1
|
Katzman PJ, Hecht JL. Triaging and Evaluation of Products of Conception in Abortions and Post-Partum Hemorrhage. Pediatr Dev Pathol 2024; 27:499-512. [PMID: 38794948 DOI: 10.1177/10935266241255981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The proper evaluation of abortion specimens and placentas from stillbirth and post-partum cases is important for adequate clinical care of post-abortion and post-partum patients. The following topics will be reviewed: (1) the importance of evaluation of both fetal and placental tissue in first trimester abortions to confirm an intrauterine pregnancy versus an ectopic pregnancy; (2) the clinical history associated with an abortion specimen or retained products of conception (POC) influences how the pathologist should triage the specimen; (3) the criteria for diagnosis of a molar pregnancy, which is critical for clinicians to know which patients need follow-up; (4) the utility of genetic studies for both diagnosis and appropriate follow-up of the patient; and (5) the pathologic evaluation of specimens from patients with post-partum hemorrhage for placenta accreta spectrum and subinvolution of maternal vessels.
Collapse
|
2
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Zhao Y, Cai L, Zhang X, Zhang H, Cai L, Zhou L, Huang B, Qian J. Hematoxylin and Eosin Staining Helps Reduce Maternal Contamination in Short Tandem Repeat Genotyping for Hydatidiform Mole Diagnosis. Int J Gynecol Pathol 2024; 43:253-263. [PMID: 37566880 PMCID: PMC11022989 DOI: 10.1097/pgp.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Short tandem repeat (STR) genotyping provides parental origin information about aneuploidy pregnancy loss and has become the current gold standard for hydatidiform mole diagnosis. STR genotyping diagnostic support most commonly relies on formalin-fixed paraffin-embedded samples, but maternal contamination is one of the most common issues based on traditional unstained sections. To evaluate the influence of hematoxylin and eosin (H&E) staining on DNA quality and STR genotyping, DNA was isolated from unstained, deparaffinized hydrated, and H&E-stained tissue sections (i.e. 3 groups) from each of 6 formalin-fixed paraffin-embedded placentas. The macrodissected view field, DNA quality, and polymerase chain reaction amplification efficiency were compared among groups. STR genotyping analysis was performed in both the test cohort (n = 6) and the validation cohort (n = 149). H&E staining not only did not interfere with molecular DNA testing of formalin-fixed paraffin-embedded tissue but also had a clearer macrodissected field of vision. In the test cohort, H&E-stained sections were the only group that did not exhibit maternal miscellaneous peaks in STR genotyping results. In the validation cohort, 138 (92.62%) cases yielded satisfactory amplification results without maternal contamination. Thus, H&E staining helped to reduce maternal contamination in STR genotyping for hydatidiform mole diagnosis, suggesting that H&E-stained sections can be incorporated into the hydatidiform mole molecular diagnostic workflow.
Collapse
|
4
|
He X, Chen H, Liao M, Zhao X, Zhang D, Jiang M, Jiang Z. The role of CoQ10 in embryonic development. J Assist Reprod Genet 2024; 41:767-779. [PMID: 38372883 PMCID: PMC10957822 DOI: 10.1007/s10815-024-03052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.
Collapse
Affiliation(s)
- Xueke He
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Minjun Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaomei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Dawei Zhang
- Group On the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Postdoctoral Research Station of Basic Medicine, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, China
| |
Collapse
|
5
|
Genotyping diagnosis of gestational trophoblastic disease: frontiers in precision medicine. Mod Pathol 2021; 34:1658-1672. [PMID: 34088998 DOI: 10.1038/s41379-021-00831-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Investigations in recent decades have exploited tissue DNA genotyping as a powerful ancillary tool for the precision diagnosis and subclassification of gestational trophoblastic disease. As lesions of gestational origin, the inherited paternal genome, with or without copy number alterations, is the fundamental molecular basis for the diagnostic applications of DNA genotyping. Genotyping is now considered the gold standard in the confirmation and subtyping of sporadic hydatidiform moles. Although a precise diagnosis of partial mole requires DNA genotyping, prognostic stratification according to distinct genetic zygosity in complete moles has recently gained significant clinical relevance for patient care. Beyond hydatidiform moles, DNA genotyping has fundamental applications in the diagnosis or prognostic assessment of gestational trophoblastic tumors, in particular gestational choriocarcinoma. DNA genotyping provides a decisive tool in the separation of gestational trophoblastic neoplasia from non-gestational counterparts/mimics of either germ cell or somatic origin. The FIGO/WHO prognostic scoring scheme requires ascertaining the precise index gestational event and the time interval between the tumor and index gestation, where DNA genotyping can provide highly relevant information. With rapid acquisition of molecular diagnostic capabilities in the clinical practice, DNA genotyping has become closely integrated into the routine diagnostic workup of various forms of gestational trophoblastic disease.
Collapse
|
6
|
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes (Basel) 2021; 12:genes12081214. [PMID: 34440388 PMCID: PMC8394515 DOI: 10.3390/genes12081214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Genomic imprinting is an epigenetic marking process that results in the monoallelic expression of a subset of genes. Many of these ‘imprinted’ genes in mice and humans are involved in embryonic and extraembryonic growth and development, and some have life-long impacts on metabolism. During mammalian development, the genome undergoes waves of (re)programming of DNA methylation and other epigenetic marks. Disturbances in these events can cause imprinting disorders and compromise development. Multi-locus imprinting disturbance (MLID) is a condition by which imprinting defects touch more than one locus. Although most cases with MLID present with clinical features characteristic of one imprinting disorder. Imprinting defects also occur in ‘molar’ pregnancies-which are characterized by highly compromised embryonic development-and in other forms of reproductive compromise presenting clinically as infertility or early pregnancy loss. Pathogenic variants in some of the genes encoding proteins of the subcortical maternal complex (SCMC), a multi-protein complex in the mammalian oocyte, are responsible for a rare subgroup of moles, biparental complete hydatidiform mole (BiCHM), and other adverse reproductive outcomes which have been associated with altered imprinting status of the oocyte, embryo and/or placenta. The finding that defects in a cytoplasmic protein complex could have severe impacts on genomic methylation at critical times in gamete or early embryo development has wider implications beyond these relatively rare disorders. It signifies a potential for adverse maternal physiology, nutrition, or assisted reproduction to cause epigenetic defects at imprinted or other genes. Here, we review key milestones in DNA methylation patterning in the female germline and the embryo focusing on humans. We provide an overview of recent findings regarding DNA methylation deficits causing BiCHM, MLID, and early embryonic arrest. We also summarize identified SCMC mutations with regard to early embryonic arrest, BiCHM, and MLID.
Collapse
Affiliation(s)
- Zahra Anvar
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Imen Chakchouk
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
| | - Momal Sharif
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK;
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA; (Z.A.); (I.C.); (M.S.)
- Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (G.K.); (I.B.V.d.V.); Tel.: +44-1223-496332 (G.K.); +832-824-8125 (I.B.V.d.V.)
| |
Collapse
|
7
|
Huang TC, Chang KC, Chang JY, Tsai YS, Yang YJ, Chang WC, Mo CF, Yu PH, Chiang CT, Lin SP, Kuo PL. Variants in Maternal Effect Genes and Relaxed Imprinting Control in a Special Placental Mesenchymal Dysplasia Case with Mild Trophoblast Hyperplasia. Biomedicines 2021; 9:biomedicines9050544. [PMID: 34068021 PMCID: PMC8152467 DOI: 10.3390/biomedicines9050544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Placental mesenchymal dysplasia (PMD) and partial hydatidiform mole (PHM) placentas share similar characteristics, such as placental overgrowth and grape-like placental tissues. Distinguishing PMD from PHM is critical because the former can result in normal birth, while the latter diagnosis will lead to artificial abortion. Aneuploidy and altered dosage of imprinted gene expression are implicated in the pathogenesis of PHM and also some of the PMD cases. Diandric triploidy is the main cause of PHM, whereas mosaic diploid androgenetic cells in the placental tissue have been associated with the formation of PMD. Here, we report a very special PMD case also presenting with trophoblast hyperplasia phenotype, which is a hallmark of PHM. This PMD placenta has a normal biparental diploid karyotype and is functionally sufficient to support normal fetal growth. We took advantage of this unique case to further dissected the potential common etiology between these two diseases. We show that the differentially methylated region (DMR) at NESP55, a secondary DMR residing in the GNAS locus, is significantly hypermethylated in the PMD placenta. Furthermore, we found heterozygous mutations in NLRP2 and homozygous variants in NLRP7 in the mother’s genome. NLRP2 and NLRP7 are known maternal effect genes, and their mutation in pregnant females affects fetal development. The variants/mutations in both genes have been associated with imprinting defects in mole formation and potentially contributed to the mild abnormal imprinting observed in this case. Finally, we identified heterozygous mutations in the X-linked ATRX gene, a known maternal–zygotic imprinting regulator in the patient. Overall, our study demonstrates that PMD and PHM may share overlapping etiologies with the defective/relaxed dosage control of imprinted genes, representing two extreme ends of a spectrum.
Collapse
Affiliation(s)
- Tien-Chi Huang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (T.-C.H.); (J.-Y.C.); (W.-C.C.); (C.-F.M.)
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Jen-Yun Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (T.-C.H.); (J.-Y.C.); (W.-C.C.); (C.-F.M.)
| | - Yi-Shan Tsai
- Department of Radiology, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Yao-Jong Yang
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Wei-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (T.-C.H.); (J.-Y.C.); (W.-C.C.); (C.-F.M.)
| | - Chu-Fan Mo
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (T.-C.H.); (J.-Y.C.); (W.-C.C.); (C.-F.M.)
| | - Pei-Hsiu Yu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan 700, Taiwan
| | - Chun-Ting Chiang
- Department and Graduated Institute of Forensic Medicine, College of Medicine, National Taiwan University, Taipei 106, Taiwan;
| | - Shau-Ping Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan; (T.-C.H.); (J.-Y.C.); (W.-C.C.); (C.-F.M.)
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (S.-P.L.); (P.-L.K.)
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Correspondence: (S.-P.L.); (P.-L.K.)
| |
Collapse
|
8
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Pregnancy after oocyte donation in a patient with NLRP7 gene mutations and recurrent molar hydatidiform pregnancies. J Assist Reprod Genet 2020; 37:2273-2277. [PMID: 32592075 DOI: 10.1007/s10815-020-01861-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 01/26/2023] Open
Abstract
Molar pregnancies are benign trophoblastic diseases associated with a risk of malignant transformation. If aetiology remains mostly unknown, the risk of recurrent molar pregnancy is around 1.5% after one molar pregnancy and around 25% after 2 molar pregnancies. In the later situation, genetic mutations have been described, increasing hugely this risk. In case of mutations, probability to obtain a normal pregnancy is estimated around 1.8%. We report the case of a Caucasian 30-year-old woman whose previous five spontaneous pregnancies had a negative outcome: a spontaneous miscarriage and then 4 complete hydatidiform moles. Genetic testing revealed that the patient carried two heterozygous mutations in the NLRP7 gene (c.2982-2A > G and Y318CfsX7). According to this, counselling was conducted to advocate for oocyte donation in order to obtain a normal pregnancy. This technique enabled a complication-free, singleton pregnancy that resulted in a healthy term live birth of a 2900 g female. Few months after delivery, the patient presented a new complete hydatidiform mole. Women presented with mutations in the NLRP7, KHDC3L or PADI6 genes are unlikely to obtain normal pregnancies, with a major risk of reproductive failure. In such a context, oocyte donation may be the best option. Only 4 normal pregnancies and deliveries have been published in this situation through this technique to our knowledge.
Collapse
|
10
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
11
|
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197-213. [DOI: 10.1093/humupd/dmz045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Human reproductive issues affecting fetal and maternal health are caused by numerous exogenous and endogenous factors, of which the latter undoubtedly include genetic changes. Pathogenic variants in either maternal or offspring DNA are associated with effects on the offspring including clinical disorders and nonviable outcomes. Conversely, both fetal and maternal factors can affect maternal health during pregnancy. Recently, it has become evident that mammalian reproduction is influenced by genomic imprinting, an epigenetic phenomenon that regulates the expression of genes according to their parent from whom they are inherited. About 1% of human genes are normally expressed from only the maternally or paternally inherited gene copy. Since numerous imprinted genes are involved in (embryonic) growth and development, disturbance of their balanced expression can adversely affect these processes.
OBJECTIVE AND RATIONALE
This review summarises current our understanding of genomic imprinting in relation to human ontogenesis and pregnancy and its relevance for reproductive medicine.
SEARCH METHODS
Literature databases (Pubmed, Medline) were thoroughly searched for the role of imprinting in human reproductive failure. In particular, the terms ‘multilocus imprinting disturbances, SCMC, NLRP/NALP, imprinting and reproduction’ were used in various combinations.
OUTCOMES
A range of molecular changes to specific groups of imprinted genes are associated with imprinting disorders, i.e. syndromes with recognisable clinical features including distinctive prenatal features. Whereas the majority of affected individuals exhibit alterations at single imprinted loci, some have multi-locus imprinting disturbances (MLID) with less predictable clinical features. Imprinting disturbances are also seen in some nonviable pregnancy outcomes, such as (recurrent) hydatidiform moles, which can therefore be regarded as a severe form of imprinting disorders. There is growing evidence that MLID can be caused by variants in the maternal genome altering the imprinting status of the oocyte and the embryo, i.e. maternal effect mutations. Pregnancies of women carrying maternal affect mutations can have different courses, ranging from miscarriages to birth of children with clinical features of various imprinting disorders.
