1
|
Chen WC, Chang TC, Perera L, Cheng MH, Hong JJ, Cheng CM. Pilot study on the impact of HIFU treatment on miRNA profiles in vaginal secretions of uterine fibroids and adenomyosis patients. Int J Hyperthermia 2024; 41:2418426. [PMID: 39462514 DOI: 10.1080/02656736.2024.2418426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND High intensity focused ultrasound (HIFU) ablation treatment for uterine fibroids and adenomyosis has been long developed. The aim of this study is to investigate miRNA profile changes in vaginal secretions after HIFU treatment and their clinical relevance. METHODS We prospectively collected vaginal secretions samples from 8 patients (1 with adenomyosis and 7 with fibroids) before and after HIFU treatment. RNA was isolated and miRNA profiles were analyzed using next-generation sequencing (NGS) sequencing. RESULTS Our study showed miRNA profile change in vaginal secretion samples after HIFU treatment for uterine fibroids/adenomyosis, with 33 miRNAs upregulated and 6 downregulated overall. In fibroid cases, 31 miRNAs were upregulated and 7 downregulated, while in adenomyosis case, 41 miRNAs were upregulated and 71 downregulated. Four miRNAs (hsa-miR-7977, hsa-miR-155-5p, hsa-miR-191-5p, hsa-miR-223-3p) showed significant differences after HIFU treatment in fibroid cases, except in case 5 with the lowest treatment sonications (425 sonications) and energy input (170000 J). hsa-miR-7977 consistently showed downregulation after HIFU treatment. hsa-miR-155-5p were downregulated in case 4 with lowest treatment efficiency (2439.64 J/cm3), while they were upregulated in other cases. hsa-miR-191-5p and hsa-miR-223-3p were downregulated in cases 4 and 7, with case 7 influenced by high sonication and energy due to multiple fibroids. CONCLUSIONS HIFU treatment altered miRNA profiles in fibroids/adenomyosis patients. Notably, hsa-miR-7977, hsa-miR-155-5p, hsa-miR-191-5p, and hsa-miR-223-3p showed significant changes in fibroid cases, except in low-energy treatments. hsa-miR-7977 consistently decreased post-treatment, while hsa-miR-155-5p decreased in the least efficient cases. Further research is needed for validation.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City, Taiwan
- International Intercollegiate Ph.D. Program & Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
- HIFU Treatment Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ting-Chang Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- HIFU Treatment Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lynn Perera
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mei-Hsiu Cheng
- Taiwan Business Development Department, Inti Taiwan, Inc, Hsinchu, Taiwan
| | - Jun-Jie Hong
- Taiwan Business Development Department, Inti Taiwan, Inc, Hsinchu, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Yagüe-Serrano R, Palomar A, Quiñonero A, Gómez VH, de los Santos MJ, Vidal C, Dominguez F. Oocyte Competence, Embryological Outcomes and miRNA Signature of Different Sized Follicles from Poor Responder Patients. Int J Mol Sci 2024; 25:10237. [PMID: 39408572 PMCID: PMC11476082 DOI: 10.3390/ijms251910237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Poor ovarian response (POR) patients often face the risk of not having enough competent oocytes. Then, aspirating small follicles could serve as a strategy to increase their number. Many efforts have been addressed to associate follicular size with oocyte competence, but results are controversial. Therefore, our study aimed to evaluate oocyte maturation and developmental competence, along with a non-invasive oocyte-maturation-related miRNA signature in oocytes retrieved from both large and small follicles. A total of 178 follicles, from 31 POR patients, were aspirated and measured on the day of ovarian puncture. Follicular diameters, oocyte collection, oocyte maturation, fertilization, blastocysts, and good-quality blastocyst rates were recorded. Simultaneously, follicular fluids were collected to quantify their miRNA expression. The efficacy of oocyte retrieval along with oocyte maturation, fertilization, and blastulation rates tended to increase with follicular size, but few significant differences were found. Despite there being significantly more collected oocytes from follicles > 11.5 mm compared to follicles ≤ 11.5 mm (p < 0.05), oocytes from the latter were also mature, with no significant differences in the miRNA signature, but only those > 13.5 mm demonstrated developmental competence. In conclusion, 11.5 mm follicles can produce mature oocytes, but only those larger than 13.5 mm yielded transferable embryos.
