1
|
Li Z, Lin Y, Zou Y, Liang Y, Zeng L, Wang Y, Li Y, Zong Y, Zhang Y, Zheng Y, Cui Y, Huang L, Chen Z, Pan X, Zhu L. Zuogui pills ameliorate chemotherapy-induced ovarian aging by improving stemness, regulating cell cycle and reducing apoptosis of oogonial stem cells via the Notch1/Nrf2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119105. [PMID: 39580130 DOI: 10.1016/j.jep.2024.119105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zuogui Pills (ZGP) is a classic traditional Chinese herbal formula originating from the Ming Dynasty. It has been widely used in the treatment of kidney deficiency-related diseases, including ovarian aging. AIM OF THE STUDY To investigate the effects and potential mechanisms of ZGP on ovarian aging induced by the chemotherapeutic agent cyclophosphamide (CTX), as well as its impact on the therapeutic target, oogonial stem cells (OSCs), involving the Notch1/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. MATERIALS AND METHODS This study utilized High-Performance Liquid Chromatography (HPLC) to analyze the active components of Zuogui Pills (ZGP). In vivo experiments involved the establishment of an ovarian aging model in female rats through intraperitoneal injection of CTX, followed by an 8-week treatment with ZGP and dehydroepiandrosterone (DHEA). The Notch pathway inhibitor DAPT was administered via intraperitoneal injection, followed by ZGP intervention to validate its therapeutic effects. Transcriptomic sequencing was used to analyze the differential genes before and after ZGP treatment of CTX-induced ovarian aging, and KEGG and GO analyses were applied to assess the changes in relevant signaling pathways and biological processes. In vitro experiments included the extraction, separation, and purification of ovarian germ stem cells, followed by transfection with a Notch1 overexpression plasmid. The CTX active component 4-Hydroxycyclophosphamide (4HC) was used for model intervention, and ZGP, DHEA-containing serum, and DAPT were applied to intervene with the oogonial stem cells. The effects of CTX modeling, the therapeutic efficacy of ZGP, and the general condition of the rats were observed. H&E staining was employed to assess ovarian morphology and follicle counting at various stages. Serum hormone levels were measured using ELISA, while qPCR, Western blot, flow cytometry, immunofluorescence, and IHC were utilized to analyze the expression of the Notch1/Nrf2 pathway, cell cycle proteins, and stemness-related indicators. Flow cytometry, TUNEL fluorescence, and CCK8 assays were conducted to evaluate changes in cell cycle composition, apoptosis, and proliferation. Finally, ChIP-qPCR was employed to validate the transcriptional regulation of the target gene NFE2L2 by Notch1. RESULTS ZGP improved serum sex hormones in ovarian aging rats, enhanced ovarian index, and optimized ovarian and uterine morphology, as well as follicle quantity composition. After transcriptome sequencing, KEGG analysis enriched the Notch signaling pathway and cell cycle, while GO analysis highlighted enrichment in the Notch pathway and stem cell population maintenance. Various experiments validated that ZGP significantly improved the expression of cell cycle-related proteins Cyclin D1 (CCND1), Cyclin E1 (CCNE1), cyclin-dependent kinase inhibitor 1a (CDKN1A), stemness markers Mouse Vasa Homolog (MVH), Octamer-binding Transcription Factor 4 (Oct4), Fragilis, 5-Bromo-2'-deoxyuridine (BrdU), as well as Notch1 and Nrf2 in aging ovarian tissues and OSCs. Additionally, ZGP promoted the proliferation of 4HC-damaged OSCs, optimized OSCs cell cycle composition, reduced G0/G1 phase arrest, and decreased early and late apoptosis. ZGP could reverse the detrimental effects on stemness and cell cycle of OSCs caused by blocking the Notch pathway. Furthermore, ZGP may activate the regulation of its target gene NFE2L2 by upregulating Notch1 expression in OSCs, thereby exerting therapeutic effects. CONCLUSION ZGP protects ovarian function in CTX-induced ovarian aging rats by regulating the Notch1/Nrf2 pathway. It restores serum sex hormone levels, maintains normal follicle development, promotes the proliferation of aged OSCs, optimizes the cell cycle, reduces apoptosis, and preserves stemness, thereby alleviating ovarian aging.
Collapse
Affiliation(s)
- Zuang Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuewei Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuxin Zou
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunyi Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lihua Zeng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yucheng Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yun Zong
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yuying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yunling Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yixuan Cui
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Liuqian Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Zhuoting Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Xinyi Pan
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ling Zhu
- Department of Gynecology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Fan G, Liu Q, Bi J, Fang Q, Luo F, Huang X, Li H, Guo W, Liu B, Yan L, Wang Y, Song L. Reproductive factors and biological aging: the association with all-cause and cause-specific premature mortality. Hum Reprod 2025; 40:148-156. [PMID: 39516182 DOI: 10.1093/humrep/deae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
STUDY QUESTION Are reproductive factors associated with biological aging, and does biological aging mediate the associations of reproductive factors with premature mortality? SUMMARY ANSWER Multiple reproductive factors are related to phenotypic age acceleration (PhenoAge-Accel), while adherence to a healthy lifestyle mitigates these harmful effects; PhenoAge-Accel mediated the associations between reproductive factors and premature mortality. WHAT IS KNOWN ALREADY Accelerated aging is a key contributor to mortality, but knowledge about the effect of reproductive factors on aging is limited. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 223 729 women aged 40-69 years from the UK biobank in 2006-2010 and followed up until 12 November 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS Reproductive factors were collected through a touchscreen questionnaire. Biological aging was assessed through PhenoAge-Accel. Multiple linear regression models were used to examine the relationships of reproductive factors with PhenoAge-Accel and estimate the modified effect of a healthy lifestyle. Furthermore, we applied mediation analysis to explore the mediating role of PhenoAge-Accel in the associations between reproductive factors and premature mortality. MAIN RESULTS AND THE ROLE OF CHANCE Early menarche (<12 years vs 13 years, β: 0.37, 95% CI: 0.30, 0.44), late menarche (≥15 years vs 13 years, β: 0.18, 95% CI: 0.11, 0.25), early menopause (<45 years vs 50-51 years, β: 0.62, 95% CI: 0.51, 0.72), short reproductive lifespan (<30 years vs 35-39 years, β: 0.81, 95% CI: 0.70, 0.92), nulliparity (vs two live births, β: 0.36, 95% CI: 0.30, 0.43), high parity (≥4 vs 2 live births, β: 0.49, 95% CI: 0.40, 0.59), early age at first live birth (<20 years vs 25-29 years, β: 0.66, 95% CI: 0.56, 0.75), and stillbirth (β: 0.51, 95% CI: 0.36, 0.65) were associated with increased PhenoAge-Accel. Furthermore, PhenoAge-Accel mediated 6.0%-29.7% of the associations between reproductive factors and premature mortality. Women with an unfavorable lifestyle and reproductive risk factors had the highest PhenoAge-Accel compared to those with a favorable lifestyle and without reproductive risk factors. LIMITATIONS, REASONS FOR CAUTION The participants in the UK Biobank were predominantly of White ethnicity; thus, caution is warranted when generalizing these findings to other ethnic groups. WIDER IMPLICATIONS OF THE FINDINGS Our findings reveal the harmful effects of multiple reproductive factors on biological aging and the mediating role of biological aging in the associations between reproductive factors and premature mortality. They highlight the significance of adhering to a healthy lifestyle to slow biological aging as a potential way to reduce premature mortality among women with reproductive risk factors. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the National Natural Science Foundation of China (82003479, 82073660, 72204215), Hubei Provincial Natural Science Foundation of China (2023AFB663), Zhejiang Province Public Welfare Technology Application Research Project (GF22H269155), and China Postdoctoral Science Foundation (2019M662646, 2020T130220). The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Gaojie Fan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Fang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Luo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofeng Huang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Li
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Guo
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Binghai Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianyan Yan
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Shi Y, Xiao T, Weng Y, Xiao Y, Wu J, Wang J, Wang W, Yan M, Yan M, Li Z, Yu J. 3D culture inhibits replicative senescence of SCAPs via UQCRC2-mediated mitochondrial oxidative phosphorylation. J Transl Med 2024; 22:1129. [PMID: 39707408 DOI: 10.1186/s12967-024-05953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
Stem cells derived from the apical papilla (SCAPs) play a crucial role in tooth root development and dental pulp regeneration. They are important seed cells for bone/tooth tissue engineering. However, replicative senescence remains an unavoidable issue as in vitro amplification increases. This study investigated the effect of a three-dimensional (3D) culture environment constructed with methylcellulose on SCAPs senescence. It was observed that 3D culture conditions can delay cellular senescence, potentially due to changes in mitochondrial function and oxidative phosphorylation. Transcriptome high-throughput sequencing technology revealed that the different mitochondrial states may be related to UQCRC2. Knocking down UQCRC2 expression in the 3D culture group resulted in increased production of mitochondrial reactive oxygen species, decreased mitochondrial membrane potential, and a decline in the oxygen consumption rate for oxidative phosphorylation, accelerating cell senescence. The results of this study indicated that 3D culture can mitigate SCAPs aging by maintaining UQCRC2-mediated mitochondrial homeostasis. These findings provide a new solution for the senescence of SCAPs during in vitro amplification and can promote the applications of SCAPs-based clinical translation.
Collapse
Affiliation(s)
- Yijia Shi
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Xiao
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Weng
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya Xiao
- College & Hospital of Stomatology, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Jintao Wu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
| | - Jing Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenmin Wang
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maoshen Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jinhua Yu
- Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Gao M, Wang F, Xu T, Qiu Y, Cao T, Liu S, Wu W, Zhou Y, Liu H, Liu F, Huang J. Age-associated accumulation of RAB9 disrupts oocyte meiosis. Aging Cell 2024:e14449. [PMID: 39676221 DOI: 10.1111/acel.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The critical role of some RAB family members in oocyte meiosis has been extensively studied, but their role in oocyte aging remains poorly understood. Here, we report that the vesicle trafficking regulator, RAB9 GTPase, is essential for oocyte meiosis and aging in humans and mice. RAB9 was mainly located at the meiotic spindle periphery and cortex during oocyte meiosis. In humans and mice, we found that the RAB9 protein level were significantly increased in old oocytes. Age-related accumulation of RAB9 inhibits first polar body extrusion and reduces the developmental potential of oocytes. Further studies showed that increased Rab9 disrupts spindle formation and chromosome alignment. In addition, Rab9 overexpression disrupts the actin cap formation and reduces the cortical actin levels. Mechanically, Rab9-OE increases ROS levels, decreases mitochondrial membrane potential, ATP content and the mtDNA/nDNA ratio. Further studies showed that Rab9-OE activates the PINK1-PARKIN mitophagy pathway. Importantly, we found that reducing RAB9 protein expression in old oocytes could partially improve the rate of old oocyte maturation, ameliorate the accumulation of age-related ROS levels and spindle abnormalities, and partially rescue ATP levels, mtDNA/nDNA ratio, and PINK1 and PARKIN expression. In conclusion, our results suggest that RAB9 is required to maintain the balance between mitochondrial function and meiosis, and that reducing RAB9 expression is a potential strategy to ameliorate age-related deterioration of oocyte quality.