WIDER IMPLICATIONS
Increasing understanding of imprinting disturbances and their clinical consequences have significant impacts on diagnostics, counselling and management in the context of human reproduction. Defining criteria for identifying pregnancies complicated by imprinting disorders facilitates early diagnosis and personalised management of both the mother and offspring. Identifying the molecular lesions underlying imprinting disturbances (e.g. maternal effect mutations) allows targeted counselling of the family and focused medical care in further pregnancies.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl Oliver Kagan
- Obstetrics and Gynaecology, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
12
|
Wesseler K, Kraft F, Eggermann T. Molecular and Clinical Opposite Findings in 11p15.5 Associated Imprinting Disorders: Characterization of Basic Mechanisms to Improve Clinical Management. Int J Mol Sci 2019; 20:ijms20174219. [PMID: 31466347 PMCID: PMC6747273 DOI: 10.3390/ijms20174219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Silver-Russell and Beckwith-Wiedemann syndromes (SRS, BWS) are rare congenital human disorders characterized by opposite growth disturbances. With the increasing knowledge on the molecular basis of SRS and BWS, it has become obvious that the disorders mirror opposite alterations at the same genomic loci in 11p15.5. In fact, these changes directly or indirectly affect the expression of IGF2 and CDKN1C and their associated pathways, and thereby, cause growth disturbances as key features of both diseases. The increase of knowledge has become possible with the development and implementation of new and comprehensive assays. Whereas, in the beginning molecular testing was restricted to single chromosomal loci, many tests now address numerous loci in the same run, and the diagnostic implementation of (epi)genome wide assays is only a question of time. These high-throughput approaches will be complemented by the analysis of other omic datasets (e.g., transcriptome, metabolome, proteome), and it can be expected that the integration of these data will massively improve the understanding of the pathobiology of imprinting disorders and their diagnostics. Especially long-read sequencing methods, e.g., nanopore sequencing, allowing direct detection of native DNA modification, will strongly contribute to a better understanding of genomic imprinting in the near future. Thereby, new genomic loci and types of pathogenic variants will be identified, resulting in more precise discrimination into different molecular subgroups. These subgroups serve as the basis for (epi)genotype-phenotype correlations, allowing a more directed prognosis, counseling, and therapy. By deciphering the pathophysiological consequences of SRS and BWS and their molecular disturbances, future therapies will be available targeting the basic cause of the disease and respective pathomechanisms and will complement conventional therapeutic strategies.
Collapse
Affiliation(s)
- Katharina Wesseler
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Florian Kraft
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, University Hospital, Technical University Aachen (RWTH), 52074 Aachen, Germany.
| |
Collapse
|
13
|
Kalogiannidis I, Kalinderi K, Kalinderis M, Miliaras D, Tarlatzis B, Athanasiadis A. Recurrent complete hydatidiform mole: where we are, is there a safe gestational horizon? Opinion and mini-review. J Assist Reprod Genet 2018; 35:967-973. [PMID: 29737470 DOI: 10.1007/s10815-018-1202-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
Benign hydatidiform mole, complete or partial, is the most common type of gestational trophoblastic disease (GTD) characterised by excessive trophoblastic proliferation and abnormal embryonic development. Although most complete hydatidiform moles (CHMs) are diploid androgenetic, a few cases of CHMs are biparental, characterised by recurrence and familial clustering. In these rare cases, mutations in NLRP7 or KHDC3L genes, associated with maternal imprinting defects, have been implicated. Current data regarding future pregnancy options in hydatidiform moles are discussed and our opinion is presented based on an incidence that took place in our hospital with a woman with consecutive molar pregnancies. In recurrent hydatidiform moles, DNA testing should be performed and when NLRP7 or KHDC3L mutation are detected, oocyte donation should be proposed as an option to maximise woman's chances of having a normal pregnancy.
Collapse
Affiliation(s)
- Ioannis Kalogiannidis
- 3rd Department of Obstetrics and Gynaecology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kallirhoe Kalinderi
- 3rd Department of Obstetrics and Gynaecology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece. .,Department of General Biology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Michail Kalinderis
- Department of Obstetrics and Gynaecology, King's College Hospital NHS Foundation Trust, Princess Royal University Hospital, Farnborough Common, BR6 8ND, Orpington, UK
| | - Dimosthenis Miliaras
- Laboratory of Histology & Embryology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Basil Tarlatzis
- 1st Department of Obstetrics & Gynaecology, Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Athanasiadis
- 3rd Department of Obstetrics and Gynaecology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Begemann M, Rezwan FI, Beygo J, Docherty LE, Kolarova J, Schroeder C, Buiting K, Chokkalingam K, Degenhardt F, Wakeling EL, Kleinle S, González Fassrainer D, Oehl-Jaschkowitz B, Turner CLS, Patalan M, Gizewska M, Binder G, Bich Ngoc CT, Chi Dung V, Mehta SG, Baynam G, Hamilton-Shield JP, Aljareh S, Lokulo-Sodipe O, Horton R, Siebert R, Elbracht M, Temple IK, Eggermann T, Mackay DJG. Maternal variants in NLRP and other maternal effect proteins are associated with multilocus imprinting disturbance in offspring. J Med Genet 2018; 55:497-504. [PMID: 29574422 PMCID: PMC6047157 DOI: 10.1136/jmedgenet-2017-105190] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022]
Abstract
Background Genomic imprinting results from the resistance of germline epigenetic marks to reprogramming in the early embryo for a small number of mammalian genes. Genetic, epigenetic or environmental insults that prevent imprints from evading reprogramming may result in imprinting disorders, which impact growth, development, behaviour and metabolism. We aimed to identify genetic defects causing imprinting disorders by whole-exome sequencing in families with one or more members affected by multilocus imprinting disturbance. Methods Whole-exome sequencing was performed in 38 pedigrees where probands had multilocus imprinting disturbance, in five of whom maternal variants in NLRP5 have previously been found. Results We now report 15 further pedigrees in which offspring had disturbance of imprinting, while their mothers had rare, predicted-deleterious variants in maternal effect genes, including NLRP2, NLRP7 and PADI6. As well as clinical features of well-recognised imprinting disorders, some offspring had additional features including developmental delay, behavioural problems and discordant monozygotic twinning, while some mothers had reproductive problems including pregnancy loss. Conclusion The identification of 20 putative maternal effect variants in 38 families affected by multilocus imprinting disorders adds to the evidence that maternal genetic factors affect oocyte fitness and thus offspring development. Testing for maternal-effect genetic variants should be considered in families affected by atypical imprinting disorders.