Collapse
Affiliation(s)
- Roberto Yagüe-Serrano
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.Y.-S.); (A.P.); (A.Q.)
| | - Andrea Palomar
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.Y.-S.); (A.P.); (A.Q.)
| | - Alicia Quiñonero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (R.Y.-S.); (A.P.); (A.Q.)
| | - Víctor Hugo Gómez
- IVIRMA Global Research Alliance, IVIRMA Valencia, 46026 Valencia, Spain; (V.H.G.); (M.J.d.l.S.); (C.V.)
| | - Maria José de los Santos
- IVIRMA Global Research Alliance, IVIRMA Valencia, 46026 Valencia, Spain; (V.H.G.); (M.J.d.l.S.); (C.V.)
| | - Carmen Vidal
- IVIRMA Global Research Alliance, IVIRMA Valencia, 46026 Valencia, Spain; (V.H.G.); (M.J.d.l.S.); (C.V.)
| | - Francisco Dominguez
- IVIRMA Global Research Alliance, IVIRMA Valencia, 46026 Valencia, Spain; (V.H.G.); (M.J.d.l.S.); (C.V.)
| |
Collapse
|
3
|
Sherwani S, Khan MWA, Rajendrasozhan S, Al-Motair K, Husain Q, Khan WA. The vicious cycle of chronic endometriosis and depression-an immunological and physiological perspective. Front Med (Lausanne) 2024; 11:1425691. [PMID: 39309679 PMCID: PMC11412830 DOI: 10.3389/fmed.2024.1425691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Endometriosis is a chronic, estrogen-dependent, proinflammatory disease that can cause various dysfunctions. The main clinical manifestations of endometriosis include chronic pelvic pain and impaired fertility. The disease is characterized by a spectrum of dysfunctions spanning hormonal signaling, inflammation, immune dysregulation, angiogenesis, neurogenic inflammation, epigenetic alterations, and tissue remodeling. Dysregulated hormonal signaling, particularly involving estrogen and progesterone, drives abnormal growth and survival of endometrial-like tissue outside the uterus. Chronic inflammation, marked by immune cell infiltration and inflammatory mediator secretion, perpetuates tissue damage and pain. Altered immune function, impaired ectopic tissue clearance, and dysregulated cytokine production contribute to immune dysregulation. Enhanced angiogenesis promotes lesion growth and survival. Epigenetic modifications influence gene expression patterns, e.g., HSD11B1 gene, affecting disease pathogenesis. Endometriosis related changes and infertility lead to depression in diagnosed women. Depression changes lifestyle and induces physiological and immunological changes. A higher rate of depression and anxiety has been reported in women diagnosed with endometriosis, unleashing physiological, clinical and immune imbalances which further accelerate chronic endometriosis or vice versa. Thus, both endometriosis and depression are concomitantly part of a vicious cycle that enhance disease complications. A multidimensional treatment strategy is needed which can cater for both endometrial disease and depression and anxiety disorders.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Saravanan Rajendrasozhan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Khalid Al-Motair
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Raj FA, Padmakumar D, Selvam P, Ajmal IT. Primary Extrapelvic Umbilical Endometriosis Presenting With Cyclical Umbilical Bleeding: A Case Report. Cureus 2024; 16:e65473. [PMID: 39188456 PMCID: PMC11345520 DOI: 10.7759/cureus.65473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Primary extrapelvic endometriosis is the presence of endometrial tissue in sites outside the uterine cavity in an individual who has had no prior abdominal surgeries. Various theories have been postulated to describe the etiology of endometriosis. Our case study involves a multiparous patient in her late 40s with no prior abdominal surgeries who presented with bleeding from her umbilicus associated with swelling and pain corresponding to her menstrual cycle. A computed tomography scan of the abdomen detected a homogenous granuloma-like umbilical soft tissue mass. The umbilical nodule and the umbilicus were excised, and the specimen was sent for histopathological examination that validated the diagnosis of an umbilical endometrioma by revealing endometrial glands with stroma involving the dermis. Postoperatively, the patient was symptomatically better and was discharged. Primary umbilical endometriosis can mimic conditions like omphalitis, umbilical granuloma, and umbilical hernia; hence, it is important to understand how to differentiate this case from other diagnoses. This case contextualizes that the likelihood of primary umbilical endometriosis in such unusual presentations must always be considered.