Collapse
Affiliation(s)
- Min Gao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Fang Wang
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tengteng Xu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Department of Gynecology, Clinical Transformation and Application Key Lab for Obstetrics and Gynecology, Pediatrics, and Reproductive Medicine of Jiangmen, Jiangmen Central Hospital, Jiangmen, China
| | - Yanling Qiu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tianqi Cao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Simiao Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wenlian Wu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yitong Zhou
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Haiying Liu
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Fenghua Liu
- Department of Reproductive Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Morales-Sánchez E, Campuzano-Caballero JC, Cervantes A, Martínez-Ibarra A, Cerbón M, Vital-Reyes VS. Which Side of the Coin Are You on Regarding Possible Postnatal Oogenesis? Arch Med Res 2024; 55:103071. [PMID: 39236439 DOI: 10.1016/j.arcmed.2024.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
It is well known that oocytes are produced during fetal development and that the total number of primary follicles is determined at birth. In humans, there is a constant loss of follicles after birth until about two years of age. The number of follicles is preserved until the resumption of meiosis at puberty and there is no renewal of the oocytes; this dogma was maintained in the last century because there were no suitable techniques to detect and obtain stem cells. However, following stem cell markers, several scientists have detected them in developing and adult human ovarian tissues, especially in the ovarian surface epithelial cells. Furthermore, many authors using different methodological strategies have indicated this possibility. This evidence has led many scientists to explore this hypothesis; there is no definitive consensus to accept this idea. Interestingly, oocyte retrieval from mature ovaries and other tissue sources of stem cells has contributed to the development of strategies for the retrieval of mature oocytes, useful for assisted reproductive technology. Here, we review the evidence and controversies on oocyte neooogenesis in adult women; in addition, we agree with the idea that this process may occur in adulthood and that its alteration may be related to various pathologies in women, such as polycystic ovary syndrome, premature ovarian insufficiency, diminished ovarian reserve and several infertility and genetic disorders.
Collapse
Affiliation(s)
- Elizabeth Morales-Sánchez
- Unidad de Histología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Campuzano-Caballero
- Departamento de Biología Comparada, Facultad de Ciencias, Laboratorio de Biología de la Reproducción Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia Cervantes
- Servicio de Genética, Hospital General de México, Eduardo Liceaga, Mexico City, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandra Martínez-Ibarra
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico
| | - Marco Cerbón
- Departmento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Circuito Escolar, Mexico City, Coyoacán 04510, Mexico.
| | | |
Collapse
|
7
|
Li C, Qian Z, Zhang H, Ge X, Chen L, Xue M, Tang T, He Z, Zheng L, Cao C, Zhang K, Ma R, Yao B. O-GlcNAc participates in the meiosis of aging oocytes by mediating mitochondrial function. Reproduction 2024; 168:e240138. [PMID: 39405070 PMCID: PMC11623119 DOI: 10.1530/rep-24-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
In brief O-GlcNAc plays an important role in many age-related diseases. This study shows that O-GlcNAc participates in oocyte aging and that reducing O-GlcNAc levels in aging oocytes improves oocyte quality. Abstract With an increase in the mean age at parturition worldwide, female reproductive aging has become a key health problem. Advanced maternal age is reflected by decreased oocyte quality; however, the molecular mechanisms of oocyte aging are uncharacterized. O-linked N-acetylglucosamine (O-GlcNAc), a dynamic posttranslational modification, plays a critical role in the development of many age-related diseases; yet, it remains unclear whether and how O-GlcNAc participates in oocyte aging. Here, we found that global O-GlcNAc was elevated in normal biological aging mice oocytes (9 months), which were characterized by meiotic maturation failure and impaired mitochondrial function. Specifically, O-GlcNAc targeted the mitochondrial fission protein dynamic-related protein 1 to mediate mitochondrial distribution in the process of aging. Using the O-GlcNAcase (OGA) pharmacological inhibitor Thiamet-G and Oga knockdown (Oga-KD) to mimic the age-related high O-GlcNAc in young oocytes from 6-8 week-old mice mimicked the phenotype of oocyte aging. Moreover, reducing O-GlcNAc levels in aging oocytes restored spindle organization to improve oocyte quality. Our results demonstrate that O-GlcNAc is a key regulator of meiotic maturation that participates in the progression of oocyte aging.
Collapse
Affiliation(s)
- Chuwei Li
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zhang Qian
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengqi Xue
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Zhaowanyue He
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lu Zheng
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chun Cao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kemei Zhang
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Center of Reproductive Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Gao H, Ying Y, Sun J, Huang Y, Li X, Zhang D. Genetically Determined Plasma Docosahexaenoic Acid Showed a Causal Association with Female Reproductive Longevity-Related Phenotype: A Mendelian Randomization Study. Nutrients 2024; 16:4103. [PMID: 39683497 DOI: 10.3390/nu16234103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Female reproductive aging remains irreversible. More evidence is needed on how polyunsaturated fatty acids (PUFAs) affect the female reproductive lifespan. OBJECTIVES To identify and validate specific PUFAs that can influence the timing of menarche and menopause in women. METHODS We utilized a two-sample Mendelian randomization (MR) framework to evaluate the causal relationships between various PUFAs and female reproductive longevity, defined by age at menarche (AAM) and age at natural menopause (ANM). Our analyses leveraged summary statistics from four genome-wide association studies (GWASs) on the plasma concentrations of 10 plasma PUFAs, including 8866 to 121,633 European individuals and 1361 East Asian individuals. Large-scale GWASs for reproductive traits provided the genetic data of AAM and ANM from over 202,323 European females and 43,861 East Asian females. Causal effects were estimated by beta coefficients, representing, for each increase in the standard deviation (SD) of plasma PUFA concentration, the yearly increase in AAM or ANM. Replications, meta-analyses, and cross-ancestry effects were assessed to validate the inference. CONCLUSIONS Higher plasma DHA was identified to be associated with delayed natural menopause without affecting menarche, offering a potential intervention target for extending reproductive longevity.
Collapse
Affiliation(s)
- Huajing Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yuewen Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang Provincial Birth Defect Control and Prevention Research Center, Hangzhou 310006, China
| |
Collapse
|
9
|
Zhang J, Hu H, Zhu Y, Jin Y, Zhang H, Fan R, Ye Y, Xin X, Li D. Bushen Jianpi Tiaoxue Decoction (BJTD) ameliorates oxidative stress and apoptosis induced by uterus ageing through activation of the SIRT1/NRF2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156288. [PMID: 39631297 DOI: 10.1016/j.phymed.2024.156288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/29/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Uterus ageing is a crucial factor contributing to decreased fertility in older women and is also implicated in menstrual disorders, endometritis, and adenomyosis. Bushen Jianpi Tiaoxue Decoction (BJTD) is a traditional Chinese medicine formulation used to ameliorate endocrine disorders in the female reproductive system and finds extensive application in ageing-related endometrial diseases. However, the mechanisms underlying its improvement of uterus ageing have not been thoroughly investigated. PURPOSE To explore the potential components and mechanisms of BJTD in ameliorating uterus ageing through network pharmacology, in vivo, and in vitro experiments. METHODS Morphological changes were observed using hematoxylin and eosin staining, collagen deposition was assessed using Masson staining, and apoptotic-related molecules were detected using Western blot. After determining the modeling doses, BJTD intervention was administered at two doses, and the expression of oxidative stress and apoptosis-related genes and proteins was measured. The levels of cellular apoptosis were evaluated using the TUNEL assay kit and Annexin V/FITC-PI assay kit. The main components of BJTD were determined by UPLC-MS, and the potential targets and mechanisms of BJTD action were explored using network pharmacology and molecular docking. BJTD-Containing Serum (BJTD-S) was extracted and applied in vitro experiments using human endometrial stroma cells (hESC) to preliminarily identify the pathways affected. RESULTS We demonstrated that modeling with 600 mg/kg/day D-Gal for 5 weeks significantly increased collagen deposition in uterine tissues, particularly in the glands and stroma. Additionally, it significantly elevated the levels of TNF-α and IL-1β and increased the expression of p53 and BAX while decreasing BCL-2 expression. BJTD significantly reduced the increased levels of TNF-α and IL-1β induced by D-Gal, and modulated oxidative stress markers such as SOD, MDA, GSH-Px, and T-AOC. BJTD also inhibited the cascade activation of apoptosis induced by D-Gal, suppressing the expression of cleaved-Caspase 8, cleaved-Caspase 3, and BAX. SIRT1 is a potential target of BJTD action. In vitro experiments showed that BJTD-S significantly improved D-Gal-induced apoptosis in hESC cells, and the expression levels of SIRT1, NRF2, and HO-1 were significantly decreased in D-Gal-induced hESC, and BJTD-S significantly increased their expression. CONCLUSION BJTD can ameliorate oxidative stress and cell apoptosis levels in D-Gal-induced uterine aging, and its active ingredients can activate the SIRT1/NRF2 pathway to exert its effects. Importantly, our study provides novel insights into the molecular mechanisms by which traditional Chinese medicine influence uterus ageing. By specifically targeting the SIRT1/NRF2 pathway, BJTD presents a unique therapeutic approach that has not been extensively explored in previous studies, marking a significant advancement in the treatment of uterus ageing.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Hangqi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yutian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yuxin Jin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Ruiwen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Xiyan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
10
|
Mansfield L, Ramponi V, Gupta K, Stevenson T, Mathew AB, Barinda AJ, Herbstein F, Morsli S. Emerging insights in senescence: pathways from preclinical models to therapeutic innovations. NPJ AGING 2024; 10:53. [PMID: 39578455 PMCID: PMC11584693 DOI: 10.1038/s41514-024-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/24/2024]
Abstract
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology. Additionally, we delve into in vivo models of senescence, both non-mammalian and mammalian, to highlight tools available for advancing the contextual understanding of in vivo senescence. Furthermore, we discuss innovative diagnostic tools and senotherapeutic approaches, emphasising their potential for clinical application. Future directions of senescence research are explored, underscoring the need for precise, context-specific senescence classification and the integration of advanced technologies such as machine learning, long-read sequencing, and multifunctional senoprobes and senolytics. The dual role of senescence in promoting tissue homoeostasis and contributing to chronic diseases highlights the complexity of targeting these cells for improved clinical outcomes.
