1
|
Chen Y, Bai X, Zhang Y, Zhao Y, Ma H, Yang Y, Wang M, Guo Y, Li X, Wu T, Zhang Y, Kong H, Zhao Y, Qu H. Zingiberis rhizoma-based carbon dots alter serum oestradiol and follicle-stimulating hormone levels in female mice. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:12-22. [PMID: 37994799 DOI: 10.1080/21691401.2023.2276770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Chinese herbs contain substances that regulate female hormones. Our study confirmed that Zingiberis rhizoma carbonisata contains Zingiberis rhizoma-based carbon dots (ZR-CDs), which exert regulatory effects on serum oestradiol and FSH in mice and show impacts on endometrial growth and follicular development that potentially affect the ability of female fertility. ZR-CDs were characterized to clarify the microstructure, optical features, and functional group characteristics. It shows that ZR-CDs are spherical carbon nanostructures ranging from 0.97 to 2.3 nm in diameter, with fluorescent properties and a surface rich in functional groups. We further investigated the impact of ZR-CDs on oestradiol and FSH in serum, growth, and the development of ovarian and uterine using normal female mice and exogenous oestradiol intervention model. It was observed that ZR-CDs accelerated oestrogen metabolism and attenuated oestradiol-induced endometrial hyperplasia. Simultaneously, ZR-CDs triggered an increase in FSH, even in the presence of high-serum oestradiol that inhibits FSH secretion. Our findings suggest that ZR-CDs could be a potential therapeutic treatment for anovulatory menstruation.
Collapse
Affiliation(s)
- Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huagen Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yunbo Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meijun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huaihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Andriyanto A, Putra HY, Subangkit M, Tarigan E, Nugrahaning Widi L, Irarang Y, Manalu W, Fadholly A. Effect of Curcuma longa maceration treatment on ovarian follicular development, serum oestradiol, uterine growth and vascularisation in female albino rats. J Vet Res 2024; 68:287-294. [PMID: 38947163 PMCID: PMC11210355 DOI: 10.2478/jvetres-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Curcuma longa is a well-known medicinal plant with various health benefits. This study was designed to evaluate the administration of Indonesian C. longa maceration for its effect on promoting growth and development of the ovary and uterus before mating in female albino rats. Material and Methods A total of 15 female Sprague Dawley rats in their dioestrous phase were assigned into three different groups: the Control group (mineral water); the Cur-Low group (mineral water with 1% C. longa maceration) and the Cur-High group (mineral water with 5% C. longa maceration). The treatments were given for 20 days. Serum concentrations of follicle-stimulating hormone, oestradiol and progesterone were determined. After the sacrifice of the rats, ovary and uterine relative weight, uterine cornua diameter and length, uterine gland diameter (by histology), the number of primary, secondary, tertiary, and Graafian follicles, the number of corpora lutea and vascular endothelial growth factor (VEGF) expression in the ovary were measured. Uterine vascularisation was also evaluated. Results Administration of C. longa maceration significantly improved the relative weights of the uterus and ovary; uterine cornua diameter, length and vascularisation; uterine gland diameter; and expression of VEGF in the ovary. It also increased the number of tertiary follicles and corpora lutea, albeit not significantly. Follicle-stimulating hormone serum concentrations were lower in the administered rats. Conclusion Oestradiol and progesterone levels rose with C. longa maceration treatment. The maceration improved the reproductive organs of unmated rats and had potential to optimise the uterine environment for supporting pregnancy in order to produce high-quality offspring.
Collapse
Affiliation(s)
| | | | | | - Elpita Tarigan
- eLRosa Laboratory, iRATco Group, Dramaga Bogor, 16680West Java, Indonesia
| | | | - Yusa Irarang
- eLRosa Laboratory, iRATco Group, Dramaga Bogor, 16680West Java, Indonesia
| | - Wasmen Manalu
- Division of Physiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Kampus IPB Dramaga Bogor, 16680West Java, Indonesia
| | - Amaq Fadholly
- Division of Pharmacology and Toxicology, West Java, Indonesia
| |
Collapse
|
3
|
Wang H, Ma X, Jiang Z, Xia D, Sui F, Fu F, Dai Y. Estrogen promotes the proliferation and migration of endometrial cancer cells by upregulating the expression of lncRNA HOTAIR. Gynecol Endocrinol 2023; 39:2269248. [PMID: 37846544 DOI: 10.1080/09513590.2023.2269248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Estrogen (E2) is the main contributor to the progression of endometrial cancer (EC). The long noncoding RNA HOX antisense intergenic RNA (HOTAIR) is emerging as a new regulator in several cancer types. This study aimed to investigate the role of HOTAIR in EC development and identify the underlying molecular mechanisms. METHODS HOTAIR expression levels in human EC tissues and the corresponding adjacent tissues and human EC Ishikawa cells were determined by quantitative PCR. Ishikawa cells were treated with E2 or estrogen receptor (ER) inhibitor ICI182780, transfected with siHOTAIR oligo, or infected with lentivirus expressing shHOTAIR/shNC, alone or in combinations. The protein expression of polycomb repressive complex 2 (PRC2) was evaluated by western blotting, and cell migration was measured by transwell assays. A xenograft tumorigenic model was established by inoculating control or stable shHOTAIR-infected Ishikawa cells into nude mice and implanting 17β-estradiol release pellets. RESULTS HOTAIR expression was significantly elevated in human EC tissues. E2 exposure markedly increased HOTAIR levels in Ishikawa cells. Notably, E2 increased the protein expression of PRC2 and promoted EC cell migration, which were dependent on HOTAIR expression, as HOTAIR knockdown abolished these effects of E2. Similarly, E2 promoted the in vivo proliferation of grafted Ishikawa cells via upregulated HOTAIR expression in nude mice. CONCLUSIONS Human EC tissues highly express HOTAIR, and E2-induced EC progression depends on HOTAIR expression. This work suggests that the E2-HOTAIR axis is a potential therapeutic target in EC therapy.
Collapse
Affiliation(s)
- Huixiao Wang
- Department of Maternal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xulan Ma
- Department of Gynecology, Aerospace Center Hospital, Beijing, China
| | - Ziwen Jiang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing,China
| | - Di Xia
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing,China
| | - Feng Sui
- Department of Maternal Intensive Care Unit, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fengxian Fu
- Department of Gynecology, Aerospace Center Hospital, Beijing, China
| | - Yinmei Dai
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing,China
| |
Collapse
|
4
|
Wu HM, Chen LH, Huang HY, Wang HS, Tsai CL. EGF-Enhanced GnRH-II Regulation in Decidual Stromal Cell Motility through Twist and N-Cadherin Signaling. Int J Mol Sci 2023; 24:15271. [PMID: 37894950 PMCID: PMC10607070 DOI: 10.3390/ijms242015271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Crucial roles in embryo implantation and placentation in humans include the invasion of the maternal decidua by extravillous trophoblasts and the motile behavior of decidual endometrial stromal cells. The effects of the epidermal growth factor (EGF) and GnRH-II in the endometrium take part in early pregnancy. In the present study, we demonstrated the coaction of EGF- and GnRH-II-promoted motility of human decidual endometrial stromal cells, indicating the possible roles of EGF and GnRH-II in embryo implantation and early pregnancy. After obtaining informed consent, we obtained human decidual endometrial stromal cells from decidual tissues from normal pregnancies at 6 to 12 weeks of gestation in healthy women undergoing suction dilation and curettage. Cell motility was evaluated with invasion and migration assays. The mechanisms of EGF and GnRH-II were performed using real-time PCR and immunoblot analysis. The results showed that human decidual tissue and stromal cells expressed the EGF and GnRH-I receptors. GnRH-II-mediated cell motility was enhanced by EGF and was suppressed by the knockdown of the endogenous GnRH-I receptor and EGF receptor with siRNA, revealing that GnRH-II promoted the cell motility of human decidual endometrial stromal cells through the GnRH-I receptor and the activation of Twist and N-cadherin signaling. This new concept regarding the coaction of EGF- and GnRH-promoted cell motility suggests that EGF and GnRH-II potentially affect embryo implantation and the decidual programming of human pregnancy.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, School of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (L.-H.C.); (H.-Y.H.); (H.-S.W.); (C.-L.T.)
| | | | | | | | | |
Collapse
|
5
|
Srebnik N, Kalifa TM, Hirsch HJ, Benarroch F, Eldar-Geva T, Gross-Tsur V. The importance of gynecological examination in adolescent girls and adult women with Prader-Willi syndrome. Am J Med Genet A 2023; 191:2585-2590. [PMID: 37408363 DOI: 10.1002/ajmg.a.63343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Current published guidelines for routine care of women with Prader-Willi syndrome (PWS) do not include recommendations for gynecologic examinations. We describe our experience with gynecological examinations in women with PWS and offer recommendations for routine health care for these patients. Data were collected on all 41 PWS females ages ≥12 year, followed in our national Israeli multidisciplinary clinic between the years 2011 and 2022. Menstrual data and findings on external gynecological examination, including evaluation of the vulva and hymen were recorded at yearly visits. During the gynecological evaluation the topic of sexual education was discussed. Pelvic ultrasound, specifically for antral follicular count, was performed for those visiting the clinic during 2020-2022. Blood samples for luteinizing hormone (LH), follicular stimulating hormone (FSH), and estradiol were obtained routinely and DEXA scans for bone density were done when indicated. Of the 41 women, (median age at start of follow-up 17 years, range [12.3-39], BMI 30.4 kg/m2 [IQR 23.5-37.1]), 39 women agreed to external gynecological examination. Eleven women (27%) had spontaneous menses, with menarche at the age of 14 to as late as 31 years. The hymen was intact in all except one. Poor hygiene was observed in eight women, three women with vulvovaginitis, and five with irritated vulva related to poor hygiene. Gynecological ultrasound was performed in 27 women. In 22, endometrial thickness was less than 5 mm. The median antral follicular count (AFC) was 6 (<10th percentile for age). No correlation between AFC and menstruation or BMI was found. Mean FSH level was 5.7 ± 3.6 IU, LH was 2.29 ± 2.23, and estradiol was 128 ± 76 pmol/L. Data on DEXA measurements were available in 25 women aged 16-39. Median spine T score was -1.3 (range between 0.5 and -3.7), and hip T score was -1.2 (range between 0.8 and -3.3). A negative correlation was found between endometrial thickness and the presence of osteopenia or osteoporosis (r = -0.5, p = 0.013). Despite our recommendations, only eight of 14 women agreed to hormonal treatment or contraception. One woman who received treatment had a thromboembolic event. Routine health care for women with PWS should include gynecological examinations. The gynecological evaluation should include external genital examination, assessment of hygiene, obtaining a blood sample for hormone levels, and documenting a history of sexual experience or sexual abuse. Hormonal treatment or contraception should be offered when appropriate.
