FSH Receptor (I423T) Affecting Receptor Activation and Leading to Primary Ovarian Failure. J Clin Endocrinol Metab 2021; 106:e534-e550. [PMID: 33119067 DOI: 10.1210/clinem/dgaa782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/13/2022]
Abstract
CONTEXT Follicle-stimulating hormone (FSH) plays an essential role in gonadal function. Loss-of-function mutations in the follicle-stimulating hormone receptor (FSHR) are an infrequent cause of primary ovarian failure. OBJECTIVE To analyze the molecular physiopathogenesis of a novel mutation in the FSHR identified in a woman with primary ovarian failure, employing in vitro and in silico approaches, and to compare the features of this dysfunctional receptor with those shown by the trafficking-defective D408Y FSHR mutant. METHODS Sanger sequencing of the FSHR cDNA was applied to identify the novel mutation. FSH-stimulated cyclic adenosine monophosphate (cAMP) production, ERK1/2 phosphorylation, and desensitization were tested in HEK293 cells. Receptor expression was analyzed by immunoblotting, receptor-binding assays, and flow cytometry. Molecular dynamics simulations were performed to determine the in silico behavior of the mutant FSHRs. RESULTS A novel missense mutation (I423T) in the second transmembrane domain of the FSHR was identified in a woman with normal pubertal development but primary amenorrhea. The I423T mutation slightly impaired plasma membrane expression of the mature form of the receptor and severely impacted on cAMP/protein kinase A signaling but much less on β-arrestin-dependent ERK1/2 phosphorylation. Meanwhile, the D408Y mutation severely affected membrane expression, with most of the FSH receptor located intracellularly, and both signal readouts tested. Molecular dynamics simulations revealed important functional disruptions in both mutant FSHRs, mainly the loss of interhelical connectivity in the D408Y FSHR. CONCLUSIONS Concurrently, these data indicate that conformational differences during the inactive and active states account for the distinct expression levels, differential signaling, and phenotypic expression of the I423T and D408Y mutant FSHRs.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Mayorga
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana, Unidad Lerma, Lerma, Edo. de Mexico, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Omar G Yacini-Torres
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ma-Del-Carmen Cravioto
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, Tours, France
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
21
|
Pharmacogenomic Biomarkers of Follicle-Stimulating Hormone Receptor Malfunction in Females with Impaired Ovarian Response-A Genetic Survey. J Clin Med 2021; 10:jcm10020170. [PMID: 33561079 PMCID: PMC7825139 DOI: 10.3390/jcm10020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays an essential role as one of the most important molecules in response to some of infertility related medications. Impaired ovarian reserve and poor response to such treatments are partially dependent on the FSHR molecule itself. However, the function and drug sensitivity for this receptor may change due to various allele and polymorphisms in the FSHR gene. Studies indicated some of the FSHR-mediated treatments utilized in clinical centers display different outcomes in specific populations, which may arise from FSHR altered genotypes in certain patients. To support the increased demands for reaching the personalized drug and hormone therapy in clinics, focusing on actionable variants through Pharmacogenomic analysis of this receptor may be necessary. The current study tries to display a perspective view on genetic assessments for Pharmacogenomic profiling of the FSHR gene via providing a systematic and critical overview on the genetics of FSHR and its diverse responses to ligands for infertility treatment in females with impaired ovarian responses and show the potential effects of the patient genetic make-up on related binding substances efficacy. All identified functional drug-related alleles were selected through a comprehensive literature search and analyzed. Advanced technologies for the genetic evaluation of them are also discussed properly.
Collapse
|
22
|
Rossetti R, Moleri S, Guizzardi F, Gentilini D, Libera L, Marozzi A, Moretti C, Brancati F, Bonomi M, Persani L. Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset. Front Endocrinol (Lausanne) 2021; 12:664645. [PMID: 34803902 PMCID: PMC8600266 DOI: 10.3389/fendo.2021.664645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/22/2021] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is one of the major causes of female infertility associated with the premature loss of ovarian function in about 3.7% of women before the age of 40. This disorder is highly heterogeneous and can manifest with a wide range of clinical phenotypes, ranging from ovarian dysgenesis and primary amenorrhea to post-pubertal secondary amenorrhea, with elevated serum gonadotropins and hypoestrogenism. The ovarian defect still remains idiopathic in some cases; however, a strong genetic component has been demonstrated by the next-generation sequencing (NGS) approach of familiar and sporadic POI cases. As recent evidence suggested an oligogenic architecture for POI, we developed a target NGS panel with 295 genes including known candidates and novel genetic determinants potentially involved in POI pathogenesis. Sixty-four patients with early onset POI (range: 10-25 years) of our cohort have been screened with 90% of target coverage at 50×. Here, we report 48 analyzed patients with at least one genetic variant (75%) in the selected candidate genes. In particular, we found the following: 11/64 patients (17%) with two variants, 9/64 (14%) with three variants, 9/64 (14%) with four variants, 3/64 (5%) with five variants, and 2/64 (3%) with six variants. The most severe phenotypes were associated with either the major number of variations or a worse prediction in pathogenicity of variants. Bioinformatic gene ontology analysis identified the following major pathways likely affected by gene variants: 1) cell cycle, meiosis, and DNA repair; 2) extracellular matrix remodeling; 3) reproduction; 4) cell metabolism; 5) cell proliferation; 6) calcium homeostasis; 7) NOTCH signaling; 8) signal transduction; 9) WNT signaling; 10) cell death; and 11) ubiquitin modifications. Consistently, the identified pathways have been described in other studies dissecting the mechanisms of folliculogenesis in animal models of altered fertility. In conclusion, our results contribute to define POI as an oligogenic disease and suggest novel candidates to be investigated in patients with POI.