Collapse
Affiliation(s)
- Luke Mansfield
- The Bateson Centre, School of Medicine and Population Health, The University of Sheffield, Western Bank, Sheffield, UK
| | - Valentina Ramponi
- Cellular Plasticity and Disease Group, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kavya Gupta
- Department of Cellular and Molecular Biology and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Abraham Binoy Mathew
- Department of Developmental Biology and Genetics, Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Agian Jeffilano Barinda
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Metabolic, Cardiovascular, and Aging Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| | - Samir Morsli
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
| |
Collapse
|
11
|
Ávila BM, Zanini BM, Luduvico KP, Oliveira TL, Hense JD, Garcia DN, Prosczek J, Stefanello FM, da Cruz PH, Giongo JL, Vaucher RA, Mason JB, Masternak MM, Schneider A. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci 2024; 357:123073. [PMID: 39307182 DOI: 10.1016/j.lfs.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
AIMS This study aimed to assess metabolic responses and senescent cell burden in young female mice induced to estropause and treated with senolytic drugs. MAIN METHODS Estropause was induced by 4-vinylcyclohexene diepoxide (VCD) injection in two-month-old mice. The senolytics dasatinib and quercetin (D + Q) or fisetin were given by oral gavage once a month from five to 11 months of age. KEY FINDINGS VCD-induced estropause led to increased body mass and reduced albumin concentrations compared to untreated cyclic mice, without affecting insulin sensitivity, lipid profile, liver enzymes, or total proteins. Estropause decreased catalase activity in adipose tissue but had no significant effect on other redox parameters in adipose and hepatic tissues. Fisetin treatment reduced ROS levels in the hepatic tissue of estropause mice. Estropause did not influence senescence-associated beta-galactosidase activity in adipose and hepatic tissues but increased senescent cell markers and fibrosis in ovaries. Senolytic treatment did not decrease ovarian cellular senescence induced by estropause. SIGNIFICANCE Overall, the findings suggest that estropause leads to minor metabolic changes in young females, and the senolytics D + Q and fisetin had no protective effects despite increased ovarian senescence.
Collapse
Affiliation(s)
- Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina P Luduvico
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Prosczek
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro H da Cruz
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Janice L Giongo
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Tsui KH, Li CJ, Lin LT. Melatonin supplementation attenuates cuproptosis and ferroptosis in aging cumulus and granulosa cells: potential for improving IVF outcomes in advanced maternal age. Reprod Biol Endocrinol 2024; 22:138. [PMID: 39516964 PMCID: PMC11545199 DOI: 10.1186/s12958-024-01311-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Advanced maternal age is associated with decreased oocyte quantity and quality and in vitro fertilization (IVF) success rates. This study aimed to investigate whether melatonin supplementation can improve IVF outcomes in women of advanced maternal age by modulating cuproptosis and ferroptosis. METHODS This prospective cohort study included 161 women aged 35-45 years undergoing IVF-frozen embryo transfer cycles. Participants were assigned to either melatonin (n = 86, 2 mg daily for ≥ 8 weeks) or control (n = 75) groups. Cumulus cells were analyzed for cuproptosis and ferroptosis-related gene expression. Additional experiments were conducted on the HGL5 human granulosa cell line to assess mitochondrial function and metabolic reprogramming. RESULTS Melatonin supplementation significantly improved IVF outcomes in women aged ≥ 38 years, increasing clinical pregnancy rates (46.0% vs. 20.3%, P < 0.01), ongoing pregnancy rates (36.5% vs. 15.3%, P < 0.01), and live birth rates (33.3% vs. 15.3%, P < 0.05). In cumulus cells from patients, gene expression analysis revealed that melatonin modulated cuproptosis and ferroptosis-related genes, including ATP7B and GPX4, with more pronounced effects in the ≥ 38 years group. This suggests melatonin enhances cellular resilience against oxidative stress and metal-induced toxicity in the ovarian microenvironment. In vitro studies using HGL5 cells showed melatonin reduced oxidative stress markers, improved mitochondrial function, restored expression of glycolysis and TCA cycle-related genes and modulated cuproptosis and ferroptosis-related gene expression. These findings provide mechanistic insight into melatonin's protective effects against regulated cell death in ovarian cells, potentially explaining the improved IVF outcomes observed. CONCLUSIONS Melatonin supplementation significantly improved IVF outcomes in women of advanced maternal age, particularly those ≥ 38 years old, likely by modulating cuproptosis and ferroptosis and enhancing mitochondrial function in cumulus and granulosa cells. These results suggest that melatonin could be a promising adjuvant therapy for improving IVF success rates in older women.
Collapse
Affiliation(s)
- Kuan-Hao Tsui
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Te Lin
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan.
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, 90741, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.
- Department of Obstetrics and Gynecology, National Yang-Ming University School of Medicine, Taipei, 112, Taiwan.
| |
Collapse
|
13
|
Zhao S, Cui H, Fang X, Xia W, Tao C, Li J. Increased DNMT1 acetylation leads to global DNA methylation suppression in follicular granulosa cells during reproductive aging in mammals. BMC Genomics 2024; 25:1030. [PMID: 39497025 PMCID: PMC11536882 DOI: 10.1186/s12864-024-10957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
With increasing age, the reproductive performance of women and female animals declines. However, the molecular mechanisms underlying ovarian aging and age-related fertility decline remain unclear. Granulosa cells (GCs) are suspected to play an important role in reproductive aging, and their proliferation, apoptosis, and steroid hormone secretion are used to determine the fate of follicles and ovarian function. First, we found that the proliferative ability of GCs from the old mouse group (10-month-old) decreased compared with that from the young mouse group (6-week-old), and cell cycle arrest occurred in old mice. To investigate changes in protein modification, we compared the levels of protein acetylation in GCs from young and old mice. We found that the K1118, K1120, K1122, and K1124 sites of DNA methyltransferase 1 (DNMT1) were increasingly acetylated with age, resulting in a decrease in DNMT1 protein expression. Therefore, we performed whole-genome methylation sequencing of GCs in the two groups and found that the CG methylation levels in the old group were lower than those in the young group. Furthermore, the inhibition of DNMT1 expression in GCs resulted in cell cycle arrest. This study revealed the dynamics and importance of protein acetylation and DNA methylation in GCs during reproductive aging. The findings provide a theoretical basis for studying the mechanism of reproductive aging in mammals.
Collapse
Affiliation(s)
- Shunran Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Haoliang Cui
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaohuan Fang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China
| | - Chenyu Tao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| | - Junjie Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
- Research Center of Cattle and Sheep Embryo Engineering Technique of Hebei Province, Baoding, 071000, China.
| |
Collapse
|
14
|
Shariatzadeh S, Hatami H, Abdi H, Amiri P, Shafiee S, Takyar M, Azizi F, Amouzegar A. Female Reproductive System and Thyroid Dysfunction: Findings from a 12-Year Follow-Up in the Tehran Thyroid Study. Thyroid 2024; 34:1424-1434. [PMID: 39463260 DOI: 10.1089/thy.2024.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background: The impact of thyroid dysfunction (TD) on the female reproductive system has been extensively documented. While there is evidence suggesting that alteration in female reproductive status may affect thyroid function, conflicting results have prevented definitive conclusions. This study aimed to investigate the associations of parity, spontaneous abortion (mentioned as abortion throughout this study), and menopause status with the prevalence and incidence of TD. Methods: From the Tehran thyroid study population, 2711 participants were included in the cross-sectional analysis to explore associations between female reproductive status and TD. Overall, 2191 participants with euthyroid were included in the survival study and followed up in 3-year intervals. Multinomial logistic regression was adopted in cross-sectional analysis and multivariable Cox proportional hazard model was used to determine associations between the incidence of TD with parity, abortion, and menopause status, adjusting for age, smoking, body mass index, and thyroid peroxidase antibodies positivity. Results: At the baseline, multiple parities (≥4) were significantly associated with overt hypothyroidism (odds ratio [OR] = 1.12; confidence interval [CI] 1.0-1.26) and subclinical hyperthyroidism (OR = 1.11 [CI 1.03-1.21]). Furthermore, multiple abortions were associated with overt hyperthyroidism (OR = 2.09 [CI 1.02-4.26]). Over the course of the study, multiple parities were significantly associated with the incident subclinical and clinical hypothyroidism. Conversely, a history of abortion was associated with a reduced risk of incident overt hypothyroidism. We found no significant association between menopause status and the prevalence or incidence of either hypothyroidism or hyperthyroidism. Conclusions: Our results suggest that the female reproductive system may be associated with thyroid function. Parity and abortion are associated with the occurrence of TD. A deeper understanding of the underlying mechanisms of the cellular and molecular alterations in signaling cascades during pregnancy is necessary to fully elucidate these associations.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hatami
- Department of Public Health, School of Public Health and Safety and Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hengameh Abdi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Amiri
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miralireza Takyar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ye X, Baker PN, Tong C. The updated understanding of advanced maternal age. FUNDAMENTAL RESEARCH 2024; 4:1719-1728. [PMID: 39734537 PMCID: PMC11670706 DOI: 10.1016/j.fmre.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 12/31/2024] Open
Abstract
The rising rates of pregnancies associated with advanced maternal age (AMA) have created unique challenges for healthcare systems worldwide. The elevated risk of poor maternal outcomes among AMA pregnancies is only partially understood and hotly debated. Specifically, AMA is associated with reduced fertility and an increased incidence of pregnancy complications. Finding a balance between global fertility policy, socioeconomic development and health care optimization ultimately depends on female fertility. Therefore, there is an urgent need to develop technologies and identify effective interventions. Support strategies should include prepregnancy screening, intervention and postpartum maintenance. Although some reviews have considered the relationship between AMA and adverse pregnancy outcomes, no previous work has comprehensively considered the long-term health effects of AMA on mothers. In this review, we will begin by presenting the current knowledge of global health issues associated with AMA and the effects of advanced age on the female reproductive system, endocrine metabolism, and placental function. We will then discuss physiological alterations, pregnancy complications, and long-term health problems caused by AMA.