Collapse
Affiliation(s)
- Matthias Begemann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Faisal I Rezwan
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jasmin Beygo
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Louise E Docherty
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Julia Kolarova
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Christopher Schroeder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karin Buiting
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kamal Chokkalingam
- Department of Diabetic Medicine, Nottingham University Hospital NHS Trust, Nottingham, UK
| | | | - Emma L Wakeling
- North West Thames Regional Genetics Service, London North West Healthcare NHS Trust, London, UK
| | | | | | | | - Claire L S Turner
- Peninsula Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Michal Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Maria Gizewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Can Thi Bich Ngoc
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Vu Chi Dung
- Department of Medical Genetics, Metabolism and Endocrinology, The National Children's Hospital, Hanoi, Vietnam
| | - Sarju G Mehta
- Department of Clinical Genetics, Cambridge University Hospitals Trust, Cambridge, UK
| | - Gareth Baynam
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia.,Genetic Services of Western Australian and Western Australian Register of Developmental Anomalies, Perth, Western Australia, Australia
| | | | - Sara Aljareh
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Oluwakemi Lokulo-Sodipe
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Rachel Horton
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | - Isabel Karen Temple
- Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, University Hospital, Southampton, UK
| | - Thomas Eggermann
- Institute of Human Genetics, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
15
|
Clinical and genetic-epigenetic aspects of recurrent hydatidiform mole: A review of literature. Taiwan J Obstet Gynecol 2018; 57:1-6. [DOI: 10.1016/j.tjog.2017.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
|
16
|
Sazhenova EA, Nikitina TV, Skryabin NA, Minaycheva LI, Ivanova TV, Nemtseva TN, Yuriev SY, Evtushenko ID, Lebedev IN. Epigenetic status of imprinted genes in placenta during recurrent pregnancy loss. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform Moles: Genetic Basis and Precision Diagnosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:449-485. [DOI: 10.1146/annurev-pathol-052016-100237] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510;
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510;
| | | | - Brigitte M. Ronnett
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| |
Collapse
|
18
|
Ogawa H, Takyu R, Morimoto H, Toei S, Sakon H, Goto S, Moriya S, Kono T. Cell proliferation potency is independent of FGF4 signaling in trophoblast stem cells derived from androgenetic embryos. J Reprod Dev 2015; 62:51-8. [PMID: 26498204 PMCID: PMC4768778 DOI: 10.1262/jrd.2015-097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously established trophoblast stem cells from mouse androgenetic embryos (AGTS cells). In this study, to further characterize AGTS cells, we compared cell proliferation activity between trophoblast stem (TS) cells and AGTS cells under fibroblast growth factor 4 (FGF4) signaling. TS cells continued to proliferate and maintained mitotic cell division in the presence of FGF4. After FGF4 deprivation, the cell proliferation stopped, the rate of M-phase cells decreased, and trophoblast giant cells formed. In contrast, some of AGTS cells continued to proliferate, and the rate of M-phase cells did not decrease after FGF4 deprivation, although the other cells differentiated into giant cells. RO3306, an ATP competitor that selectively inhibits CDK1, inhibited the cell proliferation of both TS and AGTS cells. Under RO3306 treatment, cell death was induced in AGTS cells but not in TS cells. These results indicate that RO3306 caused TS cells to shift mitotic cell division to endoreduplication but that some of AGTS cells did not shift to endoreduplication and induced cell death. In conclusion, the paternal genome facilitated the proliferation of trophoblast cells without FGF4 signaling.
Collapse
Affiliation(s)
- Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bebbere D, Ariu F, Bogliolo L, Masala L, Murrone O, Fattorini M, Falchi L, Ledda S. Expression of maternally derived KHDC3, NLRP5, OOEP and TLE6 is associated with oocyte developmental competence in the ovine species. BMC DEVELOPMENTAL BIOLOGY 2014; 14:40. [PMID: 25420964 PMCID: PMC4247878 DOI: 10.1186/s12861-014-0040-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/11/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND The sub-cortical maternal complex (SCMC), located in the subcortex of mouse oocytes and preimplantation embryos, is composed of at least four proteins encoded by maternal effect genes: OOEP, NLRP5/MATER, TLE6 and KHDC3/FILIA. The SCMC assembles during oocyte growth and was seen to be essential for murine zygote progression beyond the first embryonic cell divisions; although roles in chromatin reprogramming and embryonic genome activation were hypothesized, the full range of functions of the complex in preimplantation development remains largely unknown. RESULTS Here we report the expression of the SCMC genes in ovine oocytes and pre-implantation embryos, describing for the first time its expression in a large mammalian species. We report sheep-specific patterns of expression and a relationship with the oocyte developmental potential in terms of delayed degradation of maternal SCMC transcripts in pre-implantation embryos derived from developmentally incompetent oocytes. In addition, by determining OOEP full length cDNA by Rapid Amplification of cDNA Ends (RACE) we identified two different transcript variants (OOEP1 and OOEP2), both expressed in oocytes and early embryos, but with different somatic tissue distributions. In silico translation showed that 140 aminoacid peptide OOEP1 shares an identity with orthologous proteins ranging from 95% with the bovine to 45% with mouse. Conversely, OOEP2 contains a premature termination codon, thus representing an alternative noncoding transcript and supporting the existence of aberrant splicing during ovine oogenesis. CONCLUSIONS These findings confirm the existence of the SCMC in sheep and its key role for the oocyte developmental potential, deepening our understanding on the molecular differences underlying cytoplasmic vs nuclear maturation of the oocytes. Describing differences and overlaps in transcriptome composition between model organisms advance our comprehension of the diversity/uniformity between mammalian species during early embryonic development and provide information on genes that play important regulatory roles in fertility in nonmurine models, including the human.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Laura Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Ombretta Murrone
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Mauro Fattorini
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Laura Falchi
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
20
|
Van Gorp H, Kuchmiy A, Van Hauwermeiren F, Lamkanfi M. NOD-like receptors interfacing the immune and reproductive systems. FEBS J 2014; 281:4568-82. [PMID: 25154302 DOI: 10.1111/febs.13014] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/13/2022]
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are intracellular proteins that are chiefly known for their critical functions in inflammatory responses and host defense against microbial pathogens. Several NLRs have been demonstrated to assemble inflammasomes or to engage transcriptional signaling cascades that result in the production of pro-inflammatory cytokines and bactericidal factors. In recent years, NLRs have also emerged as key regulators of early mammalian embryogenesis and reproduction. A subset of phylogenetically related NLRs represents a new class of maternal effect genes that are highly expressed in maturing oocytes and pre-implantation embryos. Mutations in several of these NLRs have been linked to hereditary reproductive defects and imprinting diseases. In this review, we discuss the expression profiles, the emerging functions and molecular mode of action of these NLRs with newly recognized roles at the interfaces of the immune and reproductive systems. In addition, we provide an overview of coding mutations in NLRs that have been associated with human reproductive diseases, and outline crucial outstanding questions in this emerging research field.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Nikiforaki D, Vanden Meerschaut F, De Gheselle S, Qian C, Van den Abbeel E, De Vos WH, Deroo T, De Sutter P, Heindryckx B. Sperm involved in recurrent partial hydatidiform moles cannot induce the normal pattern of calcium oscillations. Fertil Steril 2014; 102:581-588.e1. [DOI: 10.1016/j.fertnstert.2014.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
22
|
Lepshin MV, Sazhenova EA, Lebedev IN. Multiple epimutations in imprinted genes in the human genome and congenital disorders. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Docherty LE, Rezwan FI, Poole RL, Jagoe H, Lake H, Lockett GA, Arshad H, Wilson DI, Holloway JW, Temple IK, Mackay DJG. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 2014; 51:229-38. [PMID: 24501229 PMCID: PMC3963529 DOI: 10.1136/jmedgenet-2013-102116] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Accepted: 12/09/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genomic imprinting is allelic restriction of gene expression potential depending on parent of origin, maintained by epigenetic mechanisms including parent of origin-specific DNA methylation. Among approximately 70 known imprinted genes are some causing disorders affecting growth, metabolism and cancer predisposition. Some imprinting disorder patients have hypomethylation of several imprinted loci (HIL) throughout the genome and may have atypically severe clinical features. Here we used array analysis in HIL patients to define patterns of aberrant methylation throughout the genome. DESIGN We developed a novel informatic pipeline capable of small sample number analysis, and profiled 10 HIL patients with two clinical presentations (Beckwith-Wiedemann syndrome and neonatal diabetes) using the Illumina Infinium Human Methylation450 BeadChip array to identify candidate imprinted regions. We used robust statistical criteria to quantify DNA methylation. RESULTS We detected hypomethylation at known imprinted loci, and 25 further candidate imprinted regions (nine shared between patient groups) including one in the Down syndrome critical region (WRB) and another previously associated with bipolar disorder (PPIEL). Targeted analysis of three candidate regions (NHP2L1, WRB and PPIEL) showed allelic expression, methylation patterns consistent with allelic maternal methylation and frequent hypomethylation among an additional cohort of HIL patients, including six with Silver-Russell syndrome presentations and one with pseudohypoparathyroidism 1B. CONCLUSIONS This study identified novel candidate imprinted genes, revealed remarkable epigenetic convergence among clinically divergent patients, and highlights the potential of epigenomic profiling to expand our understanding of the normal methylome and its disruption in human disease.