Collapse
Affiliation(s)
- Naama Srebnik
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tal Margaliot Kalifa
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Harry J Hirsch
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
- The Israeli Multidisciplinary Prader-Willi Syndrome Clinic, Jerusalem, Israel
| | - Fortu Benarroch
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Herman Dana Division of Child and Adolescent Psychiatry, Hadassah Medical Center, Jerusalem, Israel
| | - Talia Eldar-Geva
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel
- The Israeli Multidisciplinary Prader-Willi Syndrome Clinic, Jerusalem, Israel
| | - Varda Gross-Tsur
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- Department of Pediatrics, Shaare Zedek Medical Center, Jerusalem, Israel
- The Israeli Multidisciplinary Prader-Willi Syndrome Clinic, Jerusalem, Israel
| |
Collapse
|
6
|
Zhang C, Sheng Y, Sun X, Wang Y. New insights for gynecological cancer therapies: from molecular mechanisms and clinical evidence to future directions. Cancer Metastasis Rev 2023; 42:891-925. [PMID: 37368179 PMCID: PMC10584725 DOI: 10.1007/s10555-023-10113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
Advanced and recurrent gynecological cancers lack effective treatment and have poor prognosis. Besides, there is urgent need for conservative treatment for fertility protection of young patients. Therefore, continued efforts are needed to further define underlying therapeutic targets and explore novel targeted strategies. Considerable advancements have been made with new insights into molecular mechanisms on cancer progression and breakthroughs in novel treatment strategies. Herein, we review the research that holds unique novelty and potential translational power to alter the current landscape of gynecological cancers and improve effective treatments. We outline the advent of promising therapies with their targeted biomolecules, including hormone receptor-targeted agents, inhibitors targeting epigenetic regulators, antiangiogenic agents, inhibitors of abnormal signaling pathways, poly (ADP-ribose) polymerase (PARP) inhibitors, agents targeting immune-suppressive regulators, and repurposed existing drugs. We particularly highlight clinical evidence and trace the ongoing clinical trials to investigate the translational value. Taken together, we conduct a thorough review on emerging agents for gynecological cancer treatment and further discuss their potential challenges and future opportunities.
Collapse
Affiliation(s)
- Chunxue Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yaru Sheng
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030 People’s Republic of China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| |
Collapse
|
7
|
Guo J, Zhou W, Sacco M, Downing P, Dimitriadis E, Zhao F. Using organoids to investigate human endometrial receptivity. Front Endocrinol (Lausanne) 2023; 14:1158515. [PMID: 37693361 PMCID: PMC10484744 DOI: 10.3389/fendo.2023.1158515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/13/2023] [Indexed: 09/12/2023] Open
Abstract
The human endometrium is only receptive to an implanting blastocyst in the mid-secretory phase of each menstrual cycle. Such time-dependent alterations in function require intricate interplay of various factors, largely coordinated by estrogen and progesterone. Abnormal endometrial receptivity is thought to contribute to two-thirds of the implantation failure in humans and therefore significantly hindering IVF success. Despite the incontrovertible importance of endometrial receptivity in implantation, the precise mechanisms involved in the regulation of endometrial receptivity remain poorly defined. This is mainly due to a lack of proper in vitro models that recapitulate the in vivo environment of the receptive human endometrium. Organoids were recently established from human endometrium with promising features to better mimic the receptive phase. Endometrial organoids show long-term expandability and the capability to preserve the structural and functional characteristics of the endometrial tissue of origin. This three-dimensional model maintains a good responsiveness to steroid hormones in vitro and replicates key morphological features of the receptive endometrium in vivo, including pinopodes and pseudostratified epithelium. Here, we review the current findings of endometrial organoid studies that have been focused on investigating endometrial receptivity and place an emphasis on methods to further refine and improve this model.
Collapse
Affiliation(s)
- Junhan Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Michaela Sacco
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Poppy Downing
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, VIC, Australia
| | - Feifei Zhao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Rurik I. [Working 40 years as medical doctors.]. Orv Hetil 2023; 164:1127-1133. [PMID: 37481769 DOI: 10.1556/650.2023.32811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023]
Abstract
The health status of health professionals, including medical doctors is an important topic, although it is an under-researched area in Hungary and in the East-Central European countries as well. Our quasi-cohort research was focused on the health status, morbidities, anthropometric parameters, lifestyle and professional career of Hungarian medical doctors who graduated in 1979, following them 25y, 30y and 40y after graduation, seeking differences between professional groups and genders. In 2019, the mean age of participants was 64.9y, the average number of children was 2.08, higher among surgical professionals (2.43). Men reported higher number of own children. The number of night shifts decreased during the past decades. Most of them is already retired, 70% is working besides receiving a pension. 27% changed their medical specialty, 36% intended to work in another field of medicine, when graduated. About 10% of them achieved scientific (PhD) degree, most of them were satisfied with own professional carrier. The body weight and BMI significantly increased during decades, without statistical difference between genders and professional groups. Diabetes was self reported in 7%, hypertension in 44%. Men neglected more frequently their regular health check-up. Compared to their patients at the same age, 71% rated their own health status better. Among those, who reported regular physical activities, the ratio of men was higher; the average time spent on sport was the same as in the past decades, although the ratio of persons who had regular physical activity decreased, fewer participated in team sport activities. Their sleeping habit is quiet, the time is 6.3 h between workdays and 7.7 h on weekends. Burn-out was not reported. The ratio of smokers decreased; the self-reported daily intake of alcoholic beverages was 1.3, the weekly 3.7 units. Differences described earlier between professional groups disappeared. The problems of the recent Hungarian health care system were similarly rated, although the income of Hungarian physicians has increased to a great extent in the past years. Orv Hetil. 2023; 164(29): 1127-1133.
Collapse
Affiliation(s)
- Imre Rurik
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Családorvosi Tanszék Budapest Magyarország
| |
Collapse
|
9
|
Altyar AE, Boshra MS, Abou Warda AE, Shawkey SM, Abdallah Mohamed Salem S, Sarhan RM, Sarhan N. Comparative Evaluation of Sildenafil Citrate and Estrogen as an Adjuvant Therapy for Treatment of Unexplained Infertility in Women. J Pers Med 2023; 13:842. [PMID: 37241011 PMCID: PMC10223516 DOI: 10.3390/jpm13050842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Uterine blood flow determines endometrial thickness. This study examined how vaginal sildenafil citrate and estradiol valerate altered endometrial thickness, blood flow, and fertility in infertile women. METHODS This study observed 148 infertile women whose infertility was unexplained. Group 1 comprised 48 patients who received oral estradiol valerate (Cyclo-Progynova 2 mg/12 h white tablets) from day 6 till ovulation was initiated with clomiphene citrate. A number of 50 participants in group 2 received oral sildenafil (Respatio 20 mg/12 h film-coated tablets) for 5 days starting the day after their previous menstrual period and finishing on the day they ovulated with clomiphene citrate. Group 3 was the control group, with 50 patients receiving clomiphene citrate (Technovula 50 mg/12 h tablets) ovulation induction from the 2nd to 7th day of cycle. All patients had transvaginal ultrasounds to determine ovulation, follicle count, and fertility. Miscarriage, ectopic pregnancy, and multiple pregnancies were monitored for three months. RESULTS The three groups' mean ETs differed statistically at p = 0.0004. A statistically significant difference was found between the three groups in terms of the number of follicles, with 69% of patients in group 1 having one and 31% having two or more, 76% of patients in group 2 having one and 24% having two or more, and 90% of patients in the control group having one and 10% having two or more (p = 0.038). The clinical pregnancy rates of the three groups were 58%, 46%, and 27%, respectively (p = 0.005). The distribution of all side effects was not statistically different between the three groups. CONCLUSION It is possible to claim that adding oral estrogen to clomiphene citrate therapy as an adjuvant therapy can improve endometrial thickness and, as a result, increase the pregnancy rates in unexplained infertility compared to sildenafil, especially in cases where the infertility has lasted less than two years. Most people who take sildenafil end up with a mild headache.
Collapse
Affiliation(s)
- Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Marian S. Boshra
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (M.S.B.)
| | - Ahmed Essam Abou Warda
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Sherwet M. Shawkey
- Department of Obstetrics and Gynecology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Rania M. Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt; (M.S.B.)
| | - Neven Sarhan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University, Cairo 11828, Egypt;
| |
Collapse
|
10
|
Park SR, Kook MG, Kim SR, Lee JW, Park CH, Oh BC, Jung Y, Hong IS. Development of cell-laden multimodular Lego-like customizable endometrial tissue assembly for successful tissue regeneration. Biomater Res 2023; 27:33. [PMID: 37085887 PMCID: PMC10122345 DOI: 10.1186/s40824-023-00376-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The endometrium, the inner lining of the uterine cavity, plays essential roles in embryo implantation and its subsequent development. Although some positive results were preliminarily archived, the regeneration of damaged endometrial tissues by administrating stem cells only is very challenging due to the lack of specific microenvironments and their low attachment rates at the sites of injury. In this context, various biomaterial-based scaffolds have been used to overcome these limitations by providing simple structural support for cell attachment. However, these scaffold-based strategies also cannot properly reflect patient tissue-specific structural complexity and thus show only limited therapeutic effects. METHOD Therefore, in the present study, we developed a customizable Lego-like multimodular endometrial tissue architecture by assembling individually fabricated tissue blocks. RESULTS Each tissue block was fabricated by incorporating biodegradable biomaterials and certain endometrial constituent cells. Each small tissue block was effectively fabricated by integrating conventional mold casting and 3D printing techniques. The fabricated individual tissue blocks were properly assembled into a larger customized tissue architecture. This structure not only properly mimics the patient-specific multicellular microenvironment of the endometrial tissue but also properly responds to key reproductive hormones in a manner similar to the physiological functions. CONCLUSION This customizable modular tissue assembly allows easy and scalable configuration of a complex patient-specific tissue microenvironment, thus accelerating various tissue regeneration procedures.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Myung Geun Kook
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Byung-Chul Oh
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, 21999, Republic of Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon, 406-840, Republic of Korea.
| |
Collapse
|
11
|
Guha P, Sen K, Chowdhury P, Mukherjee D. Estrogen receptors as potential therapeutic target in endometrial cancer. J Recept Signal Transduct Res 2023; 43:19-26. [PMID: 36883690 DOI: 10.1080/10799893.2023.2187643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Endometrial cancer (EC) is one of the most common gynecological carcinomas in both developed and developing countries. Majority of the gynecological malignancies are hormonally driven where estrogen signaling acts as an oncogenic signal. Estrogen's effects are mediated via classical nuclear estrogen receptors; estrogen receptor alpha and beta (ERα and ERβ) and a trans-membrane G protein-coupled estrogen receptor (GPR30 and GPER). ERs and GPER through ligand binding triggers multiple downstream signaling pathways causing cell cycle regulation, cell differentiation, migration, and apoptosis in various tissues including endometrium. Although the molecular aspect of estrogen function in ER-mediated signaling is now partly understood, the same is not true for GPER-mediated signaling in endometrial malignancies. Understanding the physiological roles of ERα and GPER in EC biology therefore leads to the identification of some novel therapeutic targets. Here we review the effect of estrogen signaling through ERα-and GPER in EC, major types, and some affordable treatment approaches for endometrial tumor patients which has interesting implications in understanding uterine cancer progression.
Collapse
Affiliation(s)
- Payel Guha
- Department of Zoology, University of Kalyani, Kalyani, India.,Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, India
| | - Koushik Sen
- Department of Zoology, University of Kalyani, Kalyani, India.,Department of Zoology, Jhargram Raj College, Jhargram, India
| | | | - Dilip Mukherjee
- Department of Zoology, University of Kalyani, Kalyani, India
| |
Collapse
|
12
|
Rusidzé M, Gargaros A, Fébrissy C, Dubucs C, Weyl A, Ousselin J, Aziza J, Arnal JF, Lenfant F. Estrogen Actions in Placental Vascular Morphogenesis and Spiral Artery Remodeling: A Comparative View between Humans and Mice. Cells 2023; 12:cells12040620. [PMID: 36831287 PMCID: PMC9954071 DOI: 10.3390/cells12040620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Estrogens, mainly 17β-estradiol (E2), play a critical role in reproductive organogenesis, ovulation, and fertility via estrogen receptors. E2 is also a well-known regulator of utero-placental vascular development and blood-flow dynamics throughout gestation. Mouse and human placentas possess strikingly different morphological configurations that confer important reproductive advantages. However, the functional interplay between fetal and maternal vasculature remains similar in both species. In this review, we briefly describe the structural and functional characteristics, as well as the development, of mouse and human placentas. In addition, we summarize the current knowledge regarding estrogen actions during utero-placental vascular morphogenesis, which includes uterine angiogenesis, the control of trophoblast behavior, spiral artery remodeling, and hemodynamic adaptation throughout pregnancy, in both mice and humans. Finally, the estrogens that are present in abnormal placentation are also mentioned. Overall, this review highlights the importance of the actions of estrogens in the physiology and pathophysiology of placental vascular development.