Collapse
Affiliation(s)
- Xuan Ye
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Philip N. Baker
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Chao Tong
- National Clinical Research Center for Child Health and Disorder, Children's Hospital of Chongqing Medical University, Chongqing 401122, China
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
16
|
Wei L, Bo L, Luo C, Yin N, Jiang W, Qian F, Zhou A, Lu X, Guo H, Mao C. Transplantation of human umbilical cord-derived mesenchymal stem cells improves age-related ovarian functional decline via regulating the local renin-angiotensin system on inflammation and oxidative stress. Stem Cell Res Ther 2024; 15:377. [PMID: 39444026 PMCID: PMC11515572 DOI: 10.1186/s13287-024-03997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Age-related reproductive aging is a natural and irreversible physiological process, and delaying childbearing is increasingly common all over the world. Transplantation of mesenchymal stem cells (MSCs) is considered a new and effective therapy to restore ovarian function, but the relevant mechanisms remain unclear. Recently, it has been found that there is a local Renin-angiotensin system (RAS) in human ovary and it plays a key role. METHODS After collecting follicular fluid from women who received oocyte retrieval for pure male factor infertility, the level of RAS components in it were detected, and the correlation analysis by linear regression. Then, the in vivo experiments on female C57BL/6 mice were designed to measure ovarian function, and the transcription and translation levels of RAS pathway were detected by molecular biology methods. Moreover, the role of RAS in regulating inflammation and oxidative stress in the co-culture system were explored in in vitro experiments on KGN cells. RESULTS First, a total of 139 samples of analyzable follicular fluid were obtained. The local RAS of ovary, which is independent of systemic RAS (P > 0.05), is affected by age (Pearson r < 0, P < 0.05) and related to ovarian function, inflammation, oxidative stress indexes and assisted reproduction laboratory outcomes (P < 0.05). Next, the ovary/body weight of aging mice decreased significantly and serum sex hormones levels changed significantly (P < 0.01). The number of functional follicles decreased, while the atresia follicles increased (P < 0.05). After MSCs transplantation, all the above measures have been partially recovered (P < 0.05). Although several RAS components in aging ovary changed, MSCs only improved the expression level of AT1R (P < 0.05). Furthermore, the secretion ability and mitochondrial membrane potential of aging KGN cells decreased, while the intracellular ROS level and the aging cells ratio increased (P < 0.01). All the above measures have been partially recovered when co-cultured with MSCs (P < 0.05). After Ang(1-7) were added into the co-culture system, the above have been more significantly restored compared with Ang II (P < 0.05). Nevertheless, there was no statistical difference in estradiol level no matter which one was added (P > 0.05). CONCLUSIONS Together, our findings indicate that a novel possible mechanism to explain how stem cells restore age-related ovarian functional decline.
Collapse
Affiliation(s)
- Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Na Yin
- Obstetrics and Gynecology Department, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai, 200030, China
| | - Wangtao Jiang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fei Qian
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Anwen Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xuanping Lu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Huiping Guo
- Obstetrics and Gynecology Department, Zhangjiagang First People's Hospital Affiliated to Soochow University, Zhangjiagang, 215699, Jiangsu, China.
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
17
|
Satouh Y, Suzuki E, Sasaki K, Sato K. Improved low-invasive mRNA electroporation method into immature mouse oocytes visualizes protein dynamics during development†. Biol Reprod 2024; 111:931-941. [PMID: 39073915 DOI: 10.1093/biolre/ioae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
One of the major causes of oocyte quality deterioration, chromosome segregation abnormalities manifest mainly during meiosis I, which occurs before and during ovulation. However, currently, there is a technical limitation in the introduction of mRNA into premature oocytes without impairing embryonic developmental ability. In this study, we established a low-invasive electroporation (EP) method to introduce mRNA into pre-ovulatory, germinal vesicle (GV) mouse oocytes in an easier manner than the traditional microinjection method. The EP method with an optimized impedance value resulted in the efficient introduction of mRNAs encoding enhanced green fluorescent protein (EGFP) into the GV oocytes surrounded by cumulus cells at a survival rate of 95.0%. Furthermore, the introduction of histone H2B-EGFP mRNA into the GV oocytes labeled most of the oocytes without affecting the blastocyst development rate, indicating the feasibility of the visualization of oocyte chromosomal dynamics that enable us to assay chromosomal integrity in oocyte maturation and cell count in embryonic development. The establishment of this EP method offers extensive assays to select pre-implantation embryos and enables the surveying of essential factors for mammalian oocyte quality determination.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Emiko Suzuki
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Keisuke Sasaki
- Bioresource Center, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
18
|
Sun B, Li L, Chen X, Sun Y. Identification of metabolomic changes and potential therapeutic targets during ovarian aging. Aging (Albany NY) 2024; null:12893-12908. [PMID: 39383018 PMCID: PMC11501388 DOI: 10.18632/aging.206119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE To reveal the metabolic differences of follicle fluid (FF) and granulosa cell (GC) between younger women and advanced age women in ART cycles, and then find potential therapeutic targets of ovarian aging. METHODS Forty-five patients were included in the study and they were divided into three groups according to their age (Group A: 20-30 years old; Group B: 30-35 years old; Group C: 35-45 years old). All patients underwent controlled ovarian stimulation using the follicular phase long-acting protocol, FF and GC were obtained 36-38 hours after HCG administration. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for metabolomics analysis and metabolic pathway analysis (MetPA) was utilized to find related pathways. RESULTS Between group A and group C, there were 72 and 21 differential metabolites in FF and GC, respectively. KEGG enrichment analysis showed six pathways were co-enriched by the differential metabolites of FF and GC. Among them, we noticed that in the pathway GABAergic synapse, GABA (gamma-aminobutyric acid) was down-regulated in GC, while its downstream metabolite succinic acid was down-regulated in FF. Further ROC curve analysis was performed on these two metabolites, and the results showed that they all had a favorable predictive value. CONCLUSION This study indicated that GABA and succinic acid could be potential therapeutic targets for ovarian aging, GABA may delay ovarian aging and improve ovarian function through its antioxidant properties, which may be a future direction of clinical treatment.
Collapse
Affiliation(s)
- Bo Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Lu Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xiaoli Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
19
|
Zou X, Liang X, Dai W, Zhu T, Wang C, Zhou Y, Qian Y, Yan Z, Gao C, Gao L, Cui Y, Liu J, Meng Y. Peroxiredoxin 4 deficiency induces accelerated ovarian aging through destroyed proteostasis in granulosa cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167334. [PMID: 38971505 DOI: 10.1016/j.bbadis.2024.167334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
Ovarian aging, a complex and challenging concern within the realm of reproductive medicine, is associated with reduced fertility, menopausal symptoms and long-term health risks. Our previous investigation revealed a correlation between Peroxiredoxin 4 (PRDX4) and human ovarian aging. The purpose of this research was to substantiate the protective role of PRDX4 against ovarian aging and elucidate the underlying molecular mechanism in mice. In this study, a Prdx4-/- mouse model was established and it was observed that the deficiency of PRDX4 led to only an accelerated decline of ovarian function in comparison to wild-type (WT) mice. The impaired ovarian function observed in this study can be attributed to an imbalance in protein homeostasis, an exacerbation of endoplasmic reticulum stress (ER stress), and ultimately an increase in apoptosis of granulosa cells. Furthermore, our research reveals a noteworthy decline in the expression of Follicle-stimulating hormone receptor (FSHR) in aging Prdx4-/- mice, especially the functional trimer, due to impaired disulfide bond formation. Contrarily, the overexpression of PRDX4 facilitated the maintenance of protein homeostasis, mitigated ER stress, and consequently elevated E2 levels in a simulated KGN cell aging model. Additionally, the overexpression of PRDX4 restored the expression of the correct spatial conformation of FSHR, the functional trimer. In summary, our research reveals the significant contribution of PRDX4 in delaying ovarian aging, presenting a novel and promising therapeutic target for ovarian aging from the perspective of endoplasmic reticulum protein homeostasis.
Collapse
Affiliation(s)
- Xiaofei Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiuru Liang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wangjuan Dai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chaoyi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yutian Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Qian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Meng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Clinical Center of Reproductive Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
20
|
Feng Q, Li Q, Hu Y, Wang Z, Zhou H, Lin C, Wang D. TET1 overexpression affects cell proliferation and apoptosis in aging ovaries. J Assist Reprod Genet 2024:10.1007/s10815-024-03271-x. [PMID: 39317913 DOI: 10.1007/s10815-024-03271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE Along with the progress of society, human life expectancy has been increasing, and late marriage and late childbearing are the current trend. Since reproductive aging affects fertility, ovarian aging in women has become a major reproductive health issue in the current society. During ovarian aging, DNA methylation levels may change. The ten-eleven translocation (TET) protein family proteins TET1, TET2, and TET3 are important DNA demethylation enzymes, and differential expression of TET1, TET2, and TET3 may affect the proliferation and apoptosis of aging ovarian cells. The aim of this study was to investigate the role of TET1 in the regulation of ovarian aging. METHODS The expression of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) was analyzed by immunofluorescence (IF) in young and aging ovaries of six 6-8-week-old female mice and six 6-8-month-old female mice. Then, the expression pattern of the TET protein family in young and aging ovaries of mice was investigated. To determine the impact of TET1 on ovarian development, the aging of IOSE-80, KGN, and SKOV-3 cells was induced with D-galactosidase (D-gal). Cells were then transfected using the TET1 overexpression vector or si-TET1. We assessed the proliferation and apoptosis of aging cells after transfection and analyzed the regulatory effect of TET1 expression on aging cells. Additionally, we verified the Tet1 expression in Tet1-KO mice. RESULTS The 5mC to 5hmC transition, oocyte maturation, and blastocyst rate were reduced in aging mice compared to young mice. In aging mice ovaries, the expression levels of Tet1, Tet2, and Tet3 were reduced significantly, with Tet1 being particularly pronounced. The overexpression of TET1 promoted proliferation and inhibited apoptosis in aging human ovarian cells. Furthermore, Tet1 expression was very low in Tet1-KO C57BL/6 J mice ovaries. CONCLUSION This study demonstrates that the expression levels of TET family proteins are low in aging ovaries, and the overexpression of TET1 can promote proliferation and inhibit apoptosis in aging ovarian cells.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, 130062, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zhan Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, 130062, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
21
|
Suda M, Paul KH, Tripathi U, Minamino T, Tchkonia T, Kirkland JL. Targeting Cell Senescence and Senolytics: Novel Interventions for Age-Related Endocrine Dysfunction. Endocr Rev 2024; 45:655-675. [PMID: 38500373 PMCID: PMC11405506 DOI: 10.1210/endrev/bnae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type 2 diabetes mellitus. Drugs that selectively induce senescent cell removal, "senolytics,", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics," appear to delay the onset of or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. More than 30 clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.