Collapse
|
24
|
Buza N, Hui P. Ancillary Techniques to Refine Diagnosis of GTD. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2014. [DOI: 10.1007/s13669-013-0072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Banet N, DeScipio C, Murphy KM, Beierl K, Adams E, Vang R, Ronnett BM. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol 2014; 27:238-54. [PMID: 23887308 DOI: 10.1038/modpathol.2013.143] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/15/2023]
Abstract
Immunohistochemical analysis of cyclin-dependent kinase inhibitor 1C (CDKN1C, p57, Kip2) expression and molecular genotyping accurately classify hydatidiform moles into complete and partial types and distinguish these from non-molar specimens. Characteristics of a prospective series of all potentially molar specimens encountered in a large gynecologic pathology practice are summarized. Initially, all specimens were subjected to both analyses; this was later modified to triage cases for genotyping based on p57 results: p57-negative cases diagnosed as complete hydatidiform moles without genotyping; all p57-positive cases genotyped. Of the 678 cases, 645 were definitively classified as complete hydatidiform mole (201), partial hydatidiform mole (158), non-molar (272), and androgenetic/biparental mosaic (14); 33 were unsatisfactory, complex, or problematic. Of the 201 complete hydatidiform moles, 104 were p57-negative androgenetic and an additional 95 were p57-negative (no genotyping), 1 was p57-positive (retained maternal chromosome 11) androgenetic, and 1 was p57-non-reactive androgenetic; 90 (85%) of the 106 genotyped complete hydatidiform moles were monospermic and 16 were dispermic. Of the 158 partial hydatidiform moles, 155 were diandric triploid, with 154 p57-positive, 1 p57-negative (loss of maternal chromosome 11), and 1 p57-non-reactive; 3 were triandric tetraploid, with 2 p57-positive and 1 p57-negative (loss of maternal chromosome 11). Of 155 diandric triploid partial hydatidiform moles, 153 (99%) were dispermic and 2 were monospermic. Of the 272 non-molar specimens, 259 were p57-positive biparental diploid, 5 were p57-positive digynic triploid, 2 were p57-negative biparental diploid (no morphological features of biparental hydatidiform mole), and 6 were p57-non-reactive biparental diploid. Of the 14 androgenetic/biparental mosaics with discordant p57 expression, 6 were uniformly mosaic and 8 had a p57-negative androgenetic molar component. p57 expression is highly correlated with genotyping, serves as a reliable marker for diagnosis of complete hydatidiform moles, and identifies androgenetic cell lines in mosaic conceptions. Cases with aberrant and discordant p57 expression can be correctly classified by genotyping.
Collapse
Affiliation(s)
- Natalie Banet
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Cheryl DeScipio
- 1] Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA [2] Department of Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Katie Beierl
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Emily Adams
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Russell Vang
- 1] Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA [2] Department of Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brigitte M Ronnett
- 1] Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA [2] Department of Gynecology and Obstetrics, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
26
|
Vrana PB, Shorter KR, Szalai G, Felder MR, Crossland JP, Veres M, Allen JE, Wiley CD, Duselis AR, Dewey MJ, Dawson WD. Peromyscus (deer mice) as developmental models. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 3:211-30. [PMID: 24896658 DOI: 10.1002/wdev.132] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Abstract
Deer mice (Peromyscus) are the most common native North American mammals, and exhibit great natural genetic variation. Wild-derived stocks from a number of populations are available from the Peromyscus Genetic Stock Center (PGSC). The PGSC also houses a number of natural variants and mutants (many of which appear to differ from Mus). These include metabolic, coat-color/pattern, neurological, and other morphological variants/mutants. Nearly all these mutants are on a common genetic background, the Peromyscus maniculatus BW stock. Peromyscus are also superior behavior models in areas such as repetitive behavior and pair-bonding effects, as multiple species are monogamous. While Peromyscus development generally resembles that of Mus and Rattus, prenatal stages have not been as thoroughly studied, and there appear to be intriguing differences (e.g., longer time spent at the two-cell stage). Development is greatly perturbed in crosses between P. maniculatus (BW) and Peromyscus polionotus (PO). BW females crossed to PO males produce growth-restricted, but otherwise healthy, fertile offspring which allows for genetic analyses of the many traits that differ between these two species. PO females crossed to BW males produce overgrown but severely dysmorphic conceptuses that rarely survive to late gestation. There are likely many more uses for these animals as developmental models than we have described here. Peromyscus models can now be more fully exploited due to the emerging genetic (full linkage map), genomic (genomes of four stocks have been sequenced) and reproductive resources.
Collapse
Affiliation(s)
- Paul B Vrana
- Peromyscus Genetic Stock Center & Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Girardot M, Feil R, Llères D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 2013; 5:715-28. [DOI: 10.2217/epi.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genes controlled by genomic imprinting play important roles in development and diverse postnatal processes. A growing number of congenital disorders have been linked to genomic imprinting. Each of these is caused by perturbed gene expression at one principal imprinted domain. Some imprinting disorders, including the Prader–Willi and Angelman syndromes, are caused almost exclusively by genetic mutations. In several others, including the Beckwith–Wiedemann and Silver–Russell growth syndromes, and transient neonatal diabetes mellitus, imprinted expression is perturbed mostly by epigenetic alterations at ‘imprinting control regions’ and at other specific regulatory sequences. In a minority of these patients, DNA methylation is altered at multiple imprinted loci, suggesting that common trans-acting factors are affected. Here, we review the epimutations involved in congenital imprinting disorders and the associated clinical features. Trans-acting factors known to be causally involved are discussed and other trans-acting factors that are potentially implicated are also presented.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| |
Collapse
|
28
|
Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, Guitart M, Perez de Nanclares G, Lapunzina P, Monk D. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat 2013; 34:595-602. [PMID: 23335487 DOI: 10.1002/humu.22276] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022]
Abstract
Genomic imprinting is the parent-of-origin-specific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith-Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver-Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader-Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance.