Collapse
Affiliation(s)
- Mariam Rusidzé
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Adrien Gargaros
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Chanaëlle Fébrissy
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Charlotte Dubucs
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Ariane Weyl
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jessie Ousselin
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jacqueline Aziza
- Department of Pathology, Cancer University Institute of Toulouse Oncopole-IUCT, 31100 Toulouse, France
| | - Jean-François Arnal
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
| | - Françoise Lenfant
- Institute of Metabolic and Cardiovascular Diseases (I2MC), INSERM U1297, University of Toulouse III-Paul Sabatier (UPS), CHU, 31432 Toulouse, France
- Correspondence:
| |
Collapse
|
13
|
The Extracellular Vesicles Proteome of Endometrial Cells Simulating the Receptive Menstrual Phase Differs from That of Endometrial Cells Simulating the Non-Receptive Menstrual Phase. Biomolecules 2023; 13:biom13020279. [PMID: 36830648 PMCID: PMC9953153 DOI: 10.3390/biom13020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Successful embryo implantation into a receptive endometrium requires mutual endometrial-embryo communication. Recently, the function of extracellular vehicles (EVs) in cell-to-cell interaction in embryo-maternal interactions has been investigated. We explored isolated endometrial-derived EVs, using RL95-2 cells as a model of a receptive endometrium, influenced by the menstrual cycle hormones estrogen (E2; proliferative phase), progesterone (P4; secretory phase), and estrogen plus progesterone (E2P4; the receptive phase). EV sized particles were isolated by differential centrifugation and size exclusion chromatography. Nanoparticle tracking analysis was used to examine the different concentrations and sizes of particles and EV proteomic analysis was performed using shotgun label-free mass spectrometry. Our results showed that although endometrial derived EVs were secreted in numbers independent of hormonal stimulation, EV sizes were statistically modified by it. Proteomics analysis showed that hormone treatment changes affect the endometrial EV's proteome, with proteins enhanced within the EV E2P4 group shown to be involved in different processes, such as embryo implantation, endometrial receptivity, and embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs.
Collapse
|
14
|
Association between endometrial thickness before ovulation, live birth, and placenta previa rates in clomiphene citrate-treated cycles. AJOG GLOBAL REPORTS 2023; 3:100161. [PMID: 36876159 PMCID: PMC9975686 DOI: 10.1016/j.xagr.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although a recent study reported that the pregnancy outcomes in the first trimester were more correlated with endometrial thickness on the day of the trigger than with endometrial thickness on the day of single fresh-cleaved embryo transfer, it remains unclear whether endometrial thickness on the day of the trigger can predict live birth rate after a single fresh-cleaved embryo transfer. OBJECTIVE This study aimed to examine whether endometrial thickness on the trigger day is associated with live birth rates and whether modifying the single fresh-cleaved embryo transfer criteria to reflect endometrial thickness on the trigger day improved the live birth rate and reduced maternal complications in a clomiphene citrate-based minimal stimulation cycle. STUDY DESIGN This was a retrospective study of the outcomes of 4440 treatment cycles of women who underwent single fresh-cleaved embryo transfer on day 2 of the retrieval cycle. From November 2018 to October 2019, single fresh-cleaved embryo transfer was performed when endometrial thickness on the day of single fresh-cleaved embryo transfer was ≥8 mm (criterion A). From November 2019 to August 2020, single fresh-cleaved embryo transfer was conducted when endometrial thickness on the day of the trigger was ≥7 mm (criterion B). RESULTS A multivariate logistic regression analysis revealed that increased endometrial thickness on the trigger day was significantly associated with an improvement in the live birth rate after single fresh-cleaved embryo transfer (adjusted odds ratio, 1.098; 95% confidence interval, 1.021-1.179). The live birth rate was significantly higher in the criterion B group than in the criterion A group (22.9% and 19.1%, respectively; P=.0281). Although endometrial thickness on the day of single fresh-cleaved embryo transfer was sufficient, the live birth rate tended to be lower when endometrial thickness on the trigger day was <7.0 mm than when endometrial thickness on the day of the trigger was ≥7.0 mm. The risk for placenta previa was reduced in the criterion B group when compared with the criterion A group (4.3% and 0.6%, respectively; P=.0222). CONCLUSION This study demonstrated an association of decreased endometrial thickness on the trigger day with low birth rate and a high incidence of placenta previa. A modification of the criteria for a single fresh-cleaved embryo transfer based on endometrial thickness may improve pregnancy and maternal outcomes.
Collapse
|
15
|
Domingues RR, Wiltbank MC, Hernandez LL. The antidepressant fluoxetine (Prozac®) modulates estrogen signaling in the uterus and alters estrous cycles in mice. Mol Cell Endocrinol 2023; 559:111783. [PMID: 36198363 PMCID: PMC10038119 DOI: 10.1016/j.mce.2022.111783] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRI) are the most used antidepressants. However, up to 80% of women taking SSRI suffer from sexual dysfunction. We investigated the effects of fluoxetine (Prozac®) (low and high dose, n = 6-7/group) on reproductive function and the regulation of the estrous cycle. All mice treated with high dose of fluoxetine had interruption of estrous cycles within a few days after onset of treatment. When treated for 14 days, mice in the high dose group had fewer CL, often lack of any CL, and antral follicles. Uterine expression of estrogen receptor alpha, G-protein coupled estrogen receptor, and steroidogenesis enzymes were upregulated in the high dose group. Nevertheless, decreased expression of connexin 43 and alkaline phosphatase and increased expression of insulin-like growth factor-binding protein 3 and monoamine oxidase A are consistent with decreased estrogen signaling and the decreased uterine weight. Taken together, fluoxetine modulates estrogen synthesis/signaling and dysregulates estrous cycles.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Immunoendocrine abnormalities in the female reproductive system, and lung steroidogenesis during experimental pulmonary tuberculosis. Tuberculosis (Edinb) 2023; 138:102274. [PMID: 36463716 DOI: 10.1016/j.tube.2022.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Tuberculosis (TB) caused by Mycobacterium tuberculosis mainly affects the lungs, but can spread to other organs. TB chronically activates the immune and endocrine systems producing remarkable functional changes.So far, it is unknown whether pulmonary non-disseminated TB cause changes in the female reproductive system and lung endocrinology. OBJECTIVE To investigate whether pulmonary TB produces immunoendocrine alterations of the female mice reproductive organs, and lung estradiol synthesis. METHODS BALB/c mice were infected intratracheally with Mycobacterium tuberculosis (Mtb) strain H37Rv. Groups of six non-infected and infected animals were euthanized on different days. Bacillary loads were determined in the lungs, ovaries and uterus. Immunohistochemistry and morphometry studies were performed in histological sections. Serum estradiol wasassayed, and supernatantfrom cultured lung cells was analyzed by Thin Layer Chromatography (TLC). RESULTS Mtb only grew in lung tissue. Histopathology revealed abnormal folliculogenesis and decreased corpora lutea. Altered ovarian expression of IL-6, IL-1β was found. The infection increased serum estradiol. Estradiol synthesis by infected lung cells triplicate after 30 pi days.Aromatase immunostaining was found in the alveolar and bronchial epithelium, being stronger in the infected lungs, mainly in macrophages. CONCLUSION Pulmonary TB affects the histophysiology of the female reproductive system in absence of its local infection, and disturbslung endocrinology.
Collapse
|
17
|
Strehle LD, Russart KLG, Burch VA, Grant CV, Pyter LM. Ovarian status modulates endocrine and neuroinflammatory responses to a murine mammary tumor. Am J Physiol Regul Integr Comp Physiol 2022; 323:R432-R444. [PMID: 35993563 PMCID: PMC9512114 DOI: 10.1152/ajpregu.00124.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Patients with breast cancer have increased circulating inflammatory markers and mammary tumors increase neuroinflammation in rodent models. Menopausal status is not only important in the context of breast cancer as circulating estrogen influences tumor progression, but also because estrogen is anti-inflammatory and an essential modulator of endocrine function in the brain and body. Here, we manipulated "menopause" status (ovary-intact and ovariectomized) in an estrogen receptor (ER)+ mouse mammary tumor model to determine the extent to which ovarian status modulates: 1) tumor effects on estrogen concentrations and signaling in the brain, 2) tumor effects on estrogen-associated neurobiology and inflammation, and 3) the ability for tumor resection to resolve the effects of a tumor. We hypothesized that reduced circulating estradiol (E2) after an ovariectomy exacerbates tumor-induced peripheral and central inflammation. Notably, we observed ovarian-dependent modulation on tumor-induced peripheral outcomes, including E2-dependent processes and, to a lesser degree, circulating inflammatory markers. In the brain, ovariectomy exacerbated neuroinflammatory markers in select brain regions and modulated E2-related neurobiology due to a tumor and/or resection. Overall, our data suggest that ovarian status has moderate implications for tumor-induced alterations in neuroendocrinology and neuroinflammation and mild effects on peripheral inflammatory outcomes in this murine mammary tumor model.
Collapse
Affiliation(s)
- Lindsay D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Kathryn L G Russart
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Valerie A Burch
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Corena V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| |
Collapse
|
18
|
Zhou S, Lei Y, Wang P, Chen J, Zeng L, Qu T, Maldonado M, Huang J, Han T, Wen Z, Tian E, Meng X, Zhong Y, Gu J. Human Umbilical Cord Mesenchymal Stem Cells Encapsulated with Pluronic F-127 Enhance the Regeneration and Angiogenesis of Thin Endometrium in Rat via Local IL-1 β Stimulation. Stem Cells Int 2022; 2022:7819234. [PMID: 35761831 PMCID: PMC9233600 DOI: 10.1155/2022/7819234] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Thin endometrium (< 7 mm) could cause low clinical pregnancy, reduced live birth, increased spontaneous abortion, and decreased birth weight. However, the treatments for thin endometrium have not been well developed. In this study, we aim to determine the role of Pluronic F-127 (PF-127) encapsulation of human umbilical cord mesenchymal stem cells (hUC-MSCs) in the regeneration of thin endometrium and its underlying mechanism. Thin endometrium rat model was created by infusion of 95% ethanol. Thin endometrium modeled rat uterus were treated with saline, hUC-MSCs, PF-127, or hUC-MSCs plus PF-127 separately. Regenerated rat uterus was measured for gene expression levels of angiogenesis factors and histological morphology. Angiogenesis capacity of interleukin-1 beta (IL-1β)-primed hUC-MSCs was monitored via quantitative polymerase chain reaction (q-PCR), Luminex assay, and tube formation assay. Decreased endometrium thickness and gland number and increased inflammatory factor IL-1β were achieved in the thin endometrium rat model. Embedding of hUC-MSCs with PF-127 could prolong the hUC-MSCs retaining, which could further enhance endometrium thickness and gland number in the thin endometrium rat model via increasing angiogenesis capacity. Conditional medium derived from IL-1β-primed hUC-MSCs increased the concentration of angiogenesis factors (basic fibroblast growth factor (bFGF), vascular endothelial growth factors (VEGF), and hepatocyte growth factor (HGF)). Improvement in the thickness, number of glands, and newly generated blood vessels could be achieved by uterus endometrium treatment with PF-127 and hUC-MSCs transplantation. Local IL-1β stimulation-primed hUC-MSCs promoted the release of angiogenesis factors and may play a vital role on thin endometrium regeneration.