Collapse
Affiliation(s)
- Raffaella Rossetti
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| | - Silvia Moleri
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Fabiana Guizzardi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Libera
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Anna Marozzi
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Costanzo Moretti
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Francesco Brancati
- Medical Genetics, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Human Functional Genomics, IRCCS San Raffaele Pisana, Rome, Italy
| | - Marco Bonomi
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- *Correspondence: Raffaella Rossetti, ; Luca Persani,
| |
Collapse
|
23
|
Banerjee AA, Joseph S, Mahale SD. From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS J 2020; 288:2673-2696. [DOI: 10.1111/febs.15649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Antara A. Banerjee
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Shaini Joseph
- Genetic Research Center National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| | - Smita D. Mahale
- Division of Structural Biology National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
- ICMR Biomedical Informatics Centre National Institute for Research in Reproductive Health (Indian Council of Medical Research) Parel India
| |
Collapse
|
24
|
Prabhudesai KS, Raje S, Dhamanaskar A, Modi D, Dighe V, Contini A, Idicula-Thomas S. Identification and in vivo validation of a 9-mer peptide derived from FSHβ with FSHR antagonist activity. Peptides 2020; 132:170367. [PMID: 32645381 DOI: 10.1016/j.peptides.2020.170367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022]
Abstract
FSH-FSHR interaction is critical for folliculogenesis, spermatogenesis and progression of several cancers. Therefore, FSHR is an attractive target for fertility regulation and cancer therapeutics. Based on homology and structural analysis of hFSH-FSHR(ECD) complex, a minimal continuous stretch within FSHβ seat-belt loop (FSHβ (89-97)) was identified to be crucial for FSHR interaction. The ability of FSHβ (89-97) peptide to neutralize FSHR activity was evaluated by a panel of in vitro and in vivo experiments. The synthetic peptide significantly inhibited binding of [125I]-FSH to rat Fshr as well as FSH-induced cAMP production. In immature rats, FSHβ (89-97) peptide administration reduced FSH-mediated increase in ovarian weight. The peptide inhibited transition of follicles from pre-antral to antral stage and hindered the cell cycle progression of granulosa cells beyond G0/G1 phase. In adult rats, administration of the peptide inhibited estradiol synthesis and significantly perturbed folliculogenesis.
Collapse
Affiliation(s)
- Kaushiki S Prabhudesai
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Sahil Raje
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Ankita Dhamanaskar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, Maharashtra, India
| | - Vikas Dighe
- National Center for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Sezione di Chimica Generale e Organica "Alessandro Marchesini", Università degli Studi di Milano, Via Venezian, 21, 20133, Milano, Italy
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive Health, Mumbai, 400012, Maharashtra, India.
| |
Collapse
|
25
|
Constitutive Activation and Inactivation of Mutations Inducing Cell Surface Loss of Receptor and Impairing of Signal Transduction of Agonist-Stimulated Eel Follicle-Stimulating Hormone Receptor. Int J Mol Sci 2020; 21:ijms21197075. [PMID: 32992880 PMCID: PMC7583038 DOI: 10.3390/ijms21197075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we investigated the signal transduction of mutants of the eel follicle-stimulating hormone receptor (eelFSHR). Specifically, we examined the constitutively activating mutant D540G in the third intracellular loop, and four inactivating mutants (A193V, N195I, R546C, and A548V). To directly assess functional effects, we conducted site-directed mutagenesis to generate mutant receptors. We measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary (CHO-K1) cells and investigated cell surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney (HEK) 293 cells. The cells expressing eelFSHR-D540G exhibited a 23-fold increase in the basal cAMP response without agonist treatment. The cells expressing A193V, N195I, and A548V mutants had completely impaired signal transduction, whereas those expressing the R546C mutant exhibited little increase in cAMP responsiveness and a small increase in signal transduction. Cell surface receptor loss in the cells expressing inactivating mutants A193V, R546C, and A548V was clearly slower than in the cell expressing the wild-type eelFSHR. However, cell surface receptor loss in the cells expressing inactivating mutant N195I decreased in a similar manner to that of the cells expressing the wild-type eelFSHR or the activating mutant D540G, despite the completely impaired cAMP response. These results provide important information regarding the structure–function relationships of G protein-coupled receptors during signal transduction.
Collapse
|
26
|
Sassi A, Désir J, Janssens V, Marangoni M, Daneels D, Gheldof A, Bonduelle M, Van Dooren S, Costagliola S, Delbaere A. Novel inactivating follicle-stimulating hormone receptor mutations in a patient with premature ovarian insufficiency identified by next-generation sequencing gene panel analysis. F S Rep 2020; 1:193-201. [PMID: 34223243 PMCID: PMC8244262 DOI: 10.1016/j.xfre.2020.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 01/05/2023] Open
Abstract
Objective To find the genetic etiology of premature ovarian insufficiency (POI) in a patient with primary amenorrhea and hypergonadotropic hypogonadism. Design Case report. Setting University hospital. Patient(s) A Belgian woman aged 32 years with POI at the age of 17, her parents, and her sister whose POI was diagnosed at age 29. Intervention(s) Analysis of a panel of 31 genes implicated in POI (POIGP) using next-generation sequencing (NGS), Sanger sequencing, and in vitro functional study. Main Outcome Measure(s) Gene variants, family mutational segregation, and in vitro functional impact of the mutant proteins. Result(s) The analysis of the gene panel using NGS identified the presence of two novel follicle-stimulating hormone receptor (FSHR) missense mutations at a compound heterozygous state in the affected patient: c.646 G>A, p.Gly216Arg, and c.1313C>T, p.Thr438Ile. Sanger sequencing showed the presence of each mutation at heterozygous state in the patient’s parents and at heterozygous compound state in the affected sister. Both substituted amino acids (Gly216 and Thr438) were conserved in FSHR of several vertebrate species as well as in other glycoproteins receptors (TSHR and LHCGHR), suggesting a potentially important role in glycoprotein receptor function. An in vitro functional study showed similar results for both variants with more than 90% reduction of their cell surface expression and a 55% reduction of their FSH-induced cyclic adenosine 3′:5′ monophosphate (cAMP) production compared with the wild-type FSHR. Conclusion(s) The analysis of a gene panel of 31 genes implicated in POI allowed us to identify two novel partially inactivating mutations of FSHR that are likely responsible for the POI phenotype of the proband and of her affected sister.