Collapse
Affiliation(s)
- Franck Court
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Genome-wide paternal uniparental disomy mosaicism in a woman with Beckwith-Wiedemann syndrome and ovarian steroid cell tumour. Eur J Hum Genet 2012. [PMID: 23188046 DOI: 10.1038/ejhg.2012.259] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Uniparental disomy (UPD) of single chromosomes is a well-known molecular aberration in a group of congenital diseases commonly known as imprinting disorders (IDs). Whereas maternal and/or paternal UPD of chromosomes 6, 7, 11, 14 and 15 are associated with specific IDs (Transient neonatal diabetes mellitus, Silver-Russell syndrome, Beckwith-Wiedemann syndrome (BWS), upd(14)-syndromes, Prader-Willi syndrome, Angelman Syndrome), the other autosomes are not. UPD of the whole genome is not consistent with life, in case of non-mosaic genome-wide paternal UPD (patUPD) it leads to hydatidiform mole. In contrast, mosaic genome-wide patUPD might be compatible with life. Here we present a 19-year-old woman with BWS features and initially diagnosed to be carrier of a mosaic patUPD of chromosome 11p15. However, the patient presented further clinical findings not typically associated with BWS, including nesidioblastosis, fibroadenoma, hamartoma of the liver, hypoglycaemia and ovarian steroid cell tumour. Additional molecular investigations revealed a mosaic genome-wide patUPD. So far, only nine cases with mosaic genome-wide patUPD and similar clinical findings have been reported, but these patients were nearly almost diagnosed in early childhood. Summarising the data from the literature and those from our patient, it can be concluded that the mosaic genome-wide patUPD (also known as androgenic/biparental mosaicism) might explain unusual BWS phenotypes. Thus, these findings emphasise the need for multilocus testing in IDs to efficiently detect cases with disturbances affecting more than one chromosome.
Collapse
|
30
|
Diagnostic reproducibility of hydatidiform moles: ancillary techniques (p57 immunohistochemistry and molecular genotyping) improve morphologic diagnosis. Am J Surg Pathol 2012; 36:443-53. [PMID: 22245958 DOI: 10.1097/pas.0b013e31823b13fe] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Distinction of hydatidiform moles (HMs) from nonmolar specimens (NMs) and subclassification of HMs as complete hydatidiform moles (CHMs) and partial hydatidiform moles (PHMs) are important for clinical practice and investigational studies; yet, diagnosis based solely on morphology is affected by interobserver variability. Molecular genotyping can distinguish these entities by discerning androgenetic diploidy, diandric triploidy, and biparental diploidy to diagnose CHMs, PHMs, and NMs, respectively. Eighty genotyped cases (27 CHMs, 27 PHMs, and 26 NMs) were selected from a series of 200 potentially molar specimens previously diagnosed using p57 immunostaining and genotyping. Cases were classified by 3 gynecologic pathologists on the basis of H&E slides (masked to p57 immunostaining and genotyping results) into 1 of 3 categories (CHM, PHM, or NM) during 2 diagnostic rounds; a third round incorporating p57 immunostaining results was also conducted. Consensus diagnoses (those rendered by 2 of 3 pathologists) were determined. Genotyping results were used as the gold standard for assessing diagnostic performance. Sensitivity of a diagnosis of CHM ranged from 59% to 100% for individual pathologists and from 70% to 81% by consensus; specificity ranged from 91% to 96% for individuals and from 94% to 98% by consensus. Sensitivity of a diagnosis of PHM ranged from 56% to 93% for individual pathologists and from 70% to 78% by consensus; specificity ranged from 58% to 92% for individuals and from 74% to 85% by consensus. The percentage of correct classification of all cases by morphology ranged from 55% to 75% for individual pathologists and from 70% to 75% by consensus. The κ values for interobserver agreement ranged from 0.59 to 0.73 (moderate to good) for a diagnosis of CHM, from 0.15 to 0.43 (poor to moderate) for PHM, and from 0.13 to 0.42 (poor to moderate) for NM. The κ values for intraobserver agreement ranged from 0.44 to 0.67 (moderate to good). Addition of the p57 immunostain improved sensitivity of a diagnosis of CHM to a range of 93% to 96% for individual pathologists and 96% by consensus; specificity was improved from a range of 96% to 98% for individual pathologists and 96% by consensus; there was no substantial impact on diagnosis of PHMs and NMs. Interobserver agreement for interpretation of the p57 immunostain was 0.96 (almost perfect). Even with morphologic assessment by gynecologic pathologists and p57 immunohistochemistry, 20% to 30% of cases will be misclassified, and, in particular, distinction of PHMs and NMs will remain problematic.
Collapse
|
31
|
Sazhenova EA, Skryabin NA, Sukhanova NN, Lebedev IN. Multilocus epimutations of imprintome in the pathology of human embryo development. Mol Biol 2012. [DOI: 10.1134/s0026893312010207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Hoffner L, Surti U. The genetics of gestational trophoblastic disease: a rare complication of pregnancy. Cancer Genet 2012; 205:63-77. [DOI: 10.1016/j.cancergen.2012.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/15/2011] [Accepted: 01/10/2012] [Indexed: 11/28/2022]
|
33
|
Tomizawa SI, Sasaki H. Genomic imprinting and its relevance to congenital disease, infertility, molar pregnancy and induced pluripotent stem cell. J Hum Genet 2012; 57:84-91. [DOI: 10.1038/jhg.2011.151] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Abstract
Distinction of hydatidiform moles (HM) from nonmolar specimens and their subclassification as complete (CHM) versus partial hydatidiform mole (PHM) are important for clinical practice and investigational studies to refine ascertainment of risk of persistent gestational trophoblastic disease (GTD), which differs among these entities. Immunohistochemical analysis of p57 expression, a paternally imprinted maternally expressed gene on 11p15.5, and molecular genotyping are useful for improving diagnosis. CHMs are characterized by androgenetic diploidy, with loss of p57 expression due to lack of maternal DNA. Loss of p57 expression distinguishes CHMs from both PHMs (diandric triploidy) and nonmolar specimens (biparental diploidy), which retain expression. We report a unique HM characterized by morphologic features suggesting an early CHM, including lack of p57 expression by immunohistochemistry, but with genetic features more in keeping with a PHM. Specifically, molecular genotyping by short tandem repeat markers provided evidence to support interpretation as a PHM by demonstrating allele patterns and ratios most consistent with diandric triploidy, with evidence of loss of the maternal copy of chromosome 11 to explain the lack of p57 expression. This case illustrates the value of combined traditional pathologic and ancillary molecular techniques for refined diagnosis of molar specimens. It also raises questions regarding which modalities should be used to ultimately define the subtypes of HMs and whether chromosomal losses or gains, particularly involving imprinted genes such as p57, might play a role in modifying risk of persistent GTD.
Collapse
|
35
|
Screening for NLRP7 mutations in familial and sporadic recurrent hydatidiform moles: report of 2 Tunisian families. Int J Gynecol Pathol 2011; 30:348-53. [PMID: 21623199 DOI: 10.1097/pgp.0b013e31820dc3b0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A familial or sporadic recurrent hydatidiform mole is a rare autosomal recessive condition that has been associated with biallelic mutations in the nucleotide-binding, leucine-rich repeat, pyrin domain 7 (NLRP7) gene (19q13.42). Cases from different ethnic origins have been reported earlier. Here we report the first Tunisian patients: 2 sisters with homozygous NLRP7 mutations (p.E570X) and 1 sporadic case with no mutation in NLRP7. Our results extend the number of familial recurrent reproductive wastages due to mutations in NLRP7. We suggest that mutations screening of NLRP7 could be proposed more systematically in women with recurrent pathologic pregnancy outcomes of unknown origin. The rare cases with a typical clinical picture, which were not related to NLRP7 mutation as in our sporadic case, should be investigated more to identify the causative gene.