Collapse
Affiliation(s)
- Shuling Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Yu Lei
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Ping Wang
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Jianying Chen
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Liting Zeng
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Martin Maldonado
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Jihua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Tingting Han
- Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Zina Wen
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Erpo Tian
- Department of Andrology, Chengdu Xi'nan Gynecological Hospital, 66 Bisheng Road, Chengdu, 610066 Sichuan, China
| | - Xiangqian Meng
- Department of Embryology, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 3 San-guantang Road, Chengdu, 610066 Sichuan, China
| | - Ying Zhong
- Department of Embryology, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 3 San-guantang Road, Chengdu, 610066 Sichuan, China
| | - Jiang Gu
- Department of Pathology and Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| |
Collapse
|
19
|
Li JJX, Ip PPC. Endometrial Cancer: An Update on Prognostic Pathologic Features and Clinically Relevant Biomarkers. Surg Pathol Clin 2022; 15:277-299. [PMID: 35715162 DOI: 10.1016/j.path.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The prognosis of endometrial cancers has historically been determined by the evaluation of histologic typing, grading, and staging. Recently, molecular classification, pioneered by the 4 prognostic categories from The Cancer Genome Atlas Research Network, has been shown to independently predict the outcome, correlate with biomarker expression, and predict response to adjuvant chemotherapy. In modern-day pathology practice, it has become necessary to integrate the time-honored prognostic pathologic features with molecular classification to optimize patient management. In this review, the significance of the molecular classification of endometrioid carcinomas, the application of practical diagnostic surrogate algorithms, and interpretation of test results will be addressed. Histologic features and theragnostic biomarkers will also be discussed in relation to the molecular subtypes of endometrial cancers.
Collapse
Affiliation(s)
- Joshua J X Li
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Philip P C Ip
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pok Fu Lam Road, Hong Kong SAR.
| |
Collapse
|
20
|
Andriyanto A, Widi LN, Subangkit M, Tarigan E, Irarang Y, Nengsih RF, Manalu W. Potential use of Indonesian basil (Ocimum basilicum) maceration to increase estradiol and progesterone synthesis and secretion to improve prenatal growth of offspring using female albino rats as an animal model. Vet World 2022; 15:1197-1207. [PMID: 35765474 PMCID: PMC9210833 DOI: 10.14202/vetworld.2022.1197-1207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Basil is well known as a medicinal plant that contains high essential oils and antioxidant compounds that have the potential to improve ovarian development. Thus, basil may have the potential to improve the growth and development of the uterus and placenta for optimal prenatal growth of offspring. This study aimed to evaluate the effect of Indonesian basil maceration on gonad development of mature female albino rats. Materials and Methods: Fifteen 8-week-old female Sprague-Dawley rats, at the diestrus stage of the estrus cycle, were divided into three different treatment groups: Control group (mineral water), bas-low group (1% of basil maceration), and bas-high group (5% of basil maceration). Basil maceration was dissolved and administered in mineral drinking water, and the treatments were given for 20 days (4 estrus cycles). At the end of the treatment period, serum follicle-stimulating hormone (FSH), estradiol, and progesterone (Pg) were measured using enzyme-linked immunosorbent assay. The relative weight of the ovary and uterus; diameter and length of uterine cornual; vascularization of uterus; the diameter of uterine glands; the number of primary, secondary, and tertiary de Graaf follicles; the number of corpora luteum; as well as the expression of vascular endothelial growth factor (VEGF) in the ovary were determined. Results: There was no significant difference (p>0.05) in the serum FSH level of rats treated with basil maceration drinking water doses of 1% and 5% compared to the control group. However, serum estradiol and Pg concentrations in the 1% and 5% basil maceration groups were significantly higher (p<0.05) than those of the control group. Furthermore, 1% and 5% basil maceration significantly increased the uterus’s relative weight, diameter, and vascularization. Serum estradiol concentrations contributed to the elevated expression of VEGF compared to Pg. Conclusion: Administration of basil maceration for 20 days before mating could improve follicle growth and development, eventually increasing estradiol synthesis and secretion, thus improving the uterus’s preparation for implantation. This makes basil maceration an attractive candidate in clinical research to enhance the growth and development of the uterus and placenta, which will better support the optimum prenatal growth and development of embryos and fetuses, resulting in superior offspring.
Collapse
Affiliation(s)
- Andriyanto Andriyanto
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Leliana Nugrahaning Widi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Mawar Subangkit
- Department of Clinic, Reproduction, and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Elpita Tarigan
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Yusa Irarang
- Graduate School of Veterinary Biomedical Science, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Rindy Fazni Nengsih
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| | - Wasmen Manalu
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia
| |
Collapse
|
21
|
PPARγ regulates the expression of genes involved in the DNA damage response in an inflamed endometrium. Sci Rep 2022; 12:4026. [PMID: 35256739 PMCID: PMC8901773 DOI: 10.1038/s41598-022-07986-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
AbstractInflammation is a biological response of the immune system, which can be triggered by many factors, including pathogens. These factors may induce acute or chronic inflammation in various organs, including the reproductive system, leading to tissue damage or disease. In this study, the RNA-Seq technique was used to determine the in vitro effects of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the expression of genes and long non-coding RNA, and alternative splicing events (ASEs) in LPS-induced inflammation of the porcine endometrium during the follicular phase of the estrous cycle. Endometrial slices were incubated in the presence of LPS and PPARγ agonists (PGJ2 or pioglitazone) and a PPARγ antagonist (T0070907). We identified 169, 200, 599 and 557 differentially expressed genes after LPS, PGJ2, pioglitazone or T0070907 treatment, respectively. Moreover, changes in differentially expressed long non-coding RNA and differential alternative splicing events were described after the treatments. The study revealed that PPARγ ligands influence the LPS-triggered expression of genes controlling the DNA damage response (GADD45β, CDK1, CCNA1, CCNG1, ATM). Pioglitazone treatment exerted a considerable effect on the expression of genes regulating the DNA damage response.
Collapse
|
22
|
Yu K, Huang ZY, Xu XL, Li J, Fu XW, Deng SL. Estrogen Receptor Function: Impact on the Human Endometrium. Front Endocrinol (Lausanne) 2022; 13:827724. [PMID: 35295981 PMCID: PMC8920307 DOI: 10.3389/fendo.2022.827724] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
The physiological role of estrogen in the female endometrium is well established. On the basis of responses to steroid hormones (progesterone, androgen, and estrogen), the endometrium is considered to have proliferative and secretory phases. Estrogen can act in the endometrium by interacting with estrogen receptors (ERs) to induce mucosal proliferation during the proliferative phase and progesterone receptor (PR) synthesis, which prepare the endometrium for the secretory phase. Mouse knockout studies have shown that ER expression, including ERα, ERβ, and G-protein-coupled estrogen receptor (GPER) in the endometrium is critical for normal menstrual cycles and subsequent pregnancy. Incorrect expression of ERs can produce many diseases that can cause endometriosis, endometrial hyperplasia (EH), and endometrial cancer (EC), which affect numerous women of reproductive age. ERα promotes uterine cell proliferation and is strongly associated with an increased risk of EC, while ERβ has the opposite effects on ERα function. GPER is highly expressed in abnormal EH, but its expression in EC patients is paradoxical. Effective treatments for endometrium-related diseases depend on understanding the physiological function of ERs; however, much less is known about the signaling pathways through which ERs functions in the normal endometrium or in endometrial diseases. Given the important roles of ERs in the endometrium, we reviewed the published literature to elaborate the regulatory role of estrogen and its nuclear and membrane-associated receptors in maintaining the function of endometrium and to provide references for protecting female reproduction. Additionally, the role of drugs such as tamoxifen, raloxifene, fulvestrant and G-15 in the endometrium are also described. Future studies should focus on evaluating new therapeutic strategies that precisely target specific ERs and their related growth factor signaling pathways.
Collapse
Affiliation(s)
- Kun Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Yuan Huang
- Chelsea and Westminster Hospital, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Xue-Ling Xu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jun Li
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiang-Wei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
The Potential of Jatropha variegata Fruits as a Natural Contraceptive: Antifertility Activity and Phytochemical Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1365526. [PMID: 35237332 PMCID: PMC8885185 DOI: 10.1155/2022/1365526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/29/2022] [Indexed: 11/30/2022]
Abstract
Background Jatropha variegata (family, Euphorbiaceae) is native to Yemen, where it is commonly known as the Ebki shrub. The fruits of the plant are traditionally ingested by local women as a natural method of contraception. This study was undertaken to investigate the phytochemical content of the methanol extract of J. variegata fruits and to evaluate its antifertility potential. Methods Isolation of the chemical constituents was performed by chromatographic techniques, and the chemical structures of these compounds were identified by spectroscopy. The antifertility activity of the methanol extract was assessed in two experimental rat models to explore both the anti-implantation and the estrogenic/antiestrogenic activities in females. In these models, the number of successful implants, the size of litter, and body/ovary weights were all recorded. The development of ovarian follicles was also monitored via histological staining. Results Phytochemical work on the fruit extract of J. variegata led to the isolation of two oils (JF1 and JF2) and methyl elaidate. GC-MS analysis of the JF1 oil revealed that the major chemical constituents were fatty acid esters (43.77%), hydrocarbon alkanes (20.65%), and terpenoids (4.65%), while terpenoids (28.8%), fatty acids and their esters, (29.47%), and phytosterol (10.49%) were the major components found in the JF2 oil. The methanol extract of J. variegata fruit exhibited 50% and 93% abortifacient activity at 150 and 300 mg/kg doses, respectively. The extract also showed significant estrogenic activity as evidenced by the increase in rat ovary weight at a dose of 300 mg/kg compared to the control group. Histological analyses further confirmed this estrogenic activity. Conclusions J. variegata fruits possess an antifertility activity that appeared to result from its antiembryo implantation potential and from its estrogenic activity. The bioactive constituents involved in these activities may need to be further explored and exploited in the pursuit of newer contraceptives.
Collapse
|
24
|
Burns KA, Pearson AM, Slack JL, Por ED, Scribner AN, Eti NA, Burney RO. Endometriosis in the Mouse: Challenges and Progress Toward a ‘Best Fit’ Murine Model. Front Physiol 2022; 12:806574. [PMID: 35095566 PMCID: PMC8794744 DOI: 10.3389/fphys.2021.806574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 01/13/2023] Open
Abstract
Endometriosis is a prevalent gynecologic condition associated with pelvic pain and infertility characterized by the implantation and growth of endometrial tissue displaced into the pelvis via retrograde menstruation. The mouse is a molecularly well-annotated and cost-efficient species for modeling human disease in the therapeutic discovery pipeline. However, as a non-menstrual species with a closed tubo-ovarian junction, the mouse poses inherent challenges as a preclinical model for endometriosis research. Over the past three decades, numerous murine models of endometriosis have been described with varying degrees of fidelity in recapitulating the essential pathophysiologic features of the human disease. We conducted a search of the peer-reviewed literature to identify publications describing preclinical research using a murine model of endometriosis. Each model was reviewed according to a panel of ideal model parameters founded on the current understanding of endometriosis pathophysiology. Evaluated parameters included method of transplantation, cycle phase and type of tissue transplanted, recipient immune/ovarian status, iterative schedule of transplantation, and option for longitudinal lesion assessment. Though challenges remain, more recent models have incorporated innovative technical approaches such as in vivo fluorescence imaging and novel hormonal preparations to overcome the unique challenges posed by murine anatomy and physiology. These models offer significant advantages in lesion development and readout toward a high-fidelity mouse model for translational research in endometriosis.