Collapse
Affiliation(s)
- Masayoshi Suda
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Karl H Paul
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Pharmacology, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Utkarsh Tripathi
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| | - Tamara Tchkonia
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L Kirkland
- Departments of Medicine and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Affiliation(s)
- Yuanyuan Wang
- National Clinical Research Centre for Obstetrical and Gynaecological Diseases, State Key Laboratory of Female Fertility Promotion, Ministry of Education Key Laboratory of Assisted Reproduction, Centre for Reproductive Medicine, National Centre for Healthcare Quality Management in Obstetrics, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Fei Kong
- National Clinical Research Centre for Obstetrical and Gynaecological Diseases, State Key Laboratory of Female Fertility Promotion, Ministry of Education Key Laboratory of Assisted Reproduction, Centre for Reproductive Medicine, National Centre for Healthcare Quality Management in Obstetrics, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Health Science Centre, Peking University, Beijing, China
| | - Yu Fu
- National Clinical Research Centre for Obstetrical and Gynaecological Diseases, State Key Laboratory of Female Fertility Promotion, Ministry of Education Key Laboratory of Assisted Reproduction, Centre for Reproductive Medicine, National Centre for Healthcare Quality Management in Obstetrics, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- National Clinical Research Centre for Obstetrical and Gynaecological Diseases, State Key Laboratory of Female Fertility Promotion, Ministry of Education Key Laboratory of Assisted Reproduction, Centre for Reproductive Medicine, National Centre for Healthcare Quality Management in Obstetrics, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
- Health Science Centre, Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Shang Y, Song N, He R, Wu M. Antioxidants and Fertility in Women with Ovarian Aging: A Systematic Review and Meta-Analysis. Adv Nutr 2024; 15:100273. [PMID: 39019217 PMCID: PMC11345374 DOI: 10.1016/j.advnut.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024] Open
Abstract
Ovarian aging is a major factor for female subfertility. Multiple antioxidants have been applied in different clinical scenarios, but their effects on fertility in women with ovarian aging are still unclear. To address this, a meta-analysis was performed to evaluate the effectiveness and safety of antioxidants on fertility in women with ovarian aging. A total of 20 randomized clinical trials with 2617 participants were included. The results showed that use of antioxidants not only significantly increased the number of retrieved oocytes and high-quality embryo rates but also reduced the dose of gonadotropin, contributing to higher clinical pregnancy rates. According to the subgroup analysis of different dose settings, better effects were more pronounced with lower doses; in terms of antioxidant types, coenzyme Q10 (CoQ10) tended to be more effective than melatonin, myo-inositol, and vitamins. When compared with placebo or no treatment, CoQ10 showed more advantages, whereas small improvements were observed with other drugs. In addition, based on subgroup analysis of CoQ10, the optimal treatment regimen of CoQ10 for improving pregnancy rate was 30 mg/d for 3 mo before the controlled ovarian stimulation cycle, and women with diminished ovarian reserve clearly benefited from CoQ10 treatment, especially those aged <35 y. Our study suggests that antioxidant consumption is an effective and safe complementary therapy for women with ovarian aging. Appropriate antioxidant treatment should be offered at a low dose according to the patient's age and ovarian reserve. This study was registered at PROSPERO as CRD42022359529.
Collapse
Affiliation(s)
- Yujie Shang
- School of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China; Hubei Shizhen Laboratory, Wuhan, China; School of Basic Medical Sciences, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Nannan Song
- Liyang Branch of Jiangsu Provincial Hospital of Chinese Medicine, Changzhou, China
| | - Ruohan He
- Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghua Wu
- School of Basic Medical Sciences, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Wu W, He Y, Lin D, Zhang G, Zhang X, Zhang N, Xie T, Wei H. Dexmedetomidine mitigates lipopolysaccharide-induced acute lung injury by modulating heat shock protein A12B to inhibit the toll-like receptor 4/nuclear factor-kappa B signaling pathway. Chem Biol Interact 2024; 398:111112. [PMID: 38901789 DOI: 10.1016/j.cbi.2024.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): Life-threatening medical conditions characterized by high morbidity and mortality rates, where the inflammatory process plays a crucial role in lung tissue damage, especially in models induced by lipopolysaccharide (LPS). Heat shock protein A12B (HSPA12B) has strong anti-infammatory properties However, it is unknown whether increased HSPA12B is protective against LPS-induced ALI. And Dexmedetomidine (DEX) is a potent α2-adrenergic receptor (α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. This study utilized bioinformatics analysis and an LPS-induced ALI model to explore how DEX alleviates lung injury by modulating HSPA12B and inhibiting the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. Results indicate that HSPA12B overexpression and DEX pre-treatment markedly mitigated LPS-induced lung injury, which was evaluated by the deterioration of histopathology, histologic scores, the W/D weight ratio, and total protein expression, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) in the BALF, and the levels of NO, MDA,SOD and MPO in the lung. Moreover, HSPA12B overexpression and DEX pre-treatment significantly reduces lung injury and inflammation levels by upregulating HSPA12B and inhibiting the activation of the TLR4/NF-κB signaling pathway. On the contrary, when the expression of HSPA12B is inhibited, the protective effect of DEX pre-treatment on lung tissue is significantly weakened.In summary, our research demonstrated that the increased expression of AAV-mediated HSPA12B in the lungs of mice inhibits acute inflammation and suppresses the activation of TLR4/NF-κB pathway in a murine model of LPS-induced ALI. DEX could enhance HSPA12B and inhibit the initiation and development of inflammation through down-regulating TLR4/NF-κB pathway.These findings highlight the potential of DEX as a therapeutic agent for treating ALI and ARDS, offering new strategies for clinical intervention.
Collapse
Affiliation(s)
- Weifang Wu
- The Department of Anesthesiology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, 350001, Fujian, China; The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yi He
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China; The Department of Anesthesiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian, China
| | - Duoduo Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Guifei Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xutao Zhang
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China.
| | - Tingliang Xie
- The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China; The School of Medical, Minjiang Teachers College, Fuzhou, 350108, Fujian, China.
| | - Haixiang Wei
- The Third Clinical Medical College of Fujian Medical University, Fuzhou, 350122, Fujian, China; The Department of Anesthesiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, 353000, Fujian, China.
| |
Collapse
|
25
|
Zeng Y, Wang C, Yang C, Shan X, Meng XQ, Zhang M. Unveiling the role of chronic inflammation in ovarian aging: insights into mechanisms and clinical implications. Hum Reprod 2024; 39:1599-1607. [PMID: 38906835 DOI: 10.1093/humrep/deae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.
Collapse
Affiliation(s)
- Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Chun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xudong Shan
- Genital Medicine Center, The Third People's Hospital of Cheng, Sichuan, China
| | - Xiang-Qian Meng
- Department of Reproductive Medicine, Sichuan Jinxin Xinan Woman & Children Hospital, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Hense JD, Garcia DN, Zanini BM, Barreto MM, Perreira GC, Isola JVV, de Brito C, Fornalik M, Mondal SA, Ávila BM, Oliveira TL, Rice HC, Lacy CI, Vaucher RA, Mason JB, Masternak MM, Stout MB, Schneider A. MASLD does not affect fertility and senolytics fail to prevent MASLD progression in male mice. Sci Rep 2024; 14:17332. [PMID: 39068167 PMCID: PMC11283523 DOI: 10.1038/s41598-024-67697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.
Collapse
Affiliation(s)
- Jessica D Hense
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Mariana M Barreto
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Giulia C Perreira
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Camila de Brito
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Michal Fornalik
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Samim A Mondal
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Department of Endocrinology, JIPMER, Puducherry, 605006, India
| | - Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Heather C Rice
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Charles I Lacy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Rodrigo A Vaucher
- Center for Chemical, Pharmaceutical and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil.
| |
Collapse
|
27
|
Hense JD, Isola JVV, Garcia DN, Magalhães LS, Masternak MM, Stout MB, Schneider A. The role of cellular senescence in ovarian aging. NPJ AGING 2024; 10:35. [PMID: 39033161 PMCID: PMC11271274 DOI: 10.1038/s41514-024-00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
This review explores the relationship between ovarian aging and senescent cell accumulation, as well as the efficacy of senolytics to improve reproductive longevity. Reproductive longevity is determined by the age-associated decline in ovarian reserve, resulting in reduced fertility and eventually menopause. Cellular senescence is a state of permanent cell cycle arrest and resistance to apoptosis. Senescent cells accumulate in several tissues with advancing age, thereby promoting chronic inflammation and age-related diseases. Ovaries also appear to accumulate senescent cells with age, which might contribute to aging of the reproductive system and whole organism through SASP production. Importantly, senolytic drugs can eliminate senescent cells and may present a potential intervention to mitigate ovarian aging. Herein, we review the current literature related to the efficacy of senolytic drugs for extending the reproductive window in mice.
Collapse
Affiliation(s)
- Jéssica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
28
|
Gu M, Wang Y, Yu Y. Ovarian fibrosis: molecular mechanisms and potential therapeutic targets. J Ovarian Res 2024; 17:139. [PMID: 38970048 PMCID: PMC11225137 DOI: 10.1186/s13048-024-01448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-β, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Mengqing Gu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yibo Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
29
|
Dai W, Guo R, Na X, Jiang S, Liang J, Guo C, Fang Y, Na Z, Li D. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox Biol 2024; 73:103205. [PMID: 38815332 PMCID: PMC11167393 DOI: 10.1016/j.redox.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1α) is a major molecular mediator of the hypoxic response. In the endometrium, local hypoxic conditions induced by hormonal fluctuations and endometrial vascular remodeling contribute to the production of HIF-1α, which plays an indispensable role in a series of physiological activities, such as menstruation and metamorphosis. The sensitive regulation of HIF-1α maintains the cellular viability and regenerative capacity of the endometrium against cellular stresses induced by hypoxia and excess reactive oxygen species. In contrast, abnormal HIF-1α levels exacerbate the development of various endometrial pathologies. This knowledge opens important possibilities for the development of promising HIF-1α-centered strategies to ameliorate endometrial disease. Nonetheless, additional efforts are required to elucidate the regulatory network of endometrial HIF-1α and promote the applications of HIF-1α-centered strategies in the human endometrium. Here, we summarize the role of the HIF-1α-mediated pathway in endometrial physiology and pathology, highlight the latest HIF-1α-centered strategies for treating endometrial diseases, and improve endometrial receptivity.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinni Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyi Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuishan Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
30
|
Suzuki R, Tan X, Szymanska KJ, Kubikova N, Perez CA, Wells D, Oktay KH. The role of declining ataxia-telangiectasia-mutated (ATM) function in oocyte aging. Cell Death Discov 2024; 10:302. [PMID: 38914566 PMCID: PMC11196715 DOI: 10.1038/s41420-024-02041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Despite the advances in the understanding of reproductive physiology, the mechanisms underlying ovarian aging are still not deciphered. Recent research found an association between impaired ATM-mediated DNA double-strand break (DSB) repair mechanisms and oocyte aging. However, direct evidence connecting ATM-mediated pathway function decline and impaired oocyte quality is lacking. The objective of this study was to determine the role of ATM-mediated DNA DSB repair in the maintenance of oocyte quality in a mouse oocyte knockdown model. Gene interference, in vitro culture, parthenogenesis coupled with genotoxicity assay approaches, as well as molecular cytogenetic analyses based upon next-generation sequencing, were used to test the hypothesis that intact ATM function is critical in the maintenance of oocyte quality. We found that ATM knockdown impaired oocyte quality, resulting in poor embryo development. ATM knockdown significantly lowered or blocked the progression of meiosis in vitro, as well as retarding and reducing embryo cleavage after parthenogenesis. After ATM knockdown, all embryos were of poor quality, and none reached the blastocyst stage. ATM knockdown was also associated with an increased aneuploidy rate compared to controls. Finally, ATM knockdown increased the sensitivity of the oocytes to a genotoxic active metabolite of cyclophosphamide, with increased formation of DNA DSBs, reduced survival, and earlier apoptotic death compared to controls. These findings suggest a key role for ATM in maintaining oocyte quality and resistance to genotoxic stress, and that the previously observed age-induced decline in oocyte ATM function may be a prime factor contributing to oocyte aging.