Collapse
|
36
|
Parry D, Logan C, Hayward B, Shires M, Landolsi H, Diggle C, Carr I, Rittore C, Touitou I, Philibert L, Fisher R, Fallahian M, Huntriss J, Picton H, Malik S, Taylor G, Johnson C, Bonthron D, Sheridan E. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 2011; 89:451-8. [PMID: 21885028 DOI: 10.1016/j.ajhg.2011.08.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022] Open
Abstract
Familial biparental hydatidiform mole (FBHM) is the only known pure maternal-effect recessive inherited disorder in humans. Affected women, although developmentally normal themselves, suffer repeated pregnancy loss because of the development of the conceptus into a complete hydatidiform mole in which extraembryonic trophoblastic tissue develops but the embryo itself suffers early demise. This developmental phenotype results from a genome-wide failure to correctly specify or maintain a maternal epigenotype at imprinted loci. Most cases of FBHM result from mutations of NLRP7, but genetic heterogeneity has been demonstrated. Here, we report biallelic mutations of C6orf221 in three families with FBHM. The previously described biological properties of their respective gene families suggest that NLRP7 and C6orf221 may interact as components of an oocyte complex that is directly or indirectly required for determination of epigenetic status on the oocyte genome.
Collapse
|
37
|
Abstract
Gestational trophoblastic disease consists of well-defined diagnostic entities of proliferative disorder of the placenta, of which hydatidiform moles are common lesions. Even with available ancillary studies, including ploidy and immunohistochemistry analyses, histological diagnosis of molar pregnancies can be challenging in a significant percentage of the cases. Reliable diagnostic approaches with improved sensitivity and specificity are highly desirable. Recently, PCR-based short tandem repeat DNA genotyping has emerged as a powerful diagnostic measure in the workup of gestational trophoblastic disorders, particularly hydatidiform moles.
Collapse
Affiliation(s)
- Pei Hui
- Department of Pathology, Yale University School of Medicine, BML 254B, 310 Cedar Street, New Haven, CT 06520-8023, USA.
| |
Collapse
|
38
|
Muhlstein J, Golfier F, Frappart L, Poulizac G, Abel F, Touitou I, Hajri T, Raudrant D. [Review: Repetitive hydatidiform moles]. GYNECOLOGIE, OBSTETRIQUE & FERTILITE 2010; 38:672-676. [PMID: 20965770 DOI: 10.1016/j.gyobfe.2010.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 06/02/2010] [Indexed: 05/30/2023]
Abstract
Repetitive moles are rare. They are either sporadic or familial, with or without consanguinity. Some of them can be explained by a NLRP7 mutation, which causes genomic parental imprinting alteration, with a preferential paternal phenotypic expression. Currently, no effective therapeutic solution has been developed. Among the 1687 patients declared to the French Trophoblastic Disease Reference Center, 13 presented at least two hydatidiform moles, thus less than 1% of the patients. A mutation of the NLRP7 gene was shown in six of 12 tested patients (50%) among whom three presented a homozygous mutation and three a heterozygous mutation. For an affected patient, type of mole can indifferently be a complete hydatidiform mole or a partial hydatidiform mole. We describe these cases and compare them to those already published.
Collapse
Affiliation(s)
- J Muhlstein
- Pôle de gynécologie-obstétrique et reproduction, service de gynécologie, maternité régionale Adolphe-Pinard, 10, rue du Dr.-Heydenreich, CS 74213, 54042 Nancy cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Williams D, Hodgetts V, Gupta J. Recurrent hydatidiform moles. Eur J Obstet Gynecol Reprod Biol 2010; 150:3-7. [DOI: 10.1016/j.ejogrb.2010.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 12/22/2009] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
|
40
|
Abstract
Human imprinting disorders can provide critical insights into the role of imprinted genes in human development and health, and the molecular mechanisms that regulate genomic imprinting. To illustrate these concepts we review the clinical and molecular features of several human imprinting syndromes including Beckwith–Wiedemann syndrome, Silver–Russell syndrome, Angelman syndrome, Prader–Willi syndrome, pseudohypoparathyroidism, transient neonatal diabetes, familial complete hydatidiform moles and chromosome 14q32 imprinting domain disorders.
Collapse
Affiliation(s)
- Derek HK Lim
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Eamonn R Maher
- Birmingham Women’s Hospital, Birmingham UK
- Department of Medical & Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham College of Medical and Dental Sciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
41
|
Murphy KM, McConnell TG, Hafez MJ, Vang R, Ronnett BM. Molecular genotyping of hydatidiform moles: analytic validation of a multiplex short tandem repeat assay. J Mol Diagn 2009; 11:598-605. [PMID: 19815697 DOI: 10.2353/jmoldx.2009.090039] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Distinction of hydatidiform moles from non-molar (NM) specimens, as well as their subclassification as complete (CHM) versus partial hydatidiform moles (PHM), is important for clinical management and accurate risk assessment for persistent gestational trophoblastic disease. Because diagnosis of hydatidiform moles based solely on morphology suffers from poor interobserver reproducibility, a variety of ancillary techniques have been developed to improve diagnosis. Immunohistochemical assessment of the paternally imprinted, maternally expressed p57 gene can identify CHMs (androgenetic diploidy) by their lack of p57 expression, but cannot distinguish PHMs (diandric monogynic triploidy) from NMs (biparental diploidy). Short tandem repeat genotyping can identify the parental source of polymorphic alleles and thus discern androgenetic diploidy, diandric triploidy, and biparental diploidy, which allows for specific diagnosis of CHMs, PHMs, and NMs, respectively. In this study, a retrospectively collected set of morphologically typical CHMs (n = 8), PHMs (n = 10), and NMs (n = 12) was subjected to an analytic validation study of both short tandem repeat genotyping and p57 immunohistochemistry. Several technical and biological problems resulted in data that were difficult to interpret. To avoid these pitfalls, we have developed an algorithm with quantitative guidelines for the interpretation of short tandem repeat genotyping data.
Collapse
Affiliation(s)
- Kathleen M Murphy
- Department of Pathology, Johns Hopkins Medical Institutions, Park Bldg Room SB202, 600 North Wolfe St, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JRW, Woods CG, Reik W, Maher ER. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 2009; 5:e1000423. [PMID: 19300480 PMCID: PMC2650258 DOI: 10.1371/journal.pgen.1000423] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/17/2009] [Indexed: 02/07/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a fetal overgrowth and human imprinting disorder resulting from the deregulation of a number of genes, including IGF2 and CDKN1C, in the imprinted gene cluster on chromosome 11p15.5. Most cases are sporadic and result from epimutations at either of the two 11p15.5 imprinting centres (IC1 and IC2). However, rare familial cases may be associated with germline 11p15.5 deletions causing abnormal imprinting in cis. We report a family with BWS and an IC2 epimutation in which affected siblings had inherited different parental 11p15.5 alleles excluding an in cis mechanism. Using a positional-candidate gene approach, we found that the mother was homozygous for a frameshift mutation in exon 6 of NLRP2. While germline mutations in NLRP7 have previously been associated with familial hydatidiform mole, this is the first description of NLRP2 mutation in human disease and the first report of a trans mechanism for disordered imprinting in BWS. These observations are consistent with the hypothesis that NLRP2 has a previously unrecognised role in establishing or maintaining genomic imprinting in humans.