Collapse
Affiliation(s)
- Asma Sassi
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Désir
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Janssens
- IRIBHM, Institute of Interdisciplinary Research in Human and Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Martina Marangoni
- Department of Genetics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Dorien Daneels
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Maryse Bonduelle
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Sonia Van Dooren
- Brussels Interuniversity Genomics High Throughput Core (Bright Core), Brussels, Belgium.,Centre for Medical Genetics, Reproduction and Genetics and Regenerative Medicine Research Cluster, Reproduction and Genetics Research Group, Vrije Universiteit Brussel-UZ Brussel, Brussels, Belgium
| | - Sabine Costagliola
- IRIBHM, Institute of Interdisciplinary Research in Human and Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Delbaere
- Fertility Clinic, Department of Gynecology and Obstetrics, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
He X, Zhang Z, Chu M. The effect of SNP rs400827589 in exon 2 of the MTNR1B gene on reproductive seasonality and litter size in sheep. Vet Med Sci 2020; 6:804-812. [PMID: 32378356 PMCID: PMC7738726 DOI: 10.1002/vms3.280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
In mammals, the melatonin receptor gene has been widely studied since it has a great influence on reproductive traits. However, little is known about the association between polymorphism of the coding region of the MTNR1B gene and year‐round oestrus or the litter size in Small Tail Han sheep. To better understand the effects of single nucleotide polymorphism (SNP) rs400827589 in MTNR1B, a population polymorphism analysis was conducted using genotyping data in 45 sheep breeds around the world. The results indicated that TT was the dominant genotype in all sheep breeds. The associations of this SNP with reproductive seasonality and litter size in Small Tail Han sheep showed rs400827589 was correlated with fecundity as assessed by reproductive seasonality and litter size (p < .05). Bioinformatics analysis indicated the change in amino acid from Ile to Leu may affect the function of the MTNR1B protein by impacting the secondary and tertiary protein structures. The present results demonstrate that rs400827589 could be used in the marker‐assisted selection of the litter size in Small Tail Han sheep.
Collapse
Affiliation(s)
- Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Li L, Feng F, Zhao M, Li T, Yue W, Ma X, Wang B, Yin C. NOTCH2 variant D1853H is mutated in two non-syndromic premature ovarian insufficiency patients from a Chinese pedigree. J Ovarian Res 2020; 13:41. [PMID: 32312275 PMCID: PMC7171760 DOI: 10.1186/s13048-020-00645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is a severe disorder of female infertility, characterized by 4–6 months of amenorrhea before the age of 40 years, with elevated follicle stimulating hormone (FSH) levels (> 25 IU/L). Although several genes have been reported to contribute to the genetic basis of POI, the molecular mechanism of POI remains unclear. Methods Whole-exome sequencing (WES) was performed. Sanger sequencing was carried out to validate the variant in the proband and her mother. In silico algorithms were used to analyze the mutational effect of the variant. Protein 3D structural modeling was used for predicting mutated protein structures. Vector construction and plasmids transfection were performed, and subsequently RNA-sequencing (RNA-seq) was carried out in each group to dissect the differentially expressed genes in wild-type (WT) and D1853H NOTCH2 mutant expressing groups. Gene Ontology analysis was also used to analyze the enriched biological processes or pathways among the differentially expressed genes. Results We report two non-syndromic POI patients from a Chinese pedigree. The FSH level of the proband (the daughter) was 46 IU/L at the age of 22. Her menarche was at the age of 12, but she was amenorrhea at the age of 20. By WES, a rare heterozygous variant (c.5557G > C;p.D1853H) in the NOTCH2 gene was identified. In silico analysis suggested that p.D1853H was a pathogenic allele. Protein 3D structural modeling suggested that D1853H may enhance or weaken the electrostatic surface potential. By molecular analysis, we found that cells expressing the D1853H NOTCH2 mutant had similar effect in activating the NOTCH signaling pathway downstream target genes. However, 106 protein-coding genes were differentially expressed between D1853H expressing cells and WT NOTCH2 expressing cells, and these genes were enriched for collagen degradation, NCAM1 interactions and HDACs deacetylate histones, revealing a unknown underlying mechanism of the pathology that leads to POI. Conclusions We conclude that the rare heterozygous variant in NOTCH2 may be associated with POI. This finding provides researchers and clinicians with a better understanding of the etiology, molecular mechanism and genetic consulting of POI.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China
| | - Fan Feng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Haidian, Beijing, 100084, China
| | - Minying Zhao
- Department of Reproductive Medicine, the First Hospital of Shijiazhuang, 36 Fanxi Road, Shijiazhuang, 050011, Hebei, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, 12, Dahuisi Road, Haidian, Beijing, 100081, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China
| | - Xu Ma
- Center for Genetics, National Research Institute for Family Planning, 12, Dahuisi Road, Haidian, Beijing, 100081, China.
| | - Binbin Wang
- Center for Genetics, National Research Institute for Family Planning, 12, Dahuisi Road, Haidian, Beijing, 100081, China.
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing, 100026, China.
| |
Collapse
|
29
|
Xia Y, Wang Q, He XD, Chen Y, JiGe MT, Zi XD. Cloning and expression analysis of the follicle-stimulating hormone receptor (FSHR) gene in the reproductive axis of female yaks (Bos grunniens). Domest Anim Endocrinol 2020; 70:106383. [PMID: 31479928 DOI: 10.1016/j.domaniend.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Follicle-stimulating hormone receptor (FSHR) plays a central role in promoting follicle maturation through the follicle-stimulating hormone (FSH)-mediated cAMP pathway in animals. The objectives of the present study were to clone the FSHR gene of yaks (Bos grunniens) and compare differences in FSHR mRNA expression in the reproductive axis between yaks and cattle. Hypothalamus, anterior pituitary, oviduct, ovary, and uterus tissue samples were collected from adult female yaks (n = 5) and cattle (n = 5) during the follicular phase. Using reverse transcriptase-polymerase chain reaction (RT-PCR), we found that the FSHR coding region of the yak is 2088 bp and encodes 695 amino acids. Its amino acid sequence showed 99.38%-72.22% similarity to the homologous genes of cattle, goats, sheep, cats, donkeys, horses, humans, chickens, monkeys, mice, rats, and wild boar. Real-time PCR analysis revealed that the FSHR gene was expressed in all tissues examined. Expression of the FSHR gene in the yak was higher in the uterus than other tissues (P < 0.05) but, in cattle, was higher in the ovary than other tissues (P < 0.05). The FSHR gene expression level in the cattle ovary was significantly higher than that in the yak ovary (P < 0.01). These results indicate that the FSHR gene is relatively conserved in the course of animal evolution. The variation in sequence and expression level of FSHR between the two species might be associated with the difference in their reproduction.