Collapse
Affiliation(s)
- Reiko Suzuki
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, USA
| | - Xiujuan Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, USA
| | - Katarzyna J Szymanska
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, USA
| | - Nada Kubikova
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Columba Avila Perez
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Juno Genetics, Oxford, United Kingdom
| | - Kutluk H Oktay
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
31
|
Wang Y, Li X, Gong R, Zhao Y. Treatment of mice with maternal intermittent fasting to improve the fertilization rate and reproduction. ZYGOTE 2024; 32:215-223. [PMID: 38738497 DOI: 10.1017/s0967199424000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Maternal intermittent fasting (MIF) can have significant effects on several tissue and organ systems of the body, but there is a lack of research on the effects on the reproductive system. So, the aim of our study was to analyze the effects of MIF on fertility. B6C3F1Crl (C57BL/6N × C3H/HeN) male and female mice were selected for the first part of the experiments and were analyzed for body weight and fat weight after administration of the MIF intervention, followed by analysis of sperm counts and activation and embryo numbers. Subsequently, two strains of mice, C57BL/6NCrl and BALB/cJRj, were selected and administered MIF to observe the presence or absence of vaginal plugs for the purposes of mating success, sperm and oocyte quality, pregnancy outcome, fertility status and in vitro fertilization (IVF). Our results showed a significant reduction in body weight and fat content in mice receiving MIF intervention in B6C3F1Crl mice. Comparing the reproduction of the two strains of mice. However, the number of litters was increased in all MIF interventions in C57BL/6NCrl, but not statistically significant. In BALB/cJRj, there was a significant increase in the number of pregnant females as well as litter size in the MIF treatment group, as well as vaginal plugs, and IVF. There was also an increase in sperm activation and embryo number and the MIF intervention significantly increased sperm count and activation. Our results suggest that MIF interventions may be beneficial for reproduction in mice.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan250001, Shandong, China
| | - Xin Li
- The People's Hospital of Binzhou, Binzhou256600, Shandong, China
| | - Ruiting Gong
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan250001, Shandong, China
| | - Yu Zhao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan250001, Shandong, China
| |
Collapse
|
32
|
Lin LT, Li CJ, Chern CU, Lin PH, Lin PW, Chen YC, Tsai HW, Tsui KH. Intravascular Laser Blood Irradiation (ILIB) Enhances Antioxidant Activity and Energy Metabolism in Aging Ovaries. J Pers Med 2024; 14:551. [PMID: 38929772 PMCID: PMC11205042 DOI: 10.3390/jpm14060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals and inflammation. However, its impact on ovarian aging remains unexplored. This study aimed to investigate the effects of ILIB on oxidative stress and energy metabolism in aging ovaries. METHODS Genetic analysis was conducted on 75 infertile patients with aging ovaries, divided into ILIB-treated and control (CTRL) groups. Patients underwent two courses of laser treatment, and clinical parameters were evaluated. Cumulus cells were collected for the genetic analysis of oxeiptosis, glycolysis, and the tricarboxylic acid (TCA) cycle. RESULTS The analysis of gene expression patterns revealed intriguing findings in ILIB-treated patients compared to the untreated group. Notably, ILIB treatment resulted in significant upregulation of oxeiptosis-related genes AIFM1 and NRF2, suggesting a potential protective effect against oxidative stress-induced cell death. Furthermore, ILIB treatment led to a downregulation of glycolysis-associated gene hexokinase 2 (HK2), indicating a shift away from anaerobic metabolism, along with an increase in PDHA levels, indicative of enhanced mitochondrial function. Consistent with these changes, ILIB-treated patients exhibited elevated expression of the key TCA cycle genes citrate synthase (CS), succinate dehydrogenase complex subunit A (SDHA), and fumarate hydratase (FH), signifying improved energy metabolism. CONCLUSION The findings from this study underscore the potential of ILIB as a therapeutic strategy for mitigating ovarian aging. By targeting oxidative stress and enhancing energy metabolism, ILIB holds promise for preserving ovarian function and reproductive health in aging individuals. Further research is warranted to elucidate the underlying mechanisms and optimize the application of ILIB in clinical settings, with the ultimate goal of improving fertility outcomes in women experiencing age-related ovarian decline.
Collapse
Affiliation(s)
- Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Chyi-Uei Chern
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pei-Hsuan Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Po-Wen Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yu-Chen Chen
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Hsiao-Wen Tsai
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 821, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei 112, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
33
|
Daddangadi A, Uppangala S, Kabekkodu SP, Khan G N, Kalthur G, Talevi R, Adiga SK. Advanced Maternal Age Affects the Cryosusceptibility of Ovulated but not In Vitro Matured Mouse Oocytes. Reprod Sci 2024; 31:1420-1428. [PMID: 38294668 PMCID: PMC11090971 DOI: 10.1007/s43032-024-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Oocyte cryopreservation is offered to women of various age groups for both health and social reasons. Oocytes derived from either controlled ovarian stimulation or in vitro maturation (IVM) are cryopreserved via vitrification. As maternal age is a significant determinant of oocyte quality, there is limited data on the age-related susceptibility of oocytes to the vitrification-warming procedure alone or in conjunction with IVM. In the present study, metaphase II oocytes obtained from 2, 6, 9, and 12 month old Swiss albino mice either by superovulation or IVM were used. To understand the association between maternal age and oocyte cryotolerance, oocytes were subjected to vitrification-warming and compared to non vitrified sibling oocytes. Survived oocytes were evaluated for mitochondrial potential, spindle integrity, relative expression of spindle checkpoint protein transcripts, and DNA double-strand breaks. Maturation potential and vitrification-warming survival were significantly affected (p < 0.001 and p < 0.05, respectively) in ovulated oocytes from the advanced age group but not in IVM oocytes. Although vitrification-warming significantly increased spindle abnormalities in ovulated oocytes from advanced maternal age (p < 0.01), no significant changes were observed in IVM oocytes. Furthermore, Bub1 and Mad2 transcript levels were significantly higher in vitrified-warmed IVM oocytes (p < 0.05). In conclusion, advanced maternal age can have a negative impact on the cryosusceptibility of ovulated oocytes but not IVM oocytes in mice.
Collapse
Affiliation(s)
- Akshatha Daddangadi
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Shubhashree Uppangala
- Division of Reproductive Genetics, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Nadeem Khan G
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India
| | - Riccardo Talevi
- Dipartimento Di Biologia, Università Di Napoli "Federico II", Complesso Universitario Di Monte S Angelo, Naples, Italy
| | - Satish Kumar Adiga
- Centre of Excellence in Clinical Embryology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576 104, India.
| |
Collapse
|
34
|
Zhou Y, Zhu F, Zhou Y, Li X, Zhao S, Zhang Y, Zhu Y, Li H, Cao Y, Zhang C. The value of low-intensity pulsed ultrasound in reducing ovarian injury caused by chemotherapy in mice. Reprod Biol Endocrinol 2024; 22:51. [PMID: 38671458 PMCID: PMC11046824 DOI: 10.1186/s12958-024-01216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ovarian damage and follicle loss are major side effects of chemotherapy in young female patients with cancer. However, effective strategies to prevent these injuries are still lacking. The purpose of this study was to verify low-intensity pulsed ultrasound (LIPUS) can reduce ovarian injury caused by chemotherapy and to explore its underlying mechanisms in mice model. METHODS The mice were randomly divided into the Control group, Cisplatin group, and Cisplatin + LIPUS group. The Cisplatin group and Cisplatin + LIPUS group were intraperitoneally injected with cisplatin every other day for a total of 10 injections, and the Control group was injected with saline. On the second day of each injection, the Cisplatin + LIPUS group received irradiation, whereas the other two groups received sham irradiation. We used a variety of biotechnologies to detect the differences in follicle count, granulosa cell apoptosis, fibrosis, transcriptome level, oxidative damage, and inflammation in differently treated mice. RESULT LIPUS was able to reduce primordial follicle pool depletion induced by cisplatin and inhibit the apoptosis of granulosa cells. Transcriptomic results confirmed that LIPUS can reduce ovarian tissue injury. We demonstrated that LIPUS can relieve ovarian fibrosis by inhibiting TGF-β1/Smads pathway. Meanwhile, it can reduce the oxidative damage and reduced the mRNA levels of proinflammatory cytokines caused by chemotherapy. CONCLUSION LIPUS can reduce the toxic effects of chemotherapy drugs on ovaries, inhibit ovarian fibrosis, reduce the inflammatory response, and redcue the oxidative damage, reduce follicle depletion and to maintain the number of follicle pools.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Fengyu Zhu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Yuanyuan Zhou
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Xuqing Li
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Shuhan Zhao
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Yiqing Zhang
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Ying Zhu
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China
| | - Hongyan Li
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China.
| | - Chaoxue Zhang
- Department of Ultrasound, The first Affiliated Hospital of Anhui Medical University, NO.218 Jixi Road, Shushan District, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
35
|
Pretto L, Nabinger E, Filippi-Chiela EC, Fraga LR. Cellular senescence in reproduction: a two-edged sword†. Biol Reprod 2024; 110:660-671. [PMID: 38480995 DOI: 10.1093/biolre/ioae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/16/2024] Open
Abstract
Cellular senescence (CS) is the state when cells are no longer capable to divide even after stimulation with grown factors. Cells that begin to undergo CS stop in the cell cycle and enter a suspended state without committing to programmed cell death. These cells assume a specific phenotype and influence their microenvironment by secreting molecules and extracellular vesicles that are part of the so-called senescent cell-associated secretory phenotype (SASP). Cellular senescence is intertwined with physiological and pathological conditions in the human organism. In terms of reproduction, senescent cells are present from reproductive tissues and germ cells to gestational tissues, and participate from fertilization to delivery, going through adverse reproductive outcomes such as pregnancy losses. Furthermore, various SASP molecules are enriched in gestational tissues throughout pregnancy. Thus, the aim of this review is to provide a basis about the features and potential roles played by CS throughout the reproductive process, encompassing its implication in each step of it and proposing a way to manage it in adverse reproductive contexts.
Collapse
Affiliation(s)
- Luiza Pretto
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduarda Nabinger
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eduardo Cremonesi Filippi-Chiela
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas Rosa Fraga
- Post-Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Morphological Science, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Teratology Information System (SIAT), Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
36
|
Pei W, Fu L, Guo W, Wang Y, Fan Y, Yang R, Li R, Qiao J, Yu Y. Efficacy and safety of mesenchymal stem cell therapy for ovarian ageing in a mouse model. Stem Cell Res Ther 2024; 15:96. [PMID: 38570892 PMCID: PMC10988907 DOI: 10.1186/s13287-024-03698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Ovarian ageing is one of the major issues that impacts female fertility. Mesenchymal stem cell (MSC)-based therapy has made impressive progress in recent years. However, the efficacy and safety of MSCs, as nonautologous components, remain to be further verified. METHODS Two common sources of MSCs, umbilical cord-derived MSCs (UC-MSCs) and adipose tissue-derived MSCs (AD-MSCs), were orthotopically transplanted into a mouse model of ovarian ageing to evaluate their therapeutic effects. The safety of the treatment was further evaluated, and RNA sequencing was performed to explore the underlying mechanisms involved. RESULTS After orthotopic transplantation of MSCs into the ovary, the oestrous cycle, ovarian weight, number and proportion of primary follicles, granulosa cell proliferation, and angiogenesis were improved. The effects of AD-MSCs were superior to those of UC-MSCs in several indices, such as post-transplant granulosa cell proliferation, ovarian weight and angiogenesis. Moreover, the tumorigenesis, acute toxicity, immunogenicity and biodistribution of MSCs were evaluated, and both AD-MSCs and UC-MSCs were found to possess high safety profiles. Through RNA sequencing analysis, enhancement of the MAPK cascade was observed, and long-term effects were mainly linked to the activation of immune function. CONCLUSIONS Orthotopic transplantation of MSCs displays significant efficacy and high safety for the treatment of ovarian ageing in mice.