Collapse
Affiliation(s)
- Esther Meyer
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Derek Lim
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Edgbaston, Birmingham, United Kingdom
| | - Shanaz Pasha
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Louise J. Tee
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Fatimah Rahman
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - John R. W. Yates
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - C. Geoffrey Woods
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom
- East Anglian Medical Genetics Service, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Wolf Reik
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Eamonn R. Maher
- Department of Medical and Molecular Genetics, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
- West Midlands Regional Genetics Service, Birmingham Women's Hospital, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
44
|
Henckel A, Feil R. [Differential epigenetic marking on imprinted genes and consequences in human diseases]. Med Sci (Paris) 2008; 24:747-52. [PMID: 18789223 DOI: 10.1051/medsci/20082489747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
At the time of fertilisation, the parental genomes have a strikingly different organisation. Sperm DNA is packaged globally with protamines, whereas the oocyte's genome is wrapped around nucleosomes. The maternal and paternal genomes are functionally different as well, and are both required for normal uterine and postnatal development. The functional requirement of both parental genomes is a consequence of differential epigenetic marking by DNA methylation during oogenesis and spermatogenesis, on a group of genes called imprinted genes. After fertilisation, these parental marks persist throughout development and convey the allelic expression of imprinted genes. Pathological perturbation of methylation imprints, before fertilisation in the germ cells, or during development, gives rise to growth-related syndromes, and is frequently observed in cancer as well. Alteration of imprints is thought to occur early in carcinogenesis and shows similarities with the acquisition of aberrant DNA methylation at tumour suppressor genes. This suggests that similar underlying mechanisms could be involved.
Collapse
Affiliation(s)
- Amandine Henckel
- Institut de Génétique Moléculaire de Montpellier, CNRS et Université de Montpellier, 34293 Montpellier Cedex 5, France
| | | |
Collapse
|
45
|
Sazhenova EA, Lebedev IN. Epimutations of the KCNQ1OT1 imprinting center of chromosome 11 in early human embryolethality. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408120028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Wiley CD, Matundan HH, Duselis AR, Isaacs AT, Vrana PB. Patterns of hybrid loss of imprinting reveal tissue- and cluster-specific regulation. PLoS One 2008; 3:e3572. [PMID: 18958286 PMCID: PMC2570336 DOI: 10.1371/journal.pone.0003572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/10/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Crosses between natural populations of two species of deer mice, Peromyscus maniculatus (BW), and P. polionotus (PO), produce parent-of-origin effects on growth and development. BW females mated to PO males (bwxpo) produce growth-retarded but otherwise healthy offspring. In contrast, PO females mated to BW males (POxBW) produce overgrown and severely defective offspring. The hybrid phenotypes are pronounced in the placenta and include POxBW conceptuses which lack embryonic structures. Evidence to date links variation in control of genomic imprinting with the hybrid defects, particularly in the POxBW offspring. Establishment of genomic imprinting is typically mediated by gametic DNA methylation at sites known as gDMRs. However, imprinted gene clusters vary in their regulation by gDMR sequences. METHODOLOGY/PRINCIPAL FINDINGS Here we further assess imprinted gene expression and DNA methylation at different cluster types in order to discern patterns. These data reveal POxBW misexpression at the Kcnq1ot1 and Peg3 clusters, both of which lose ICR methylation in placental tissues. In contrast, some embryonic transcripts (Peg10, Kcnq1ot1) reactivated the silenced allele with little or no loss of DNA methylation. Hybrid brains also display different patterns of imprinting perturbations. Several cluster pairs thought to use analogous regulatory mechanisms are differentially affected in the hybrids. CONCLUSIONS/SIGNIFICANCE These data reinforce the hypothesis that placental and somatic gene regulation differs significantly, as does that between imprinted gene clusters and between species. That such epigenetic regulatory variation exists in recently diverged species suggests a role in reproductive isolation, and that this variation is likely to be adaptive.
Collapse
Affiliation(s)
- Christopher D. Wiley
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Harry H. Matundan
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amanda R. Duselis
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alison T. Isaacs
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Paul B. Vrana
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Lebedev IN, Sazhenova EA. Epimutations of imprinted genes in the human genome: Classification, causes, association with hereditary pathology. RUSS J GENET+ 2008. [DOI: 10.1134/s1022795408100062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
|
49
|
Boonen SE, Pörksen S, Mackay DJ, Oestergaard E, Olsen B, Brondum-Nielsen K, Temple IK, Hahnemann JM. Clinical characterisation of the multiple maternal hypomethylation syndrome in siblings. Eur J Hum Genet 2008; 16:453-61. [PMID: 18197189 DOI: 10.1038/sj.ejhg.5201993] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We present the first clinical report of sibs with the multiple maternal hypomethylation syndrome. Both sisters presented with transient neonatal diabetes mellitus (TNDM). By methylation-specific PCR of bisulphite-treated DNA, we found a mosaic spectrum of hypomethylation at the following maternally methylated loci in both sibs: ZAC (6q24), KCNQ1OT1 (11p15.5), GRB10 (7p11.2-12), PEG3 (19q13), PEG1/MEST (7q32), and NESPAS (20q13). While the older sister has a milder phenotype, the younger one was severely ill and died at 11 months of age. Despite phenotypic differences, the sisters had several manifestations of both TNDM and BWS in common. The family is highly consanguineous, and the parents are first cousins. We suggest that the genetic defect in this family is a novel, most likely autosomal recessive defect of methylation mechanisms, either in the sisters or in their mother, affecting her oocyte imprinting. The recurrence with affected sibs as reported in this family has implications for genetic counselling.
Collapse
|
50
|
Kou YC, Shao L, Peng HH, Rosetta R, del Gaudio D, Wagner AF, Al-Hussaini TK, Van den Veyver IB. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod 2007; 14:33-40. [PMID: 18039680 DOI: 10.1093/molehr/gam079] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A complete hydatidiform mole (CHM) is an abnormal pregnancy with hyperproliferative vesicular trophoblast and no fetal development. Most CHM are sporadic and androgenetic, but recurrent HM have biparental inheritance (BiHM) with disrupted DNA methylation at differentially methylated regions (DMRs) of imprinted loci. Some women with recurrent BiHM have mutations in the NLRP7 gene on chromosome 19q13.42. Using bisulfite genomic sequencing at eight imprinted DMRs on DNA from two BiHMs, we found a pattern of failure to acquire or maintain DNA methylation at DMRs (PEG3, SNRPN, KCNQ1OT1, GNAS exon 1A) that normally acquire CpG methylation during oogenesis, but not at H19, which acquires CpG methylation during spermatogenesis. Secondary imprints at the GNAS locus showed variable abnormal patterns with both gain and loss of CpG methylation. We found novel missense and splice-site mutations in NLRP7 in women with non-familial recurrent BiHM. We identified and characterized a homozygous intragenic tandem duplication including exons 2 through 5 of NLRP7 that results in a predicted truncated protein in affected women of three unrelated Egyptian kindreds, suggesting a founder effect. Our findings firmly establish that NLRP7 mutations are a major cause of BiHM and confirm presence of a complex pattern of imprinting abnormalities in BiHM tissues.
Collapse
Affiliation(s)
- Y C Kou
- Department of Obstetrics and Gynecology, Baylor College of Medicine, One Baylor Plaza, Room 721E, Mailstop BCM225, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|