Collapse
Affiliation(s)
- Y Xia
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - Q Wang
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - X D He
- Ministry of Education Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources, Southwest Minzu University, Chengdu 610041, PR China
| | - Y Chen
- Ministry of Education Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources, Southwest Minzu University, Chengdu 610041, PR China
| | - M T JiGe
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China
| | - X D Zi
- The Key Laboratory of Animal Science of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
30
|
Khor S, Lyu Q, Kuang Y, Lu X. Novel FSHR variants causing female resistant ovary syndrome. Mol Genet Genomic Med 2019; 8:e1082. [PMID: 31830376 PMCID: PMC7005632 DOI: 10.1002/mgg3.1082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 11/18/2022] Open
Abstract
Background Pathogenic variants of follicle‐stimulating hormone receptor (FSHR) are known to cause amenorrhea and infertility in women. However, only a limited number of pathogenic FSHR variants have been reported, and few reports described detailed characteristics of patients with pathogenic FSHR variants. Methods The affected siblings and both parents were subjected to whole‐genome exon sequencing. Transient transfection of HEK 293T cells was performed with constructed vectors. The cellular localization of the FSHR protein was evaluated using confocal microscopy, and cyclic adenosine monophosphate (cAMP) production was detected with a cAMP ELISA kit. Results A Chinese family with two siblings carrying compound heterozygous pathogenic variants of FSHR: c.182T>A (p.Ile61Asn) and c.2062C>A (p.Pro688Thr). Both siblings had amenorrhea, infertility, and resistance to gonadotropin (Gn) stimulation but showed high anti‐Müllerian hormone levels and early antral follicles. Molecular dynamics simulations of the FSHR variants revealed significant changes in structural characteristics and electrostatic potential. In vitro analysis indicated that the p.Ile61Asn variant lacked cell surface localization and completely abolished the cAMP second messenger response. The p.Pro688Thr variant retained cell surface localization but caused decreased FSH‐induced cAMP production. Conclusion We found two novel pathogenic FSHR variants causing resistant ovarian syndrome. This study expands the genotypic spectrum of pathogenic FSHR variants and our knowledge of phenotype–genotype correlations.
Collapse
Affiliation(s)
- Shuzin Khor
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Howard SR, Dunkel L. Delayed Puberty-Phenotypic Diversity, Molecular Genetic Mechanisms, and Recent Discoveries. Endocr Rev 2019; 40:1285-1317. [PMID: 31220230 PMCID: PMC6736054 DOI: 10.1210/er.2018-00248] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
Abstract
This review presents a comprehensive discussion of the clinical condition of delayed puberty, a common presentation to the pediatric endocrinologist, which may present both diagnostic and prognostic challenges. Our understanding of the genetic control of pubertal timing has advanced thanks to active investigation in this field over the last two decades, but it remains in large part a fascinating and mysterious conundrum. The phenotype of delayed puberty is associated with adult health risks and common etiologies, and there is evidence for polygenic control of pubertal timing in the general population, sex-specificity, and epigenetic modulation. Moreover, much has been learned from comprehension of monogenic and digenic etiologies of pubertal delay and associated disorders and, in recent years, knowledge of oligogenic inheritance in conditions of GnRH deficiency. Recently there have been several novel discoveries in the field of self-limited delayed puberty, encompassing exciting developments linking this condition to both GnRH neuronal biology and metabolism and body mass. These data together highlight the fascinating heterogeneity of disorders underlying this phenotype and point to areas of future research where impactful developments can be made.
Collapse
Affiliation(s)
- Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
32
|
Yoon JY, Cheon CK. Evaluation and management of amenorrhea related to congenital sex hormonal disorders. Ann Pediatr Endocrinol Metab 2019; 24:149-157. [PMID: 31607107 PMCID: PMC6790874 DOI: 10.6065/apem.2019.24.3.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023] Open
Abstract
Primary amenorrhea is a symptom with a substantial list of underlying etiologies which presents in adolescence, although some conditions are diagnosed in childhood. Primary amenorrhea is defined as not having menarche until 15 years of age (or 13 years with secondary sex characteristics). Various etiologies of primary amenorrhea include outflow tract obstructions, gonadal dysgenesis, abnormalities of the central nervous system, various endocrine diseases, chronic illnesses, psychologic problems, and constitutional delay of puberty. The management of primary amenorrhea may vary considerably depending on the patient and the specific diagnosis. In this article, the various causes, evaluation, and management of primary amenorrhea are reviewed with special emphasis on congenital sex hormonal disorders.
Collapse
Affiliation(s)
- Ju Young Yoon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea,Address for correspondence: Chong Kun Cheon, MD, PhD Division of Pediatric Endocrinology, Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Geumo-ro 20, Yangsan 50612, Korea Tel: +82-55-360-3158 Fax: +82-55-360-2181 E-mail:
| |
Collapse
|
33
|
Hsueh AJ, He J. Gonadotropins and their receptors: coevolution, genetic variants, receptor imaging, and functional antagonists. Biol Reprod 2019; 99:3-12. [PMID: 29462242 DOI: 10.1093/biolre/ioy012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/06/2018] [Indexed: 12/29/2022] Open
Abstract
Gonadotropins belong to the family of dimeric glycoprotein hormones and regulate gonadal physiology mediated by G protein-coupled, seven-transmembrane receptors. These glycoprotein hormones are widely used in the clinic to promote ovarian follicle development and for treating some cases of male infertility. We traced the coevolution of dimeric gonadotropin hormones and their receptors, together with thyrotropin and its receptor. We updated recent findings on human genetic variants of these genes and their association with dizygotic twining, polycystic ovarian syndrome, primary ovarian insufficiency, male-limited precocious puberty, and infertility. In addition to the known physiological roles of gonadotropin-receptor signaling in gonadal tissues, we also discussed emerging understanding of extragonadal functions of gonadotropins in bones and adipose tissues, together with recent advances in in vivo imaging of gonadotropin receptors in live animals. Recent development of gonadotropin receptor agonists and antagonists were summarized with an emphasis on the development of functional antagonists for FSH receptors to alleviate osteoporosis and obesity associated with menopause.
Collapse
Affiliation(s)
- Aaron J Hsueh
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| | - Jiahuan He
- Program of Reproductive and Stem Cell Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
34
|
Liu H, Guo T, Gong Z, Yu Y, Zhang Y, Zhao S, Qin Y. Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Mol Cell Endocrinol 2019; 492:110446. [PMID: 31077743 DOI: 10.1016/j.mce.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Premature ovarian insufficiency (POI) is characterized by amenorrhea and elevated levels of follicle-stimulating hormone (FSH, usually > 25 IU/L) before 40 years of age. To identify the relationship between FSHR mutations and sporadic POI patients of Han Chinese descent, we performed Sanger sequencing of FSHR gene in 192 sporadic POI patients and 192 matched controls of Han Chinese descent. Two heterozygous missense variants, c.793A > G (p.M265V) and c.1789C > A (p.L597I), were identified exclusively in POI patients. Functional studies showed that both mutants were expressed on the cell surface, while p.L597I showed decreased membrane localization compared with wild-type FSHR. Moreover, FSH-induced cAMP production and ERK1/2 phosphorylation were reduced in the cells transfected with p.L597I mutant, but not in the cells transfected with p.M265V mutant. In addition, two single-nucleotide polymorphisms (SNPs), rs1394205 (c.-29G > A) and rs140106399 (c.*111 T > C), were identified in both POI group and control group with significantly different genotypic and allelic distributions. These results indicated that dysfunctional FSHR due to mutation or SNPs might explain a fraction of sporadic POI cases in Han Chinese population.