Collapse
Affiliation(s)
- Wendi Pei
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Lin Fu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Wenhuan Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Yibo Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
37
|
Wu M, Tang W, Chen Y, Xue L, Dai J, Li Y, Zhu X, Wu C, Xiong J, Zhang J, Wu T, Zhou S, Chen D, Sun C, Yu J, Li H, Guo Y, Huang Y, Zhu Q, Wei S, Zhou Z, Wu M, Li Y, Xiang T, Qiao H, Wang S. Spatiotemporal transcriptomic changes of human ovarian aging and the regulatory role of FOXP1. NATURE AGING 2024; 4:527-545. [PMID: 38594460 PMCID: PMC11031396 DOI: 10.1038/s43587-024-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China.
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China.
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Jing Yu
- Shanghai Health Commission Key Lab of Artificial Intelligence (AI)-Based Management of Inflammation and Chronic Diseases, Sino-French Cooperative Central Lab, Shanghai Pudong Gongli Hospital, Secondary Military Medical University, Shanghai, China
| | - Hongyi Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Qingqing Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Ziliang Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Ya Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | - Tao Xiang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China
| | | | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, China.
| |
Collapse
|
38
|
Okawa H, Tanaka Y, Takahashi A. Network of extracellular vesicles surrounding senescent cells. Arch Biochem Biophys 2024; 754:109953. [PMID: 38432566 DOI: 10.1016/j.abb.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Extracellular vesicles (EVs) are small lipid bilayers released from cells that contain cellular components such as proteins, nucleic acids, lipids, and metabolites. Biological information is transmitted between cells via the EV content. Cancer and senescent cells secrete more EVs than normal cells, delivering more information to the surrounding recipient cells. Cellular senescence is a state of irreversible cell cycle arrest caused by the accumulation of DNA damage. Senescent cells secrete various inflammatory proteins known as the senescence-associated secretory phenotype (SASP). Inflammatory SASP factors, including small EVs, induce chronic inflammation and lead to various age-related pathologies. Recently, senolytic drugs that selectively induce cell death in senescent cells have been developed to suppress the pathogenesis of age-related diseases. This review describes the characteristics of senescent cells, the functions of EVs released from senescent cells, and the therapeutic effects of EVs on age-related diseases. Understanding the biology of EVs secreted from senescent cells will provide valuable insights for achieving healthy longevity in an aging society.
Collapse
Affiliation(s)
- Hikaru Okawa
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Division of Cellular and Molecular Imaging of Cancer, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Yoko Tanaka
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Akiko Takahashi
- Division of Cellular Senescence, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, 135-8550, Japan; Cancer Cell Communication Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| |
Collapse
|
39
|
Zhang H, Su W, Zhao R, Li M, Zhao S, Chen Z, Zhao H. Epigallocatechin-3-gallate improves the quality of maternally aged oocytes. Cell Prolif 2024; 57:e13575. [PMID: 38010042 PMCID: PMC10984106 DOI: 10.1111/cpr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
The decline in female fertility as age advances is intricately linked to the diminished developmental potential of oocytes. Despite this challenge, the strategies available to enhance the quality of aged oocytes remain limited. Epigallocatechin-3-gallate (EGCG), characterised by its anti-inflammatory, antioxidant and tissue protective properties, holds promise as a candidate for improving the quality of maternally aged oocytes. In this study, we explored the precise impact and underlying mechanisms of EGCG on aged oocytes. EGCG exhibited the capacity to enhance the quality of aged oocytes both in vitro and in vivo. Specifically, the application of EGCG in vitro resulted in noteworthy improvements, including an increased rate of first polar body extrusion, enhanced mitochondrial function, refined spindle morphology and a reduction in oxidative stress. These beneficial effects were further validated by the improved fertility observed among aged mice. In addition, our findings propose that EGCG might augment the expression of Arf6. This augmentation, in turn, contributes to the assembly of spindle-associated F-actin, which can contribute to mitigate the aneuploidy induced by the disruption of spindle F-actin within aged oocytes. This work thus contributes not only to understanding the role of EGCG in bolstering oocyte health, but also underscores its potential as a therapeutic intervention to address fertility challenges associated with advanced age.
Collapse
Affiliation(s)
- HongHui Zhang
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wei Su
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - RuSong Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu SchoolNanjing Medical UniversityNanjingChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mei Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - ShiGang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zi‐Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
- Center for Reproductive Medicine, Ren Ji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring HealthShandong UniversityJinanChina
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanChina
- National Research Center for Assisted Reproductive Technology and Reproductive GeneticShandong UniversityJinanChina
- Research Unit of Gametogenesis and Health of ART‐Offspring, Chinese Academy of Medical Sciences (No.2021RU001)JinanChina
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
40
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging. Reprod Sci 2024; 31:906-916. [PMID: 37917297 DOI: 10.1007/s43032-023-01394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Female fertility decreases during aging. The development of effective therapeutic strategies to address the age-related decline in oocyte quality and quantity and its accurate diagnosis remain major challenges. In this review, we summarize our current understanding of the study of aging and infertility, focusing primarily on the molecular basis of energy metabolism, mitochondrial function, and redox homeostasis in granulosa cells and oocytes, and discuss perspectives on future research directions. Mitochondria serve as a central hub sensing a multitude of physiological processes, including energy production, cellular redox homeostasis, aging, and senescence. Young granulosa cells favor glycolysis and actively produce pyruvate, NADPH, and other metabolites. Oocytes rely on oxidative phosphorylation fueled by nutrients, metabolites, and antioxidants provided by the adjacent granulosa cells. A reduced cellular energy metabolism phenotype, including both aerobic glycolysis and mitochondrial respiration, is characteristic of older female granulosa cells compared with younger female granulosa cells. Aged oocytes become more susceptible to oxidative damage to cells and mitochondria because of further depletion of antioxidant-dependent ROS scavenging systems. Molecular perturbations of gene expression caused by a subtle change in the follicular fluid microenvironment adversely affect energy metabolism and mitochondrial dynamics in granulosa cells and oocytes, further causing redox imbalance and accelerating aging and senescence. Furthermore, recent advances in technology are beginning to identify biofluid molecular markers that may influence follicular development and oocyte quality. Accumulating evidence suggests that redox imbalance caused by abnormal energy metabolism and/or mitochondrial dysfunction is closely linked to the pathophysiology of age-related subfertility.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichi-Jyonishi-Machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-Cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-Cho, Nara, 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-Cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8522, Japan
| |
Collapse
|
42
|
Liao M, Xu Q, Mao X, Zhang J, Wu L, Chen Q. Paternal age does not jeopardize the live birth rate and perinatal outcomes after in vitro fertilization: an analysis based on 56,113 frozen embryo transfer cycles. Am J Obstet Gynecol 2024; 230:354.e1-354.e13. [PMID: 37952870 DOI: 10.1016/j.ajog.2023.11.1224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND The global trend of delaying childbearing has led to an increasing number of couples seeking in vitro fertilization. The adverse effects of advanced maternal age on pregnancy and perinatal outcomes are well documented, regardless of the conception method. In addition, advanced paternal age may contribute to poor reproductive potential because of high levels of sperm DNA fragmentation. However, it remains challenging to guide older men regarding the effect of paternal age on pregnancy and birth outcomes in the field of assisted reproduction. OBJECTIVE This study aimed to investigate the association of paternal age with live birth and perinatal outcomes following in vitro fertilization-frozen embryo transfer. STUDY DESIGN A retrospective study was performed at a university-affiliated fertility center, involving women who were younger than 36 years and had undergone frozen embryo transfer from January 2011 to June 2021. Subjects were categorized into 6 groups based on paternal age: <25, 25 to 29, 30 to 34, 35 to 39, 40 to 44, and ≥45 years. A generalized estimating equation logistic regression model was used to account for the clustered nature of data and to adjust for confounders. Paternal age between 25 and 29 years served as the reference group in the logistic regression models. RESULTS A total of 56,113 cycles who met the inclusion criteria were included in the final analysis. On unadjusted analyses, the reproductive outcome parameters showed a considerable decline with increasing male age. The live birth rate decreased from 47.9% for men aged 25 to 29 years to 40.3% among men aged ≥40 years. Similarly, the clinical pregnancy rate decreased from 54.4% in the reference group to 47.8% in the ≥40 years age group. Conversely, the miscarriage rate increased as male age increased, from 10.2% among men aged 25 to 29 years to 13.5% among men aged ≥45 years. However, the differences in the reproductive outcomes mentioned above were no longer significant in the multivariable models. Compared with the younger controls, advanced paternal age was not associated with a lower chance of live birth (males aged 40-44 years: adjusted odds ratio, 0.94; 95% confidence interval, 0.85-1.04; males aged ≥45 years: adjusted odds ratio, 0.93; 95% confidence interval, 0.79-1.10). In addition, the rates of clinical pregnancy (males aged 40-44 years: adjusted odds ratio, 0.95; 95% confidence interval, 0.85-1.05; males aged ≥45 years: adjusted odds ratio, 0.94; 95% confidence interval, 0.79-1.12) and miscarriage (males aged 40-44 years: adjusted odds ratio, 1.05; 95% confidence interval, 0.85-1.31; males aged ≥45 years: adjusted odds ratio, 1.07; 95% confidence interval, 0.77-1.50) were comparable between the reference and advanced paternal age groups. Furthermore, men in the youngest age group (<25 years) did not have worse pregnancy outcomes than those in the reference group. Regarding perinatal outcomes, there was no difference among the study cohorts in terms of preterm birth, low birthweight, macrosomia, small for gestational age, and large for gestational age, both in the unadjusted and confounder-adjusted models. CONCLUSION This study did not demonstrate a significant association between paternal age and live birth and perinatal outcomes after in vitro fertilization-frozen embryo transfer when the female partners were younger than 36 years. With the global trend toward delaying childbirth, our findings provide useful information for counseling patients that increasing paternal age may not adversely affect pregnancy and perinatal outcomes in assisted reproduction.