Collapse
Affiliation(s)
- Katherine A. Burns
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Katherine A. Burns,
| | - Amelia M. Pearson
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jessica L. Slack
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
| | - Elaine D. Por
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
| | - Alicia N. Scribner
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, United States
| | - Nazmin A. Eti
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Richard O. Burney
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, United States
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, WA, United States
- Richard O. Burney,
| |
Collapse
|
25
|
Arbeláez-Gómez D, Benavides-López S, Giraldo-Agudelo MP, Guzmán-Álvarez JP, Ramirez-Mazo C, Gómez-Echavarría LM. A phenomenological-based model of the endometrial growth and shedding during the menstrual cycle. J Theor Biol 2022; 532:110922. [PMID: 34582826 DOI: 10.1016/j.jtbi.2021.110922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/06/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022]
Abstract
The human endometrium presents a remarkable growth dynamic with an outstanding regenerative capacity. This work aims to develop a phenomenological-based dynamic model to predict the volume changes in the functional layer of the endometrium in each phase of the menstrual cycle. This model considers changes in the endometrial tissue, the blood flow through the spiral arteries, the shedding of the endometrial cells, and the menstrual blood flow. The input variables are estrogen and progesterone; these hormone dynamics are taken from a pre-existing and validated model. Key parameters are modified in order to know their effect on the state variables. The model response was quantitatively assessed using the experimental data of the endometrial cycle reported in the literature. The proposed model provides a better insight into the interactions between ovarian hormones and the endometrial cycle by coupling both physiological processes.
Collapse
Affiliation(s)
- Daniela Arbeláez-Gómez
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Santiago Benavides-López
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Maria Paula Giraldo-Agudelo
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Juan Pablo Guzmán-Álvarez
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Carolina Ramirez-Mazo
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| | - Lina María Gómez-Echavarría
- Universidad Nacional de Colombia, Facultad de Minas, Escuela de Procesos y Energia, Grupo de Investigacion en Procesos Dinamicos KALMAN, Cra 80 No 65-223, Medellin 050041, Colombia.
| |
Collapse
|
26
|
Paez MD, Callegari EA. Proteomics Analysis of the Estrogen Effects in the Rat Uterus Using Gel-LC and Tandem Mass Spectrometry Approaches. Methods Mol Biol 2022; 2418:289-311. [PMID: 35119672 DOI: 10.1007/978-1-0716-1920-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proteomics-based bottoms-up, at a big scale applied to the protein identification and relative quantification present in complex mixtures (cell lysates, tissues, biological fluids, secretome, etc.) is a useful strategy to identify proteins and analyze their changes. Samples processed through a gel-free approach provide a simple method for protein separation and profile comparison of different conditions, such as using fewer steps in the protocol, reducing excessive sample handling, and covering an extended range of molecular weights and isoelectric points. However, it presents a great limitation related to the management of large dynamic ranges of proteins. There are numerous protocols that allow handling the problem or limitations generated by a high dynamic range of the proteins present in the sample. The Gel-LC technique is a complementary alternative of the gel-free approach available to solve the issue of protein samples with a high dynamic range. The different steps of the protocol involve sample processing through Gel-LC (1D-SDS-PAGE) prior to digestion, 1D-nanoUHPLC coupled to high-resolution/mass accuracy tandem mass spectrometry analysis (1D-nanoUHPLC-HR/MA-MS /MS analysis) and afterward, the protein identification and relative quantification analysis using bioinformatics tools for the data conversion, organization, and interpretation.
Collapse
Affiliation(s)
- Maria D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| |
Collapse
|
27
|
Michalczyk K, Cymbaluk-Płoska A. Metalloproteinases in Endometrial Cancer-Are They Worth Measuring? Int J Mol Sci 2021; 22:12472. [PMID: 34830354 PMCID: PMC8624741 DOI: 10.3390/ijms222212472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies, yet the molecular mechanisms that lead to tumor development and progression are still not fully established. Matrix metalloproteinases (MMPs) are a group of enzymes that play an important role in carcinogenesis. They are proteases involved in the degradation of the extracellular matrix (ECM) that surrounds the tumor and the affected tissue allows cell detachment from the primary tumor causing local invasion and metastasis formation. Recent investigations demonstrate significantly increased metalloproteinase and metalloproteinase inhibitor levels in patients with endometrial cancer compared to those with normal endometrium. In this review, we aim to show their clinical significance and possible use in the diagnosis and treatment of patients with endometrial cancer. We have critically summarized and reviewed the research on the role of MMPs in endometrial cancer.
Collapse
Affiliation(s)
- Kaja Michalczyk
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
28
|
Wu HM, Chen LH, Schally AV, Huang HY, Soong YK, Leung PCK, Wang HS. Impact of growth hormone-releasing hormone (GHRH) antagonist on Decidual stromal cell growth and apoptosis in vitro. Biol Reprod 2021; 106:145-154. [PMID: 34792103 DOI: 10.1093/biolre/ioab214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Endometrial stromal cells remodeling is critical during human pregnancy. GHRH and its functional receptor have been shown to be expressed in gynecological cancer cells and eutopic endometrial stromal cells. Recent studies have demonstrated the potential clinical uses of antagonists of GHRH as effective antitumor agents because of its directly antagonistic effect on the locally produced GHRH in gynecological tumors. However, the impact of GHRH antagonists on normal endometrial stromal cell growth remained to be elucidated. The aim of this study was to investigate the effect of a GHRH antagonist (JMR-132) on cell proliferation and apoptosis of human decidual stromal cells and the underlying molecular mechanisms. Our results showed that GHRH and the splice variant 1 (SV1) of GHRH receptor (GHRH-R SV1) are expressed in human decidual stromal cells isolated from the decidual tissues of early pregnant women receiving surgical abortion. In addition, treatment of stroma cells with JMR-132 induced cell apoptosis with increasing cleaved caspase-3 and caspase-9 activities, and decrease cell viability in a time- and dose-dependent manner. Using a dual inhibition approach (pharmacological inhibitors and siRNA-mediated knockdown), we showed that JMR-132-induced activation of apoptotic signals are mediated by the activation of ERK1/2 and JNK signaling pathways and the subsequent upregulation of GADD45α. Taken together, JMR-132 suppresses cell survival of decidual stromal cells by inducing apoptosis through the activation of ERK1/2- and JNK-mediated upregulation of GADD45α in human endometrial stromal cells. Our findings provide new insights into the potential impact of GHRH antagonist on the decidual programming in humans.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Andrew V Schally
- Veterans Affairs Medical Center and Departments of Pathology and Medicine, Division of Hematology/Oncology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Yung-Kuei Soong
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H3V5
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan R.O.C. 333
| |
Collapse
|
29
|
Gopal S, Ajgaonkar A, Kanchi P, Kaundinya A, Thakare V, Chauhan S, Langade D. Effect of an ashwagandha (Withania Somnifera) root extract on climacteric symptoms in women during perimenopause: A randomized, double-blind, placebo-controlled study. J Obstet Gynaecol Res 2021; 47:4414-4425. [PMID: 34553463 DOI: 10.1111/jog.15030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Perimenopause is the period during which many physiological changes mark the transition into the final menstrual period of a woman and these changes are associated with climacteric symptoms. OBJECTIVES This study aimed to assess the efficacy and tolerability of an Ashwagandha root extract on the climacteric symptoms, quality of life (QoL), and hormonal parameters in perimenopausal women. MATERIALS AND METHODS In this 8-week, randomized, double-blind, placebo-controlled study, 100 women with climacteric symptoms were randomly allocated to take either a placebo or 300 mg of an Ashwagandha root extract twice daily. Outcomes were measured using the menopause rating scale (MRS), menopause-specific QoL (MENQoL), hot flash score, and hormonal changes in estradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone. RESULTS Among 100 participants enrolled, 91 participants completed the study. In comparison with the placebo, ashwagandha supplementation was associated with a statistically significant reduction in total MRS score (p < 0.0001), reflected by significant reductions in the psychological (p = 0.0003), somato-vegetative (p = 0.0152), and urogenital (p < 0.0001) domains. Ashwagandha intake demonstrated a statistically significant reduction in total MENQoL scores (p < 0.0001) and was also associated with a statistically significant increase in serum estradiol (p < 0.0001) and a significant reduction in serum FSH (p < 0.0001) and serum LH (p < 0.05) compared with the placebo. There was no significant between the group differences in the serum testosterone level. CONCLUSION These findings suggest that ashwagandha root extract can be a safe and effective option to relieve mild to moderate climacteric symptoms during perimenopause in women.
Collapse
Affiliation(s)
- Sriram Gopal
- Department of Obstetrics and Gynaecology, D Y Patil University School of Medicine, Navi Mumbai, India
| | - Ashutosh Ajgaonkar
- Department of Obstetrics and Gyanecology, Vedanta Hospital, Thane, India
| | - Padmaja Kanchi
- Community Medicine, Terna Medical College and Hospital, Navi Mumbai, India
| | - Aditi Kaundinya
- Department of Obstetrics and Gynaecology, D Y Patil University School of Medicine, Navi Mumbai, India
| | - Vaishali Thakare
- Department of Pharmacology, D Y Patil University School of Medicine, Navi Mumbai, India
| | - Sanjaya Chauhan
- Department of Pharmacology, Narayana Hrudayalaya Allied Health Sciences, Bangalore, India
| | - Deepak Langade
- Department of Pharmacology, D Y Patil University School of Medicine, Navi Mumbai, India
| |
Collapse
|
30
|
Human HAND1 Inhibits the Conversion of Cholesterol to Steroids in Trophoblasts. J Genet Genomics 2021; 49:350-363. [PMID: 34391879 DOI: 10.1016/j.jgg.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
Steroidogenesis from cholesterol in placental trophoblasts is fundamentally involved in the establishment and maintenance of pregnancy. The transcription factor gene Heart And Neural crest Derivatives expressed 1 (Hand1) promotes differentiation of mouse trophoblast giant cells. However, the role of HAND1 in human trophoblasts remains unknown. Here, we report that HAND1 inhibits human trophoblastic progesterone (P4) and estradiol (E2) from cholesterol through down-regulation of the expression of steroidogenic enzymes including aromatase, P450 cholesterol side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1). Mechanically, while HAND1 inhibits transcription of aromatase by directly binding to aromatase gene promoter, it restrains transcription of P450scc by up-regulation of the methylation status of P450scc gene promoter through its binding to ALKBH1, a demethylase. Unlike aromatase and P450scc, HAND1 decreases 3β-HSD1 mRNA levels by reduction of its RNA stability through binding to and subsequent destabilization of protein HuR. Finally, HAND1 suppresses circulating P4 and E2 levels derived from JEG-3 xenograft, and attenuates uterine response to P4 and E2. Thus, our results uncover a hitherto uncharacterized role of HAND1 in regulation of cholesterol metabolism in human trophoblasts, which may help pinpoint the underlying mechanisms involved in supporting the development and physiological function of the human placenta.