Collapse
Affiliation(s)
- Hongli Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Zheng Gong
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yongze Yu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Yingxin Zhang
- Department of Obstetrics & Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
| |
Collapse
|
35
|
Zhang Z, Liu Q, Di R, Hu W, Wang X, He X, Ma L, Chu M. Single nucleotide polymorphisms in BMP2 and BMP7 and the association with litter size in Small Tail Han sheep. Anim Reprod Sci 2019; 204:183-192. [PMID: 30962038 DOI: 10.1016/j.anireprosci.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022]
Abstract
Although it has been investigated for many years, the physiological processes regulating prolificacy in sheep remains unclear because of regulation by many genes. To better understand the effects of three single nucleotide polymorphisms (SNPs) comprising g.48462350C>T in BMP2, g.58171856C>G and g.58171886A>C in BMP7, a population genetic analysis was conducted using data obtained from genotyping in 768 sheep from six breeds (three polytocous and three monotocous). The results indicate that all the sheep breeds were considered to conform to the Hardy-Weinberg equilibrium (P > 0.05). The associations of these three SNPs with litter size in 384 Small Tail Han sheep were analyzed, therefore, and found to be correlated with fecundity as assessed by mean litter size (P < 0.05). Bioinformatic analysis indicated there was a transmembrane domain change that occurred after a mutation in BMP2 at g.48462350C>T, and changes involving transcription factors such as USF1, USF2 and INMS1 in the BMP7 promoter region might be involved in greater sheep prolificacy.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
36
|
Tucker EJ, Jaillard S, Grover SR, van den Bergen J, Robevska G, Bell KM, Sadedin S, Hanna C, Dulon J, Touraine P, Sinclair AH. TP63-truncating variants cause isolated premature ovarian insufficiency. Hum Mutat 2019; 40:886-892. [PMID: 30924587 DOI: 10.1002/humu.23744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Premature ovarian insufficiency involves amenorrhea and elevated follicle-stimulating hormone before age 40, and its genetic basis is poorly understood. Here, we study 13 premature ovarian insufficiency (POI) patients using whole-exome sequencing. We identify PREPL and TP63 causative variants, and variants in other potentially novel POI genes. PREPL deficiency is a known cause of syndromic POI, matching the patients' phenotype. A role for TP63 in ovarian biology has previously been proposed but variants have been described in multiorgan syndromes, and not isolated POI. One patient with isolated POI harbored a de novo nonsense TP63 variant in the terminal exon and an unrelated patient had a different nonsense variant in the same exon. These variants interfere with the repression domain while leaving the activation domain intact. We expand the phenotypic spectrum of TP63-related disorders, provide a new genotype:phenotype correlation for TP63 and identify a new genetic cause of isolated POI.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Sylvie Jaillard
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,INSERM U1085-IRSET, Université de Rennes1, Frances Pathologies Gynécologiques Rares, F-35042, Rennes, Paris, France
| | - Sonia R Grover
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Paediatric and Adolescent Gynaecology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jocelyn van den Bergen
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gorjana Robevska
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Katrina M Bell
- Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon Sadedin
- Bioinformatics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Chloe Hanna
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatric and Adolescent Gynaecology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence desMaladies Endocriniennes Rares de laCroissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence desMaladies Endocriniennes Rares de laCroissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Andrew H Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
He WB, Du J, Yang XW, Li W, Tang WL, Dai C, Chen YZ, Zhang YX, Lu GX, Lin G, Gong F, Tan YQ. Novel inactivating mutations in the FSH receptor cause premature ovarian insufficiency with resistant ovary syndrome. Reprod Biomed Online 2019; 38:397-406. [DOI: 10.1016/j.rbmo.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 02/05/2023]
|
38
|
Jardón-Valadez E, Castillo-Guajardo D, Martínez-Luis I, Gutiérrez-Sagal R, Zariñán T, Ulloa-Aguirre A. Molecular dynamics simulation of the follicle-stimulating hormone receptor. Understanding the conformational dynamics of receptor variants at positions N680 and D408 from in silico analysis. PLoS One 2018; 13:e0207526. [PMID: 30462715 PMCID: PMC6248991 DOI: 10.1371/journal.pone.0207526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/01/2018] [Indexed: 11/18/2022] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) is a G-protein coupled receptor (GPCR) and a prototype of the glycoprotein hormone receptors subfamily of GPCRs. Structural data of the FSHR ectodomain in complex with follicle-stimulating hormone suggests a "pull and lift" activation mechanism that triggers a conformational change on the seven α-helix transmembrane domain (TMD). To analyze the conformational changes of the FSHR TMD resulting from sequence variants associated with reproductive impairment in humans, we set up a computational approach combining helix modeling and molecular simulation methods to generate conformational ensembles of the receptor at room (300 K) and physiological (310 K) temperatures. We examined the receptor dynamics in an explicit membrane environment of polyunsaturated phospholipids and solvent water molecules. The analysis of the conformational dynamics of the functional (N680 and S680) and dysfunctional (mutations at D408) variants of the FSHR allowed us to validate the FSHR-TMD model. Functional variants display a concerted motion of flexible intracellular regions at TMD helices 5 and 6. Disruption of side chain interactions and conformational dynamics were detected upon mutation at D408 when replaced with alanine, arginine, or tyrosine. Dynamical network analysis confirmed that TMD helices 2 and 5 may share communication pathways in the functional FSHR variants, whereas no connectivity was detected in the dysfunctional mutants, indicating that the global dynamics of the FSHR was sensitive to mutations at amino acid residue 408, a key position apparently linked to misfolding and variable cell surface plasma membrane expression of FSHRs with distinct mutations at this position.