Collapse
Affiliation(s)
- Felix Anand Raj
- Department of General Surgery, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, IND
| | - Divya Padmakumar
- Department of General Surgery, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, IND
| | - Pavithra Selvam
- Department of General Surgery, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, IND
| | - Imran Thariq Ajmal
- Department of General Surgery, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, IND
| |
Collapse
|
5
|
Zhang Z, Singh SP. A Study on the Analysis of Important Gene Networks and Pathways Involved in Progression of Endometriosis to Ovarian Endometrioma Cyst. Appl Biochem Biotechnol 2024; 196:4352-4365. [PMID: 37947944 DOI: 10.1007/s12010-023-04778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Endometriosis (EM) is a gynecological condition known by the manifestation of endometrium alike soft tissue external to the usual place affecting up to 10% of all womenfolk in the reproductively active stage. However, the pathological process of endometriosis is not identified fully. The study aims to investigate the genes associated with the progression of endometriosis and its pathways using bioinformatics tools and techniques. The gene expression profile of three sets was retrieved, and bioinformatics data analysis was carried out for the microarray samples using GEO, DAVID, and STICH. Differently expressed genes (DEGs) refer to genes that exhibit significant changes in their expression levels between different conditions or groups, such as between different cell types, treatments, disease states, or developmental stages. DEG was determined based on a significant cutoff resulting in 298 unique elements based on the GEO Venn diagram map. DAVID (database for annotation, visualization, and integrated discovery) helps understand the biological significance of the data by identifying overrepresented biological terms, pathways, and functional annotations among a set of genes or proteins of interest. DAVID analysis revealed positively and negatively associated genes and followed by target proteins. DAVID is helpful for getting results of molecular mechanisms and pathways associated with DEGs. The gene expression studies showed that the m-RNA expression of all the genes was upregulated in the PA1 cell line. The present study identified five genes (COMT, CYP19A1, GALT, LTA, and STAR) from 298 unique DEGs using microarray data analysis, and 5 protein targets were also identified that were linked with EM. The study concludes that this information may provide a bridging gap in understanding the progression of endometriosis.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Obstetrics and Gynecology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | | |
Collapse
|
6
|
Pejovic T, Cathcart AM, Alwaqfi R, Brooks MN, Kelsall R, Nezhat FR. Genetic Links between Endometriosis and Endometriosis-Associated Ovarian Cancer-A Narrative Review (Endometriosis-Associated Cancer). Life (Basel) 2024; 14:704. [PMID: 38929687 PMCID: PMC11204815 DOI: 10.3390/life14060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis is a frequent, estrogen-dependent, chronic disease, characterized by the presence of endometrial glands and stroma outside of the uterine cavity. Although it is not considered a precursor of cancer, endometriosis is associated with ovarian cancer. In this review, we summarized the evidence that clear-cell and endometrioid ovarian carcinomas (endometriosis-associated ovarian carcinoma-EAOC) may arise in endometriosis. The most frequent genomic alterations in these carcinomas are mutations in the AT-rich interaction domain containing protein 1A (ARID1A) gene, a subunit of the SWI/SNF chromatin remodeling complex, and alterations in phosphatidylinositol 3-kinase (PI3K) which frequently coexist. Recent studies have also suggested the simultaneous role of the PTEN tumor-suppressor gene in the early malignant transformation of endometriosis and the contribution of deficient MMR (mismatch repair) protein status in the pathogenesis of EAOC. In addition to activating and inactivating mutations in cancer driver genes, the complex pathogenesis of EAOC involves multiple other mechanisms such as the modulation of cancer driver genes via the transcriptional and post-translational (miRNA) modulation of cancer driver genes and the interplay with the inflammatory tissue microenvironment. This knowledge is being translated into the clinical management of endometriosis and EAOC. This includes the identification of the new biomarkers predictive of the risk of endometriosis and cancer, and it will shape the precision oncology treatment of EAOC.