Collapse
|
31
|
Kimura R, Otani T, Shiraishi N, Hagiyama M, Yoneshige A, Wada A, Kajiyama H, Takeuchi F, Mizuguchi N, Morishita K, Ito A. Expression of cell adhesion molecule 1 in human and murine endometrial glandular cells and its increase during the proliferative phase by estrogen and cell density. Life Sci 2021; 283:119854. [PMID: 34332980 DOI: 10.1016/j.lfs.2021.119854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
AIMS Cell adhesion molecule 1 (CADM1) mediates interepithelial adhesion and is upregulated in crowded epithelial monolayers. This study aimed to examine CADM1 expression in the human endometrium of proliferative and secretory phases, and its transcriptional regulation in terms of estrogen stimuli and higher cellularity. MAIN METHODS CADM1 immunohistochemistry was conducted on endometrial tissues from women in their 40s and adult mice subcutaneously injected with estradiol following ovariectomy. Dual-luciferase reporter assays were conducted using human endometrial HEC-50B and HEC-1B cells and reporter plasmids harboring the human CADM1 3.4-kb promoter and its deleted and mutated forms. Cells were transfected with estrogen receptor α cDNA and reporter plasmids, and treated with estradiol before luciferase activity measurement. KEY FINDINGS Immunohistochemistry revealed that CADM1 was clearly expressed on the lateral membranes of the simple columnar glandular cells in the proliferative phase, but not in the secretory phase, from both women and the mouse model. The glandular cell density increased two-fold in the proliferative phase. Reporter assays identified three Sp1-binding sites as estradiol-responsive elements in the proximal region (from -223 to -84) of the transcription start site (+1) in HEC-50B cells. When the cell culture was started at eight-fold higher cell density, the CADM1 3.4-kb promoter was transactivated at a two-fold higher level in HEC-50B cells. This cell density effect was not detected for the CADM1 2.3-kb or 1.6-kb promoter. SIGNIFICANCE Two (proximal and distal) promoter regions are suggested to function additively to transactivate CADM1 in endometrial glandular cells that crowd in the proliferative phase.
Collapse
Affiliation(s)
- Ryuichiro Kimura
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Naoki Shiraishi
- Genome Medical Center, Kindai University Hospital, Osaka, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Hiroshi Kajiyama
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | - Fuka Takeuchi
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan
| | | | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka 589-8511, Japan.
| |
Collapse
|
32
|
Maia J, Almada M, Midão L, Fonseca BM, Braga J, Gonçalves D, Teixeira N, Correia-da-Silva G. The Cannabinoid Delta-9-tetrahydrocannabinol Disrupts Estrogen Signaling in Human Placenta. Toxicol Sci 2021; 177:420-430. [PMID: 32647869 DOI: 10.1093/toxsci/kfaa110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cannabis consumption is increasing worldwide either for recreational or medical purposes. Its use during gestation is associated with negative pregnancy outcomes such as, intrauterine growth restriction, preterm birth, low birth weight, and increased risk of miscarriage, though the underlying molecular mechanisms are unknown. Cannabis sativa main psychoactive compound, Δ9-tetrahydrocannabinol (THC) is highly lipophilic, and as such, readily crosses the placenta. Consequently, THC may alter normal placental development and function. Here, we hypothesize alterations of placental steroidogenesis caused by THC exposure. The impact on placental estrogenic signaling was examined by studying THC effects upon the enzyme involved in estrogens production, aromatase and on estrogen receptor α (ERα), using placental explants, and the cytotrophoblast cell model BeWo. Aromatase expression was upregulated by THC, being this effect potentiated by estradiol. THC also increased ERα expression. Actions on aromatase were ERα-mediated, as were abolished by the selective ER downregulator ICI-182780 and dependent on the cannabinoid receptor CB1 activation. Furthermore, the presence of the aromatase inhibitor Exemestane did not affect THC-induced increase in ERα expression. However, THC effects on ERα levels were reversed by the antagonists of CB1 and CB2 receptors AM281 and AM630, respectively. Thus, we demonstrate major alterations in estrogen signaling caused by THC, providing new insight on how cannabis consumption leads to negative pregnancy outcomes, likely through placental endocrine alterations. Data presented in this study, together with our recently reported evidence on THC disruption of placental endocannabinoid homeostasis, represent a step forward into a deeper comprehension of the puzzling actions of THC.
Collapse
Affiliation(s)
- João Maia
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Almada
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Luís Midão
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.,Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Jorge Braga
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Daniela Gonçalves
- Departamento da Mulher e da Medicina Reprodutiva, Serviço de Obstetrícia, Centro Materno-Infantil do Norte-Centro Hospitalar do Porto, 4050-371 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
33
|
Gut and Endometrial Microbiome Dysbiosis: A New Emergent Risk Factor for Endometrial Cancer. J Pers Med 2021; 11:jpm11070659. [PMID: 34357126 PMCID: PMC8304951 DOI: 10.3390/jpm11070659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer is one of the most common gynaecological malignancies worldwide. Histologically, two types of endometrial cancer with morphological and molecular differences and also therapeutic implications have been identified. Type I endometrial cancer has an endometrioid morphology and is estrogen-dependent, while Type II appears with non-endometrioid differentiation and follows an estrogen-unrelated pathway. Understanding the molecular biology and genetics of endometrial cancer is crucial for its prognosis and the development of novel therapies for its treatment. However, until now, scant attention has been paid to environmental components like the microbiome. Recently, due to emerging evidence that the uterus is not a sterile cavity, some studies have begun to investigate the composition of the endometrial microbiome and its role in endometrial cancer. In this review, we summarize the current state of this line of investigation, focusing on the relationship between gut and endometrial microbiome and inflammation, estrogen metabolism, and different endometrial cancer therapies.
Collapse
|
34
|
Shetty A, Suresh PS. A synergy of estradiol with leptin modulates the long non-coding RNA NEAT1/ mmu-miR-204-5p/IGF1 axis in the uterus of high-fat-diet-induced obese ovariectomized mice. J Steroid Biochem Mol Biol 2021; 209:105843. [PMID: 33588025 DOI: 10.1016/j.jsbmb.2021.105843] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Obesity increases the risk of developing cancers for both males and females. This study investigated potential crosstalk between estradiol and leptin signaling pathways within the endometrium of high-fat-diet-induced obese ovariectomized mice to gain insight into possible links between obesity and endometrial cancer. We administered 17-β estradiol (0.2 μg/mouse subcutaneously) and/or recombinant mouse leptin (1 μg/g Bwt intraperitoneally.,) for 20 h to high-fat-diet-induced obese ovariectomized mice. The uterine tissues of experimental animals after treatments were studied by histological, immunohistochemical, quantitative real-time PCR (gene/miRNAs), and methylation-specific PCR analyses. Quantitative real-time PCR analysis revealed significantly increased expression of Cyclin d1, Esr1, Igf1, Igfbp2, Vegf, Oct4, and Pgr after estradiol and leptin co-treatment. Methylation-specific PCR results indicated that the hormonal dependent transcriptional regulation of Vegf, Igf1, and Pgr is independent of promoter methylation. The decreased expression of mmu- miR-204-5p after estradiol and leptin treatments correlated with the increased expression of long non-coding RNA Neat1. Insilico analysis confirmed the interaction of Neat1 and mmu- miR-204-5p and gene targets of mmu-miR-204-5p, including Igf1 were analyzed in this study. Immunohistochemical analyses revealed subcellular localization and increased expression of ESR, VEGF, phospho-Estrogen Receptor-α (pTyr537), and LEPR proteins following estradiol and leptin exposure. Overall, the data from our in vivo studies suggest the regulation of Neat1-mmu-miR-204-5p- Igf1 axis and associated gene expression changes in uterine tissue after estradiol and leptin co-treatment. In humans, long-term exposure to estradiol and leptin can alter endometrial homeostasis through the NEAT1-miR-204-5p-Igf1 axis and favor carcinogenic pathways, which provide mechanistic insight into the obesity-associated endometrial cancer.
Collapse
Affiliation(s)
- Abhishek Shetty
- Department of Biosciences, Mangalore University, Mangalagangothri, Mangalore, 574 199, Karnataka, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, 673601, Kerala, India.
| |
Collapse
|
35
|
Dinsdale N, Nepomnaschy P, Crespi B. The evolutionary biology of endometriosis. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:174-191. [PMID: 33854783 PMCID: PMC8030264 DOI: 10.1093/emph/eoab008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
We provide the first analysis and synthesis of the evolutionary and mechanistic bases for risk of endometriosis in humans, structured around Niko Tinbergen's four questions about phenotypes: phylogenetic history, development, mechanism and adaptive significance. Endometriosis, which is characterized by the proliferation of endometrial tissue outside of the uterus, has its phylogenetic roots in the evolution of three causally linked traits: (1) highly invasive placentation, (2) spontaneous rather than implantation-driven endometrial decidualization and (3) frequent extensive estrogen-driven endometrial proliferation and inflammation, followed by heavy menstrual bleeding. Endometriosis is potentiated by these traits and appears to be driven, proximately, by relatively low levels of prenatal and postnatal testosterone. Testosterone affects the developing hypothalamic-pituitary-ovarian (HPO) axis, and at low levels, it can result in an altered trajectory of reproductive and physiological phenotypes that in extreme cases can mediate the symptoms of endometriosis. Polycystic ovary syndrome, by contrast, is known from previous work to be caused primarily by high prenatal and postnatal testosterone, and it demonstrates a set of phenotypes opposite to those found in endometriosis. The hypothesis that endometriosis risk is driven by low prenatal testosterone, and involves extreme expression of some reproductive phenotypes, is supported by a suite of evidence from genetics, development, endocrinology, morphology and life history. The hypothesis also provides insights into why these two diametric, fitness-reducing disorders are maintained at such high frequencies in human populations. Finally, the hypotheses described and evaluated here lead to numerous testable predictions and have direct implications for the treatment and study of endometriosis. Lay summary: Endometriosis is caused by endometrial tissue outside of the uterus. We explain why and how humans are vulnerable to this disease, and new perspectives on understanding and treating it. Endometriosis shows evidence of being caused in part by relatively low testosterone during fetal development, that 'programs' female reproductive development. By contrast, polycystic ovary syndrome is associated with relatively high testosterone in prenatal development. These two disorders can thus be seen as 'opposite' to one another in their major causes and correlates. Important new insights regarding diagnosis, study and treatment of endometriosis follow from these considerations.