Collapse
Affiliation(s)
- Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Derik Castillo-Guajardo
- Departamento de Ciencias Ambientales Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación, National University of Mexico (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, National University of Mexico (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, National University of Mexico (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, National University of Mexico (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| |
Collapse
|
39
|
Preston CC, Storm EC, Leonard RJ, Faustino RS. Emerging roles for nucleoporins in reproductive cellular physiology 1. Can J Physiol Pharmacol 2018; 97:257-264. [PMID: 30388388 DOI: 10.1139/cjpp-2018-0436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nucleoporins are a specialized subset of nuclear proteins that comprise the nuclear pore complex and regulate nucleocytoplasmic transport. Recent demonstrations of roles for individual nucleoporins in multiple paradigms of differentiation via mechanisms independent of nuclear trafficking represent conceptual advances in understanding the contributions of nucleoporins to cellular development. Among these, a functional role for nucleoporins in reproductive fitness and gametogenesis has been identified, supported by robust models and clinical studies that leverage the power of next generation sequencing technology to identify reproductive-disease-associated mutations in specific nucleoporins. Proper nucleoporin function manifests in different ways during oogenesis and spermatogenesis. However, nonhuman models of gametogenesis may not recapitulate human mechanisms, which may confound translational interpretation and relevance. To circumvent these limitations, identification of reproductive pathologies in patients, combined with next generation sequencing approaches and advanced in silico tools, offers a powerful approach to investigate the potential function of nucleoporins in human reproduction. Ultimately, elucidating the role of nucleoporins in reproductive biology will provide opportunities for predictive, diagnostic, and therapeutic strategies to address reproductive disorders.
Collapse
Affiliation(s)
- Claudia C Preston
- a Genetics and Genomics, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD 57104, USA
| | - Emily C Storm
- a Genetics and Genomics, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD 57104, USA
| | - Riley J Leonard
- a Genetics and Genomics, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD 57104, USA
| | - Randolph S Faustino
- a Genetics and Genomics, Sanford Research, 2301 E. 60th Street N., Sioux Falls, SD 57104, USA.,b Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 1400 W. 22nd Street, Sioux Falls, SD 57105, USA
| |
Collapse
|
40
|
Jiao X, Ke H, Qin Y, Chen ZJ. Molecular Genetics of Premature Ovarian Insufficiency. Trends Endocrinol Metab 2018; 29:795-807. [PMID: 30078697 DOI: 10.1016/j.tem.2018.07.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
Premature ovarian insufficiency (POI) is highly heterogeneous in genetic etiology. Yet identifying causative genes has been challenging with candidate gene approaches. Recent approaches using next generation sequencing (NGS), especially whole exome sequencing (WES), in large POI pedigrees have identified new causatives and proposed relevant candidates, mainly enriched in DNA damage repair, homologous recombination, and meiosis. In the near future, NGS or whole genome sequencing will help better define genes involved in intricate regulatory networks. The research into miRNA and age at menopause represents an emerging field that will help unveil the molecular mechanisms underlying pathogenesis of POI. Shedding light on the genetic architecture is important in interpreting pathogenesis of POI, and will facilitate risk prediction for POI.
Collapse
Affiliation(s)
- Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Suzhou Institute of Shandong University, Suzhou 215123, Jiangsu, China
| | - Hanni Ke
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan 250021, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250021, Shandong, China; The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250021, Shandong, China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200127, China.
| |
Collapse
|
41
|
Wang D, Du X, Li Y, Li Q. A polymorphism in the transcriptional regulatory region strongly influences ovine FSHR mRNA decay. Reprod Domest Anim 2018; 54:83-90. [PMID: 30153358 DOI: 10.1111/rda.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
Abstract
Follicle-stimulating hormone receptor (FSHR) is an important G protein-coupled receptor, which is required for steroidogenesis, follicular development and female infertility. Here, we report a novel polymorphism in the 3'-UTR that strongly influences ovine FSHR mRNA decay. The partial 3'-UTR sequence of Hu sheep FSHR gene was isolated and characterized, and a polymorphism (c.2327A>G) was identified. Luciferase assay and qRT-PCR showed that c.2327A>G polymorphism in the 3'-UTR exerts a strong regulatory role in FSHR transcription. This regulatory role is achieved by affecting FSHR mRNA decay. Furthermore, the c.2327A>G mutation in the 3'-UTR influences ARE (AU-rich element, a cis-acting element promoting mRNA decay)-mediated mRNA decay of Hu sheep FSHR gene. Together, our study identified a novel polymorphism and elucidated a new mechanism underlying transcriptional regulation of FSHR in mammals.
Collapse
Affiliation(s)
- Dedi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yinxia Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
42
|
Chen B, Li L, Wang J, Zhou Y, Zhu J, Li T, Pan H, Liu B, Cao Y, Wang B. Identification of the first homozygous POLG mutation causing non-syndromic ovarian dysfunction. Climacteric 2018; 21:467-471. [PMID: 29992832 DOI: 10.1080/13697137.2018.1467891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the genetic cause of non-syndromic ovarian dysfunction in a patient from a consanguineous family. METHODS This study examined a patient with irregular menstrual cycles and abnormal oocytes. The patient had undergone irregular hormone replacement therapy over 3 years to adjust the menstrual cycle and improve ovarian function. Prior to ovarian stimulation in our hospital, 3 months of androgen and regular hormone therapy were used as an intervention method. No follicular development was detected in the subsequent three cycles using letrozole treatment. The patient then received a constantly adjusted dose of menotropins, but produced only one oocyte. RESULTS Whole-exome sequencing analysis identified the first homozygous POLG mutation (c.2890C > T; p.R964C) associated with ovarian dysfunction. Sanger sequencing was used to validate. In silico analysis suggested that the p.R964C mutation was pathogenic. Conservation analysis demonstrated that R964 was an important site for the DNA polymerase function of POLG. CONCLUSIONS Biallelic mutations in POLG may be associated with ovarian dysfunction. This study has improved our understanding of POLG-related genetic mutations in ovarian dysfunction, and the mode of inheritance of certain sequence variants. This information will assist genetic counseling and precision medicine in the future.