Collapse
Affiliation(s)
- Maokun Liao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyu Xu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Mao
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiuju Chen
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Meng Y, Sun J, Yu T, Piao H. Plant-derived nanovesicles offer a promising avenue for anti-aging interventions. PHYSIOLOGIA PLANTARUM 2024; 176:e14283. [PMID: 38627963 DOI: 10.1111/ppl.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Over the past few years, the study of plant-derived nanovesicles (PDNVs) has emerged as a hot topic of discussion and research in the scientific community. This remarkable interest stems from their potential role in facilitating intercellular communication and their unique ability to deliver biologically active components, including proteins, lipids, and miRNAs, to recipient cells. This fascinating ability to act as a molecular courier has opened up an entirely new dimension in our understanding of plant biology. The field of research focusing on the potential applications of PDNVs is still in its nascent stages. However, it has already started gaining traction due to the growing interest in its possible use in various branches of biotechnology and medicine. Their unique properties and versatile applications offer promising future research and development prospects in these fields. Despite the significant progress in our understanding, many unanswered questions and mysteries surround the mechanisms by which PDNVs function and their potential applications. There is a dire need for further extensive research to elucidate these mechanisms and explore the full potential of these fascinating vesicles. As the technology at our disposal advances and our understanding of PDNVs deepens, it is beyond doubt that PDNVs will continue to be a subject of intense research in anti-aging therapeutics. This comprehensive review is designed to delve into the fascinating and multifaceted world of PDNV-based research, particularly focusing on how these nanovesicles can be applied to anti-aging therapeutics.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Tao Yu
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Dadong district, Shenyang, China
| |
Collapse
|
44
|
Luo Y, An C, Zhong K, Zhou P, Li D, Liu H, Guo Q, Wei W, Pan H, Min Z, Li R, Yu Y, Fan Y. Exploring the impacts of senescence on implantation and early embryonic development using totipotent cell-derived blastoids. J Adv Res 2024:S2090-1232(24)00073-0. [PMID: 38402947 DOI: 10.1016/j.jare.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Advanced maternal age is associated with reduced implantation and pregnancy rates, yet the underlying mechanisms remain poorly understood, and research models are limited. OBJECTIVES Here, we aim to elucidate the impacts of senescence on implantation ability by employing blastoids to construct a novel research model. METHODS We used a novel three-dimensional system with totipotent blastomere-like cells (TBLCs) to construct TBL-blastoids and established senescence-related embryo models derived from oxidative stress-induced TBLCs. RESULTS Morphological and transcriptomic analyses revealed that TBL-blastoids exhibited characteristic blastocyst morphology, cell lineages, and a higher consistency in developmental rate. TBL-blastoids demonstrated the ability to develop into postimplantation structures in vitro and successfully implanted into mouse uteri, inducing decidualization and forming embryonic tissues. Importantly, senescence impaired the implantation potential of TBL-blastoids, effectively mimicking the impaired implantation ability and reduced pregnancy rates associated with advanced age. Furthermore, analysis of differentially expressed genes (DEGs) in human homologous deciduae revealed enrichment in multiple fertility-related diseases and other complications of pregnancy. The genes implicated in these diseases and the common DEGs identified in the lineage-like cells of the two types of TBL-blastoids and deciduae may represent potential targets for addressing impaired implantation potential. CONCLUSION These results unveiled that TBL blastoids are an improved model for investigating implantation and early postimplantation, offering valuable insights into pregnancy-related disorders in women with advanced age and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yuxin Luo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Chenrui An
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hen Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Zheying Min
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
45
|
Song J, Xiao L, Zhang Z, Wang Y, Kouis P, Rasmussen LJ, Dai F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front Cell Dev Biol 2024; 12:1347286. [PMID: 38465288 PMCID: PMC10920300 DOI: 10.3389/fcell.2024.1347286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondria, the versatile organelles crucial for cellular and organismal viability, play a pivotal role in meeting the energy requirements of cells through the respiratory chain located in the inner mitochondrial membrane, concomitant with the generation of reactive oxygen species (ROS). A wealth of evidence derived from contemporary investigations on reproductive longevity strongly indicates that the aberrant elevation of ROS level constitutes a fundamental factor in hastening the aging process of reproductive systems which are responsible for transmission of DNA to future generations. Constant changes in redox status, with a pro-oxidant shift mainly through the mitochondrial generation of ROS, are linked to the modulation of physiological and pathological pathways in gametes and reproductive tissues. Furthermore, the quantity and quality of mitochondria essential to capacitation and fertilization are increasingly associated with reproductive aging. The article aims to provide current understanding of the contributions of ROS derived from mitochondrial respiration to the process of reproductive aging. Moreover, understanding the impact of mitochondrial dysfunction on both female and male fertility is conducive to finding therapeutic strategies to slow, prevent or reverse the process of gamete aging, and thereby increase reproductive longevity.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Li Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zhehao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yujin Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Panayiotis Kouis
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
46
|
Knight AK, Spencer JB, Smith AK. DNA methylation as a window into female reproductive aging. Epigenomics 2024; 16:175-188. [PMID: 38131149 PMCID: PMC10841041 DOI: 10.2217/epi-2023-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
People with ovaries experience reproductive aging as their reproductive function and system declines. This has significant implications for both fertility and long-term health, with people experiencing an increased risk of cardiometabolic disorders after menopause. Reproductive aging can be assessed through markers of ovarian reserve, response to fertility treatment or molecular biomarkers, including DNA methylation. Changes in DNA methylation with age associate with poorer reproductive outcomes, and epigenome-wide studies can provide insight into genes and pathways involved. DNA methylation-based epigenetic clocks can quantify biological age in reproductive tissues and systemically. This review provides an overview of hallmarks and theories of aging in the context of the reproductive system, and then focuses on studies of DNA methylation in reproductive tissues.
Collapse
Affiliation(s)
- Anna K Knight
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessica B Spencer
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Research Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Reproductive Endocrinology & Infertility Division, Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
48
|
Yang Q, Chen W, Cong L, Wang M, Li H, Wang H, Luo X, Zhu J, Zeng X, Zhu Z, Xu Y, Lei M, Zhao Y, Wei C, Sun Y. NADase CD38 is a key determinant of ovarian aging. NATURE AGING 2024; 4:110-128. [PMID: 38129670 PMCID: PMC10798903 DOI: 10.1038/s43587-023-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
The ovary ages earlier than most other tissues, yet the underlying mechanisms remain elusive. Here a comprehensive analysis of transcriptomic landscapes in different organs in young and middle-aged mice revealed that the ovaries showed earlier expression of age-associated genes, identifying increased NADase CD38 expression and decreased NAD+ levels in the ovary of middle-aged mice. Bulk and single-cell RNA sequencing revealed that CD38 deletion mitigated ovarian aging, preserving fertility and follicle reserve in aged mice by countering age-related gene expression changes and intercellular communication alterations. Mechanistically, the earlier onset of inflammation induced higher expression levels of CD38 and decreased NAD+ levels in the ovary, thereby accelerating ovarian aging. Consistently, pharmacological inhibition of CD38 enhanced fertility in middle-aged mice. Our findings revealed the mechanisms underlying the earlier aging of the ovary relative to other organs, providing a potential therapeutic target for ameliorating age-related female infertility.
Collapse
Affiliation(s)
- Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenhui Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luping Cong
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengchen Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Luo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Zeng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
49
|
Tinelli A, Andjić M, Morciano A, Pecorella G, Malvasi A, D’Amato A, Sparić R. Uterine Aging and Reproduction: Dealing with a Puzzle Biologic Topic. Int J Mol Sci 2023; 25:322. [PMID: 38203493 PMCID: PMC10778867 DOI: 10.3390/ijms25010322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Uterine aging is the process of the senescence of uterine tissue, observed in all middle-aged mammals. Since the aging-related changes in the uterus are associated with infertility and poor pregnancy outcomes, with a lack of studies discussing uterine aging, authors reviewed uterine aging and its consequences on reproduction. MEDLINE, Scopus, and PubMed searches during the years 1990-2023 were performed using a combination of keywords and terms on such topics. According to the author's evaluation, articles were identified, selected, and included in this narrative review. The aging process has an unfavorable impact on the uterus of mammals. There are different and selected molecular pathways related to uterine aging in humans and animals. Uterine aging impairs the function of the uterine myometrium, neurofibers of the human uterus, and human endometrium. These biological pathways modulate oxidative stress, anti-inflammatory response, inflammation, mitochondrial function, DNA damage repair, etc. All these dysregulations have a role in poorer reproductive performance and pregnancy outcomes in older mammals. The most recent data suggest that uterine aging is accompanied by genetic, epigenetic, metabolic, and immunological changes. Uterine aging has a negative impact on the reproductive performance in mammalian species, but it could be potentially modulated by pharmacological agents, such as quercetin and dasatinib.
Collapse
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcercaClinicoSALentino), “Veris delli Ponti Hospital”, 73020 Scorrano, LE, Italy
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.A.); (R.S.)
| | - Andrea Morciano
- Department of Gynecology and Obstetrics, Pia Fondazione “Card. G. Panico”, 73039 Tricase, LE, Italy;
| | - Giovanni Pecorella
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University, 66421 Homburg, Saar, Germany;
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, BA, Italy;
| | - Antonio D’Amato
- Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, BA, Italy;
| | - Radmila Sparić
- Clinic for Gynecology and Obstetrics, University Clinical Centre of Serbia, 11000 Belgrade, Serbia; (M.A.); (R.S.)
- School of Medicine, University of Belgrade, 11080 Belgrade, Serbia
| |
Collapse
|
50
|
Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, Tsuyoshi H, Yoshida Y. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne) 2023; 14:1324429. [PMID: 38192421 PMCID: PMC10773729 DOI: 10.3389/fendo.2023.1324429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
The ovarian microenvironment is critical for follicular development and oocyte maturation. Maternal conditions, including polycystic ovary syndrome (PCOS), endometriosis, and aging, may compromise the ovarian microenvironment, follicular development, and oocyte quality. Chronic low-grade inflammation can induce oxidative stress and tissue fibrosis in the ovary. In PCOS, endometriosis, and aging, pro-inflammatory cytokine levels are often elevated in follicular fluids. In women with obesity and PCOS, hyperandrogenemia and insulin resistance induce ovarian chronic low-grade inflammation, thereby disrupting follicular development by increasing oxidative stress. In endometriosis, ovarian endometrioma-derived iron overload can induce chronic inflammation and oxidative stress, leading to ovarian ferroptosis and fibrosis. In inflammatory aging (inflammaging), senescent cells may secrete senescence-associated secretory phenotype factors, causing chronic inflammation and oxidative stress in the ovary. Therefore, controlling chronic low-grade inflammation and fibrosis in the ovary would present a novel therapeutic strategy for improving the follicular microenvironment and minimizing ovarian dysfunction.
Collapse
Affiliation(s)
- Makoto Orisaka
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Nursing, Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Fukui, Japan
| | - Yumiko Miyazaki
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Aya Shirafuji
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chiyo Tamamura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Fujita
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideaki Tsuyoshi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Ishikawa Prefectural Central Hospital, Ishikawa, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|