Collapse
Affiliation(s)
- Natalie Dinsdale
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Pablo Nepomnaschy
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
36
|
Onogi S, Ezoe K, Nishihara S, Fukuda J, Kobayashi T, Kato K. Endometrial thickness on the day of the LH surge: an effective predictor of pregnancy outcomes after modified natural cycle-frozen blastocyst transfer. Hum Reprod Open 2021; 2020:hoaa060. [PMID: 33511290 PMCID: PMC7821991 DOI: 10.1093/hropen/hoaa060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
STUDY QUESTION Can the endometrial thickness (EMT) on the day of the LH surge predict pregnancy outcomes after single vitrified-warmed blastocyst transfers (SVBTs) in modified natural cycles? SUMMARY ANSWER Decreased EMT on the day of the LH surge is associated with older female age and a shortened proliferation phase and may be associated with low live birth and high chemical pregnancy rates. WHAT IS KNOWN ALREADY The relation between EMT on the day of embryo transfer (ET) and pregnancy outcomes remains controversial; although numerous studies reported an association between decreased EMT on the day of ET and a reduced likelihood of pregnancy, recent studies demonstrated that the EMT on the day of ET had limited independent prognostic value for pregnancy outcomes after IVF. The relation between EMT on the day of the LH surge and pregnancy outcomes after SVBT in modified natural cycles is currently unknown. STUDY DESIGN, SIZE, DURATION In total, 808 SVBTs in modified natural cycles, performed from November 2018 to October 2019, were analysed in this retrospective cohort study. Associations of EMT on the days of the LH surge with SVBT and clinical and ongoing pregnancy rates were statistically evaluated. Clinical and ongoing pregnancy rates were defined as the ultrasonographic observation of a gestational sac 3 weeks after SVBTs and the observation of a foetal heartbeat 5 weeks after SVBTs, respectively. Similarly, factors potentially associated with the EMT on day of the LH surge, such as patient and cycle characteristics, were investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS The study includes IVF/ICSI patients aged 24–47 years, who underwent their first SVBT in the study period. After monitoring follicular development and serum hormone levels, ovulation was triggered via a nasal spray containing a GnRH agonist. After ovulation was confirmed, SVBTs were performed on Day 5. The EMT was evaluated by transvaginal ultrasonography on the day of the LH surge and immediately before the SVBT procedure. MAIN RESULTS AND THE ROLE OF CHANCE Of the original 901 patients, 93 who were outliers for FSH or proliferative phase duration data were excluded from the analysis. Patients were classified according to quartiles of EMT on day of the LH surge, as follows: EMT < 8.1 mm, 8.1 mm ≤ EMT < 9.1 mm, 9.1 mm ≤ EMT < 10.6 mm and EMT ≥ 10.6 mm. Decreased EMT on day of the LH surge was associated with lower live birth (P = 0.0016) and higher chemical pregnancy (P = 0.0011) rates. Similarly, patients were classified according to quartiles of EMT on day of the SVBT, as follows: EMT < 9.1 mm, 9.1 mm ≤ EMT < 10.1 mm, 10.1 mm ≤ EMT < 12.1 mm and EMT ≥ 12.1 mm. A decreased EMT on the day of SVBT was associated with a lower live birth rate (P = 0.0095) but not chemical pregnancy rate (P = 0.1640). Additionally, multivariate logistic regression analysis revealed a significant correlation between EMT on day of the LH surge and ongoing pregnancy; however, no correlation was observed between EMT on the day of SVBT and ongoing pregnancy (adjusted odds ratio 0.952; 95% CI, 0.850–1.066; P = 0.3981). A decreased EMT on day of the LH surge was significantly associated with greater female age (P = 0.0003) and a shortened follicular/proliferation phase (P < 0.0001). LIMITATIONS, REASONS FOR CAUTION The data used in this study were obtained from a single-centre cohort; therefore, multi-centre studies are required to ascertain the generalisability of these findings to other clinics with different protocols and/or patient demographics. WIDER IMPLICATIONS OF THE FINDINGS This is the first report demonstrating a significant correlation between EMT on day of the LH surge and pregnancy outcomes after frozen blastocyst transfer in modified natural cycles. Our results suggest that EMT on day of the LH surge may be an effective predictor of the live birth rate. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by resources from the Kato Ladies Clinic. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
| | - Kenji Ezoe
- Kato Ladies Clinic, Tokyo 160-0023, Japan
| | | | | | | | | |
Collapse
|
37
|
Sharma RK, Singh P. Histomorphometric analysis of goat uterine tissue on in vitro exposure with ovarian hormones and mifepristone. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2019-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Uterus, the largest reproductive tract organ in female mammals, is the site of implantation of fertilised egg and foetus development. Uterus is a dynamic reproductive organ; its morphology alters with reproductive phase and steroidal cues. The aim of the present study was to assess the effects of progesterone (P4), estrogen (E2) and antiprogestogen i.e., mifepristone on goat’s uterine histoarchitecture in in vitro short term culture. Uterine tissue slices were cultured in the presence of E2, P4 and mifepristone at the dose of 10–9 M, 10–7 M and 10–6 M respectively for 24 hours. Uter-ine morphology of E2- and P4-treated groups did not reveal marked changes from that of control group. Mifepristone treatment caused conspicuous changes in uterine histoarchitecture, led to congested endometrium, regressed uterine glands and constricted blood vessels. The changes ob-served in morphometry after E2 and P4 exposure included increased uterine gland diameter (47.00 and 45.95 µm respectively) and glandular epithelial cell height (18.37 and 17.43 µm respectively) while the mifepristone treatment resulted in significant reduction of gland diameter (34.95 µm) as well as epithelium height (14.25 µm) as compared to those in control group (39.9 and 15.56 µm respectively). These morphometrical changes revealed prominent regressive changes in anti-progestin treated group while E2 and P4 showed prolific effects in in vitro culture. Thus it is envis-aged that E2 and P4 induced characteristic progressive changes in the histologic structure especially in endometrial glands of the goat uterus while anti-steroidogenic formulation i.e. mifepristone severely reduced the normal histoarchitecture of the uterus which is a prerequisite for implanta-tion.
Collapse
|
38
|
Wu HM, Chang HM, Leung PCK. Gonadotropin-releasing hormone analogs: Mechanisms of action and clinical applications in female reproduction. Front Neuroendocrinol 2021; 60:100876. [PMID: 33045257 DOI: 10.1016/j.yfrne.2020.100876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Extra-hypothalamic GnRH and extra-pituitary GnRH receptors exist in multiple human reproductive tissues, including the ovary, endometrium and myometrium. Recently, new analogs (agonists and antagonists) and modes of GnRH have been developed for clinical application during controlled ovarian hyperstimulation for assisted reproductive technology (ART). Additionally, the analogs and upstream regulators of GnRH suppress gonadotropin secretion and regulate the functions of the reproductive axis. GnRH signaling is primarily involved in the direct control of female reproduction. The cellular mechanisms and action of the GnRH/GnRH receptor system have been clinically applied for the treatment of reproductive disorders and have widely been introduced in ART. New GnRH analogs, such as long-acting GnRH analogs and oral nonpeptide GnRH antagonists, are being continuously developed for clinical application. The identification of the upstream regulators of GnRH, such as kisspeptin and neurokinin B, provides promising potential to develop these upstream regulator-related analogs to control the hypothalamus-pituitary-ovarian axis.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan, ROC
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5, Canada.
| |
Collapse
|
39
|
Brain-Derived Neurotrophic Factor Regulates Ishikawa Cell Proliferation through the TrkB-ERK1/2 Signaling Pathway. Biomolecules 2020; 10:biom10121645. [PMID: 33302387 PMCID: PMC7762527 DOI: 10.3390/biom10121645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Endometrial regulation is a necessary condition for maintaining normal uterine physiology, which is driven by many growth factors. Growth factors produced in the endometrium are thought to be related to the proliferation of endometrial cells induced by estradiol-17β (E2). In this study, we found that E2 can induce the secretion of brain-derived neurotrophic factor (BDNF) in Ishikawa cells (the cells of an endometrial cell line). Furthermore, Ishikawa cells were used in exploring the regulatory role of BDNF in endometrial cells and to clarify the potential mechanism. (2) Methods: Ishikawa cells were treated with different concentrations of BDNF (100, 200, 300, 400, and 500 ng/mL). The mRNA expression levels of various proliferation-related genes were detected through quantitative reverse transcription polymerase chain reaction, and the expression of various proliferation-related genes was detected by knocking out BDNF or inhibiting the binding of BDNF to its receptor TrkB. The expression levels of various proliferation-related genes were detected by performing Western blotting on the TrkB-ERK1/2 signaling pathway. (3) Results: Exogenous BDNF promoted the growth of the Ishikawa cells, but the knocking down of BDNF or the inhibition of TrkB reduced their growth. Meanwhile, BDNF enhanced cell viability and increased the expression of proliferation-related genes, including cyclin D1 and cyclin E2. More importantly, the BDNF-induced proliferation of the Ishikawa cells involved the ERK1/2 signaling pathway. (4) Conclusions: The stimulating effect of exogenous E2 on the expression of BDNF in the uterus and the action of BDNF promoted the proliferation of the Ishikawa cells through the TrkB-ERK1/2 signal pathway.
Collapse
|
40
|
Sidorkiewicz I, Jóźwik M, Niemira M, Krętowski A. Insulin Resistance and Endometrial Cancer: Emerging Role for microRNA. Cancers (Basel) 2020; 12:E2559. [PMID: 32911852 PMCID: PMC7563767 DOI: 10.3390/cancers12092559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer (EC) remains one of the most common cancers of the female reproductive system. Epidemiological and clinical data implicate insulin resistance (IR) and its accompanying hyperinsulinemia as key factors in the development of EC. MicroRNAs (miRNAs) are short molecules of non-coding endogenous RNA that function as post-transcriptional regulators. Accumulating evidence has shown that the miRNA expression pattern is also likely to be associated with EC risk factors. The aim of this work was the verification of the relationships between IR, EC, and miRNA, and, as based on the literature data, elucidation of miRNA's potential utility for EC prevention in IR patients. The pathways affected in IR relate to the insulin receptors, insulin-like growth factors and their receptors, insulin-like growth factor binding proteins, sex hormone-binding globulin, and estrogens. Herein, we present and discuss arguments for miRNAs as a plausible molecular link between IR and EC development. Specifically, our careful literature search indicated that dysregulation of at least 13 miRNAs has been ascribed to both conditions. We conclude that there is a reasonable possibility for miRNAs to become a predictive factor of future EC in IR patients.
Collapse
Affiliation(s)
- Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Maciej Jóźwik
- Department of Gynecology and Gynecologic Oncology, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland;
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (M.N.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland
| |
Collapse
|
41
|
Yilmaz BD, Sison CAM, Yildiz S, Miyazaki K, Coon V J, Yin P, Bulun SE. Genome-wide estrogen receptor-α binding and action in human endometrial stromal cells. F&S SCIENCE 2020; 1:59-66. [PMID: 35559740 DOI: 10.1016/j.xfss.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the gene targets of estradiol (E2)-estrogen receptor-α (ESR1) in human endometrial stromal cells. DESIGN Basic science. SETTING University research center. PATIENT(S) Premenopausal women with or without endometriosis. INTERVENTION(S) Primary cultures of human endometrial stromal cells from healthy endometrium, with or without small-interfering RNA (siRNA) knockdown of ESR1 expression, were treated with E2 or vehicle control. MAIN OUTCOME MEASURE(S) Genome-wide RNA expression by RNA sequencing was compared in endometrial stromal cells with or without siRNA knockdown of ESR1 in the presence or absence of E2. Genome-wide recruitment of ESR1 to chromatin was assessed by chromatin immunoprecipitation sequencing. Gene expression by real-time qualitative polymerase chain reaction of a potential E2-ESR1 target gene was determined in endometrial stromal cells and endometriotic stromal cells. RESULT(S) We identified several important pathways that are dependent on E2-ESR1 signaling in endometrial stromal cells, including progesterone signaling, cell-matrix adhesion, and cytoskeleton rearrangement, as well as paracrine signaling by members of the fibroblast growth factor family. We detected a total of 709 ESR1 target sites on chromatin. By integrating data on genome-wide transcriptomic changes and E2-ESR1 binding sites, we identified inositol polyphosphate phosphatase type II (INPP4B) as a candidate E2-mediated suppressor of proliferation in healthy endometrial cells. INPP4B was downregulated in endometriosis-derived stromal cells. CONCLUSION(S) E2-ESR1 activates genes involved in human endometrial stromal cell cycle regulation, progesterone response, and production of stromal growth factors. Understanding the direct role of estrogen on the endometrial stroma and identifying downstream targets of E2-ESR1 can inform the development of targeted therapies for endometriosis and diminished endometrial receptivity.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christia A M Sison
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sule Yildiz
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kaoru Miyazaki
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Coon V
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ping Yin
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Science and Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
42
|
Santos RVC, de Sena WLB, Dos Santos FA, da Silva Filho AF, da Rocha Pitta MG, da Rocha Pitta MG, de Melo Rego MB, Pereira MC. Potential Therapeutic Agents Against Par-4 Target for Cancer Treatment: Where Are We Going? Curr Drug Targets 2020; 20:635-654. [PMID: 30474528 DOI: 10.2174/1389450120666181126122440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
One of the greatest challenges of cancer therapeutics nowadays is to find selective targets successfully. Prostate apoptosis response-4 (Par-4) is a selective tumor suppressor protein with an interesting therapeutic potential due to its specificity on inducing apoptosis in cancer cells. Par-4 activity and levels can be downregulated in several tumors and cancer cell types, indicating poor prognosis and treatment resistance. Efforts to increase Par-4 expression levels have been studied, including its use as a therapeutic protein by transfection with adenoviral vectors or plasmids. However, gene therapy is very complex and still presents many hurdles to be overcome. We decided to review molecules and drugs with the capacity to upregulate Par-4 and, thereby, be an alternative to reach this druggable target. In addition, Par-4 localization and function are reviewed in some cancers, clarifying how it can be used as a therapeutic target.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Wanessa Layssa Batista de Sena
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Flaviana Alves Dos Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônio Felix da Silva Filho
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Moacyr Barreto de Melo Rego
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
43
|
Park YG, Choi J, Seol JW. Angiopoietin-2 regulated by progesterone induces uterine vascular remodeling during pregnancy. Mol Med Rep 2020; 22:1235-1242. [PMID: 32468067 PMCID: PMC7339584 DOI: 10.3892/mmr.2020.11185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
During pregnancy, the uterus undergoes intense neovascularization and vascular remodeling to supply oxygen and nutrients to the embryo. During this period, progesterone secreted from the ovary has effects on vascular remodeling in the endometrium and interacts with angiogenic factors. However, the exact mechanism of uterine vascular remodeling during pregnancy is poorly understood. Therefore, the aim of the present study was to investigate the association between angiopoietin-2 (Ang-2), one of the angiopoietins, and intrauterine vessel remodeling during pregnancy, and to determine the effect of progesterone on Ang-2 levels. Changes in Ang-2 expression were observed according to quantitative modification of progesterone using pregnant mice and human uterine microvascular endothelial cells. As a result, Ang-2 was observed mainly in the mesometrial region (MR) of the uterus during the period between implantation and placentation. Furthermore, a substantial amount of Ang-2 also appeared in endothelial cells, particularly of the venous sinus region (VSR). Interestingly, Ang-2 expression was increased by progesterone, whereas estrogen had limited effects. To confirm the association between Ang-2 and progesterone, the function of the progesterone receptor (PR) was inhibited using RU486, a blocker of PR. Ang-2 expression and vascular remodeling of the VSR in the uterus were decreased when the functions of progesterone were inhibited. Overall, the regulation of Ang-2 by progesterone/PR was associated with vascular remodeling in the VSR during pregnancy. The present study proposed a solution to prevent pregnancy failure due to a lack of vascularity in the uterus in advance.