Collapse
Affiliation(s)
- B Chen
- a Department of Obstetrics and Gynecology , Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Reproductive Genetics , Anhui Medical University , Hefei , China.,c Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei , China
| | - L Li
- d Central Laboratory, Beijing Obstetrics and Gynecology Hospital , Capital Medical University , Beijing , China
| | - J Wang
- e Department of Medical Genetics and Developmental Biology , School of Basic Medical Sciences, Capital Medical University , Beijing , China
| | - Y Zhou
- a Department of Obstetrics and Gynecology , Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Reproductive Genetics , Anhui Medical University , Hefei , China.,c Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei , China
| | - J Zhu
- a Department of Obstetrics and Gynecology , Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Reproductive Genetics , Anhui Medical University , Hefei , China.,c Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei , China
| | - T Li
- f Center for Genetics , National Research Institute for Family Planning , Beijing , China
| | - H Pan
- f Center for Genetics , National Research Institute for Family Planning , Beijing , China
| | - B Liu
- f Center for Genetics , National Research Institute for Family Planning , Beijing , China
| | - Y Cao
- a Department of Obstetrics and Gynecology , Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,b Institute of Reproductive Genetics , Anhui Medical University , Hefei , China.,c Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs , Hefei , China
| | - B Wang
- a Department of Obstetrics and Gynecology , Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University , Hefei , China.,f Center for Genetics , National Research Institute for Family Planning , Beijing , China.,g Key Laboratory of Family Planning and Reproductive Genetics , National Health and Family Planning Commission, Hebei Research Institute for Family Planning , Hebei , China
| |
Collapse
|
43
|
Huhtaniemi I, Hovatta O, La Marca A, Livera G, Monniaux D, Persani L, Heddar A, Jarzabek K, Laisk-Podar T, Salumets A, Tapanainen JS, Veitia RA, Visser JA, Wieacker P, Wolczynski S, Misrahi M. Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends Endocrinol Metab 2018; 29:400-419. [PMID: 29706485 DOI: 10.1016/j.tem.2018.03.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Primary ovarian insufficiency (POI) affects ∼1% of women before 40 years of age. The recent leap in genetic knowledge obtained by next generation sequencing (NGS) together with animal models has further elucidated its molecular pathogenesis, identifying novel genes/pathways. Mutations of >60 genes emphasize high genetic heterogeneity. Genome-wide association studies have revealed a shared genetic background between POI and reproductive aging. NGS will provide a genetic diagnosis leading to genetic/therapeutic counseling: first, defects in meiosis or DNA repair genes may predispose to tumors; and second, specific gene defects may predict the risk of rapid loss of a persistent ovarian reserve, an important determinant in fertility preservation. Indeed, a recent innovative treatment of POI by in vitro activation of dormant follicles proved to be successful.
Collapse
Affiliation(s)
- Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Outi Hovatta
- Karolinska Institute, Stockholm, Sweden, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Gabriel Livera
- Laboratory of Development of the Gonads, Unit of Genetic Stability, Stem Cells and Radiation: UMR 967, INSERM; CEA/DRF/iRCM/SCSR; Univ. Paris Diderot, Sorbonne Paris Cité; Univ. Paris-Sud, Université Paris-Saclay, Fontenay aux Roses, F-92265, France
| | - Danielle Monniaux
- UMR85 PRC, Physiology of Reproduction and Behavior, INRA, CNRS, IFCE, University of Tours, 37380 Nouzilly, France
| | - Luca Persani
- Department of Clinical Sciences & Community Health, University of Milan, Milan 20122, Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Milan 20149, Italy
| | - Abdelkader Heddar
- Medical Faculty, Univ. Paris Sud and Paris Saclay, Bicetre Hospital 94275, Le Kremlin Bicêtre, France
| | - Katarzyna Jarzabek
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Triin Laisk-Podar
- Women's Clinic, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia; Competence Centre on Health Technologies, 50410, Estonia
| | - Andres Salumets
- Women's Clinic, Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, Tartu, Estonia; Competence Centre on Health Technologies, 50410, Estonia
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University, Hospital, Helsinki 00029, Finland; Department of Obstetrics and Gynecology, University Hospital of Oulu, University of Oulu, Medical Research Center Oulu and PEDEGO Research Unit, P.O BOX 23, FI-90029 OYS, Oulu, Finland
| | - Reiner A Veitia
- Molecular Oncology and Ovarian Pathologies Université Paris-Diderot/Paris 7, Institut Jacques Monod, 15 Rue Hélène Brion, Paris Cedex 13, France
| | - Jenny A Visser
- Dept. of Internal Medicine, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Peter Wieacker
- Institute of Human Genetics, University Hospital of Münster, Vesaliusweg 12-14 D48149 Münster, Germany
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Sklodowskiej 24A, 15-276 Bialystok, Poland
| | - Micheline Misrahi
- Medical Faculty, Univ. Paris Sud and Paris Saclay, Bicetre Hospital 94275, Le Kremlin Bicêtre, France.
| |
Collapse
|
44
|
Santi D, Potì F, Simoni M, Casarini L. Pharmacogenetics of G-protein-coupled receptors variants: FSH receptor and infertility treatment. Best Pract Res Clin Endocrinol Metab 2018; 32:189-200. [PMID: 29678285 DOI: 10.1016/j.beem.2018.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Infertility treatment may represent a paradigmatic example of precision medicine. Follicle-stimulating hormone (FSH) has been proposed as a valuable therapeutic option both in males and in females, even if a standardized approach is far to be established. To date, several genetic mutations as well as polymorphisms have been demonstrated to significantly affect the pathophysiology of FSH-FSH receptor (FSHR) interaction, although the underlying molecular mechanisms remain unclear. This review aims to highlight possible aspects of FSH therapy that could benefit from a pharmacogenetic approach, providing an up-to-date overview of the variability of the response to FSH treatment in both sexes. Specific sections are dedicated to the clinical use of FSH in infertility and how FSHR polymorphisms may affect the therapeutic endpoints.
Collapse
Affiliation(s)
- Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria of Modena, Italy.
| | - Francesco Potì
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria of Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria of Modena, Italy
| |
Collapse
|
45
|
Laissue P. The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Mol Cell Endocrinol 2018; 460:170-180. [PMID: 28743519 DOI: 10.1016/j.mce.2017.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Abstract
Primary ovarian insufficiency (POI) is a frequently occurring pathology, leading to infertility. Genetic anomalies have been described in POI and mutations in numerous genes have been definitively related to the pathogenesis of the disease. Some studies based on next generation sequencing (NGS) have been successfully undertaken as they have led to identify new mutations associated with POI aetiology. The purpose of this review is to present the most relevant molecules involved in diverse complex pathways, which may contribute towards POI. The main genes participating in bipotential gonad formation, sex determination, meiosis, folliculogenesis and ovulation are described to enable understanding how they may be considered putative candidates involved in POI. Considerations regarding NGS technical aspects such as design and data interpretation are mentioned. Successful NGS initiatives used for POI studying and future challenges are also discussed.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
46
|
Ulloa-Aguirre A, Zariñán T, Gutiérrez-Sagal R, Dias JA. Intracellular Trafficking of Gonadotropin Receptors in Health and Disease. Handb Exp Pharmacol 2018; 245:1-39. [PMID: 29063275 DOI: 10.1007/164_2017_49] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Gonadotropin receptors belong to the highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily, the so-called Rhodopsin-like family (class A), which is the largest class of GPCRs and currently a major drug target. Both the follicle-stimulating hormone receptor (FSHR) and the luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) are mainly located in the gonads where they play key functions associated to essential reproductive functions. As any other protein, gonadotropin receptors must be properly folded into a mature tertiary conformation compatible with quaternary assembly and endoplasmic reticulum export to the cell surface plasma membrane. Several primary and secondary structural features, including presence of particular amino acid residues and short motifs and in addition, posttranslational modifications, regulate intracellular trafficking of gonadotropin receptors to the plasma membrane as well as internalization and recycling of the receptor back to the cell surface after activation by agonist. Inactivating mutations of gonadotropin receptors may derive from receptor misfolding and lead to absent or reduced plasma membrane expression of the altered receptor, thereby manifesting an array of phenotypical abnormalities mostly characterized by reproductive failure and/or abnormal or absence of development of secondary sex characteristics. In this chapter we review the structural requirements necessary for intracellular trafficking of the gonadotropin receptors, and describe how mutations in these receptors may lead to receptor misfolding and disease in humans.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico.
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Vasco de Quiroga 15, Tlalpan, Mexico City, 14000, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
47
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
48
|
Abstract
The gonadotropin receptors (luteinising hormone receptor; LHR and follicle-stimulating hormone receptor; FSHR) are G protein-coupled receptors (GPCRs) that play an important role in the endocrine control of reproduction. Thus genetic mutations that cause impaired function of these receptors have been implicated in a number of reproductive disorders. Disease-causing genetic mutations in GPCRs frequently result in intracellular retention and degradation of the nascent protein through misfolding and subsequent recognition by cellular quality control machinery. The discovery and development of novel compounds termed pharmacological chaperones (pharmacoperones) that can stabilise misfolded receptors and restore trafficking and plasma membrane expression are therefore of great interest clinically, and promising in vitro data describing the pharmacoperone rescue of a number of intracellularly retained mutant GPCRs has provided a platform for taking these compounds into in vivo trials. Thienopyrimidine small molecule allosteric gonadotropin receptor agonists (Org 42599 and Org 41841) have been demonstrated to have pharmacoperone activity. These compounds can rescue cell surface expression and in many cases, hormone responsiveness, of a range of retained mutant gonadotropin receptors. Should gonadotropin receptor selectivity of these compounds be improved, they could offer therapeutic benefit to subsets of patients suffering from reproductive disorders attributed to defective gonadotropin receptor trafficking.
Collapse
Affiliation(s)
- Claire L Newton
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa.
| | - Ross C Anderson
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| |
Collapse
|
49
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Laissue P, Lakhal B, Vatin M, Batista F, Burgio G, Mercier E, Santos ED, Buffat C, Sierra-Diaz DC, Renault G, Montagutelli X, Salmon J, Monget P, Veitia RA, Méhats C, Fellous M, Gris JC, Cocquet J, Vaiman D. Association of FOXD1 variants with adverse pregnancy outcomes in mice and humans. Open Biol 2017; 6:rsob.160109. [PMID: 27805902 PMCID: PMC5090055 DOI: 10.1098/rsob.160109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/25/2016] [Indexed: 01/29/2023] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common cause of infertility, but previous attempts at identifying RSA causative genes have been relatively unsuccessful. Such failure to describe RSA aetiological genes might be explained by the fact that reproductive phenotypes should be considered as quantitative traits resulting from the intricate interaction of numerous genetic, epigenetic and environmental factors. Here, we studied an interspecific recombinant congenic strain (IRCS) of Mus musculus from the C57BL6/J strain of mice harbouring an approximate 5 Mb DNA fragment from chromosome 13 from Mus spretus mice (66H-MMU13 strain), with a high rate of embryonic resorption (ER). Transcriptome analyses of endometrial and placental tissues from these mice showed a deregulation of many genes associated with the coagulation and inflammatory response pathways. Bioinformatics approaches led us to select Foxd1 as a candidate gene potentially related to ER and RSA. Sequencing analysis of Foxd1 in the 66H-MMU13 strain, and in 556 women affected by RSA and 271 controls revealed non-synonymous sequence variants. In vitro assays revealed that some led to perturbations in FOXD1 transactivation properties on promoters of genes having key roles during implantation/placentation, suggesting a role of this gene in mammalian implantation processes.
Collapse
Affiliation(s)
- Paul Laissue
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France.,Centro de Investigación en Genética y Genómica-CIGGUR, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Besma Lakhal
- Department of Cytogenetics and Reproductive Biology, Farhat Hached University Teaching Hospital, Sousse, Tunisia
| | - Magalie Vatin
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Frank Batista
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaëtan Burgio
- Institut Pasteur, Unité de Génétique des Mammifères, Paris, France.,Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, 131 Garran Road, Canberra 2601, Australian Capital Territory, Australia
| | - Eric Mercier
- Department of Haematology, University Hospital, Nîmes. Faculty of Pharmacy and Research Team EA 2992, University of Montpellier, Montpellier, France
| | - Esther Dos Santos
- GIG-EA 7404, Université de Versailles-Saint Quentin en Yvelines, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, 78180 Montigny-le-Bretonneux, France.,Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint-Germain, 78300 Poissy, France
| | - Christophe Buffat
- Centre National de la Recherche Scientifique UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université, Marseille, France
| | - Diana Carolina Sierra-Diaz
- Centro de Investigación en Genética y Genómica-CIGGUR, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Gilles Renault
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | | | - Jane Salmon
- Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Philippe Monget
- INRA-CNRS, Université de Tours-Haras Nationaux, IFR 135, 37380 Nouzilly, France
| | - Reiner A Veitia
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Céline Méhats
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Marc Fellous
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Jean-Christophe Gris
- Department of Haematology, University Hospital, Nîmes. Faculty of Pharmacy and Research Team EA 2992, University of Montpellier, Montpellier, France
| | - Julie Cocquet
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France.,Inserm, U1016 Paris, France
| | - Daniel Vaiman
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France .,Inserm, U1016 Paris, France
| |
Collapse
|