Collapse
Affiliation(s)
- Yang-Gyu Park
- Biosafety Research Institute and Laboratory of Biochemistry, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jawun Choi
- Biosafety Research Institute and Laboratory of Biochemistry, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jae-Won Seol
- Biosafety Research Institute and Laboratory of Biochemistry, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
44
|
Nishihara S, Fukuda J, Ezoe K, Endo M, Nakagawa Y, Yamadera R, Kobayashi T, Kato K. Does the endometrial thickness on the day of the trigger affect the pregnancy outcomes after fresh cleaved embryo transfer in the clomiphene citrate-based minimal stimulation cycle? Reprod Med Biol 2020; 19:151-157. [PMID: 32273820 PMCID: PMC7138937 DOI: 10.1002/rmb2.12315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE Thin endometrium is often observed after clomiphene citrate (CC) administration for follicular development and is one of the reasons for embryo transfer (ET) cancelation or implantation failure. We retrospectively analyzed whether the endometrial thickness (EMT) on the days of the maturation trigger and ET are predictive factors of pregnancy outcomes after fresh cleaved ET in a CC-based minimal stimulation cycle (CC-cycle). METHODS A total of 746 CC-cycles in vitro fertilization (IVF), followed by fresh cleaved ET, from November 2018 to March 2019 were analyzed. Associations between the pregnancy outcomes and EMT on the days of the trigger and ET were statistically evaluated. RESULTS Although the EMT on the day of ET was not significantly associated with the ongoing pregnancy rate (adjusted odds ratio [AOR], 1.043; P = .3251), a decreased EMT on the day of the trigger was significantly associated with a low ongoing pregnancy rate (AOR, 1.154; P = .0042). Furthermore, the clinical pregnancy rate was significantly lower when the EMT was <7 mm on the day of the trigger during the CC-cycle. CONCLUSIONS These results suggest that measurement of the EMT on the day of the trigger could be effective for predicting the pregnancy outcomes after fresh cleaved ET during the CC-cycle.
Collapse
|
45
|
Bojcsuk D, Nagy G, Bálint BL. Alternatively Constructed Estrogen Receptor Alpha-Driven Super-Enhancers Result in Similar Gene Expression in Breast and Endometrial Cell Lines. Int J Mol Sci 2020; 21:E1630. [PMID: 32120995 PMCID: PMC7084573 DOI: 10.3390/ijms21051630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/07/2023] Open
Abstract
Super-enhancers (SEs) are clusters of highly active enhancers, regulating cell type-specific and disease-related genes, including oncogenes. The individual regulatory regions within SEs might be simultaneously bound by different transcription factors (TFs) and co-regulators, which together establish a chromatin environment conducting to effective transcription. While cells with distinct TF profiles can have different functions, how different cells control overlapping genetic programs remains a question. In this paper, we show that the construction of estrogen receptor alpha-driven SEs is tissue-specific, both collaborating TFs and the active SE components greatly differ between human breast cancer-derived MCF-7 and endometrial cancer-derived Ishikawa cells; nonetheless, SEs common to both cell lines have similar transcriptional outputs. These results delineate that despite the existence of a combinatorial code allowing alternative SE construction, a single master regulator might be able to determine the overall activity of SEs.
Collapse
Affiliation(s)
- Dóra Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Bálint László Bálint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
46
|
Estradiol-17β-Induced Changes in the Porcine Endometrial Transcriptome In Vivo. Int J Mol Sci 2020; 21:ijms21030890. [PMID: 32019139 PMCID: PMC7037416 DOI: 10.3390/ijms21030890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Estradiol-17β (E2) is a key hormone regulating reproductive functions in females. In pigs, E2, as the main conceptus signal, initiates processes resulting in prolonged corpus luteum function, embryo development, and implantation. During early pregnancy the endometrium undergoes morphological and physiological transitions that are tightly related to transcriptome changes. Recently, however, the importance of E2 as a primary conceptus signal in the pig has been questionable. Thus, the aim of the present study was to determine the effects of E2 on the porcine endometrial transcriptome in vivo and to compare these effects with transcriptome profiles on day 12 of pregnancy. Microarray analysis revealed differentially expressed genes (DEGs) in response to E2 with overrepresented functional terms related to secretive functions, extracellular vesicles, cell adhesion, proliferation and differentiation, tissue rearrangements, immune response, lipid metabolism, and many others. Numerous common DEGs and processes for the endometrium on day 12 of pregnancy and E2-treated endometrium were identified. In summary, the present study is the first evidence for the effect of E2 on transcriptome profiles in porcine endometrium in vivo in the period corresponding to the maternal recognition of pregnancy. The presented results provide a valuable resource for further targeted studies considering genes and pathways regulated by conceptus-derived estrogens and their role in pregnancy establishment.
Collapse
|
47
|
Effect of the time for embryo transfer from oocyte retrieval on clinical outcomes in freeze-all cycles: a retrospective cohort study. Arch Gynecol Obstet 2020; 301:303-308. [DOI: 10.1007/s00404-019-05405-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
|
48
|
Casas-Arozamena C, Abal M. Endometrial Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:215-225. [PMID: 34185295 DOI: 10.1007/978-3-030-59038-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endometrial cancer (EC) is the most common gynaecological tumour in developed countries, and its incidence is increasing in part due to the prevalence of obesity and its related hormone dysregulation. As described in this chapter, the tumour microenvironment plays a principal role in unopposed oestrogen stimulation promoting tumour cell proliferation. Factors and cytokines secreted by the different cell types defining the reactive tumour stroma also determine the invasive abilities of the tumour cells. Cancer-associated fibroblasts and tumour-associated macrophages actively participate through SDF-1, TGF-b or HGF to promote epithelial-to-mesenchymal transition or to generate an appropriate tumour niche. Likewise, endothelial cells facilitate lymph node and vascular infiltration through VEGF. Finally, the possibility to balance the immunosuppressive phenotypes in advanced endometrial cancer through the tumour microenvironment will probably represent a main therapeutic strategy in the near future.
Collapse
Affiliation(s)
- Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain. .,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
49
|
Melatonin Promotes Uterine and Placental Health: Potential Molecular Mechanisms. Int J Mol Sci 2019; 21:ijms21010300. [PMID: 31906255 PMCID: PMC6982088 DOI: 10.3390/ijms21010300] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
The development of the endometrium is a cyclic event tightly regulated by hormones and growth factors to coordinate the menstrual cycle while promoting a suitable microenvironment for embryo implantation during the “receptivity window”. Many women experience uterine failures that hamper the success of conception, such as endometrium thickness, endometriosis, luteal phase defects, endometrial polyps, adenomyosis, viral infection, and even endometrial cancer; most of these disturbances involve changes in endocrine components or cell damage. The emerging evidence has proven that circadian rhythm deregulation followed by low circulating melatonin is associated with low implantation rates and difficulties to maintain pregnancy. Given that melatonin is a circadian-regulating hormone also involved in the maintenance of uterine homeostasis through regulation of numerous pathways associated with uterine receptivity and gestation, the success of female reproduction may be dependent on the levels and activity of uterine and placental melatonin. Based on the fact that irregular production of maternal and placental melatonin is related to recurrent spontaneous abortion and maternal/fetal disturbances, melatonin replacement may offer an excellent opportunity to restore normal physiological function of the affected tissues. By alleviating oxidative damage in the placenta, melatonin favors nutrient transfer and improves vascular dynamics at the uterine–placental interface. This review focuses on the main in vivo and in vitro functions of melatonin on uterine physiological processes, such as decidualization and implantation, and also on the feto-maternal tissues, and reviews how exogenous melatonin functions from a mechanistic standpoint to preserve the organ health. New insights on the potential signaling pathways whereby melatonin resists preeclampsia and endometriosis are further emphasized in this review.
Collapse
|
50
|
Haider S, Gamperl M, Burkard TR, Kunihs V, Kaindl U, Junttila S, Fiala C, Schmidt K, Mendjan S, Knöfler M, Latos PA. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology 2019; 160:2282-2297. [PMID: 31290979 DOI: 10.1210/en.2019-00314] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The human endometrium is the inner lining of the uterus consisting of stromal and epithelial (secretory and ciliated) cells. It undergoes a hormonally regulated monthly cycle of growth, differentiation, and desquamation. However, how these cyclic changes control the balance between secretory and ciliated cells remains unclear. Here, we established endometrial organoids to investigate the estrogen (E2)-driven control of cell fate decisions in human endometrial epithelium. We demonstrate that they preserve the structure, expression patterns, secretory properties, and E2 responsiveness of their tissue of origin. Next, we show that the induction of ciliated cells is orchestrated by the coordinated action of E2 and NOTCH signaling. Although E2 is the primary driver, inhibition of NOTCH signaling provides a permissive environment. However, inhibition of NOTCH alone is not sufficient to trigger ciliogenesis. Overall, we provide insights into endometrial biology and propose endometrial organoids as a robust and powerful model for studying ciliogenesis in vitro.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Kaindl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | - Katy Schmidt
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|