Collapse
Affiliation(s)
- Tanja Pejovic
- Department of Obstetrics and Gynecology, Providence Medical Center and Providence Cancer Institute, Medford, OR 97504, USA;
| | - Ann M. Cathcart
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97201, USA;
| | - Rofieda Alwaqfi
- Department of Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (R.A.); (F.R.N.)
| | - Marjorie N. Brooks
- Department of Obstetrics and Gynecology, Providence Medical Center and Providence Cancer Institute, Medford, OR 97504, USA;
| | - Rachel Kelsall
- Pacific Northwest University of Health Sciences, Yakima, WA 98901, USA;
| | - Farr R. Nezhat
- Department of Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; (R.A.); (F.R.N.)
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
7
|
Zhang Z, Qin Y, Huang J, Wang Y, Zeng L, Wang Y, Zhuyun F, Wang L. Oestrogen promotes the progression of adenomyosis by inhibiting CITED2 through miR-145. Reprod Biomed Online 2024; 49:104108. [PMID: 39293195 DOI: 10.1016/j.rbmo.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 09/20/2024]
Abstract
RESEARCH QUESTION Is the microRNA miR-145 involved in adenomyosis, and by what mechanisms does it affect disease development and is itself regulated? DESIGN Fluorescence in-situ hybridization was used to observe the expression pattern of miR-145 in adenomyosis ectopic endometrium (n = 13), adenomyosis eutopic endometrium (n = 15) and non-adenomyosis eutopic endometrium (n = 14). RNA sequencing was used to screen target genes as well as downstream pathways of miR-145, which were validated by reporter gene assay, quantitative polymerase chain reaction and western blot, and further analysed using cell migration assay and chromatin immunoprecipitation assay. RESULTS The fluorescence in-situ hybridization assay revealed a noteworthy elevation in miR-145 expression in adenomyosis tissue compared with non-adenomyosis tissue. Furthermore, RNA sequencing analysis revealed that overexpression of miR-145 resulted in heightened expression of genes associated with the cytokine signalling pathway, nucleotide-binding and oligomerization domain-like pathway and adhesion pathway, including IL-1β and IL-6. Our study has identified CITED2 as a downstream direct target gene of miR-145, which is implicated in the inhibition of stromal cell migration induced by miR-145. Moreover, chromatin immunoprecipitation was used to validate the direct effect of oestradiol on the promoter region of miR-145, mediated by oestrogen receptor α, which facilitates the upregulation of miR-145 expression. CONCLUSION Our findings provide evidence supporting the role of oestradiol, acting through its receptor α, in modulating the discovered miR-145-CITED2 signalling axis, thereby promoting the progression of adenomyosis.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China; The Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Clinical Research Center for Obstetrics and Gynecology of Jiangxi province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| | - Yunna Qin
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Jia Huang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Yaoqing Wang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Liqin Zeng
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Yuanqin Wang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Fu Zhuyun
- Jiujiang Blood Central, Jiujiang, Jiangxi, PR China.
| | - Liqun Wang
- Department of Gynaecology, Jiangxi Maternal and Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| |
Collapse
|
8
|
Chandrakanth A, Firdous S, Vasantharekha R, Santosh W, Seetharaman B. Exploring the Effects of Endocrine-Disrupting Chemicals and miRNA Expression in the Pathogenesis of Endometriosis by Unveiling the Pathways: a Systematic Review. Reprod Sci 2024; 31:932-941. [PMID: 38036864 DOI: 10.1007/s43032-023-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Endometriosis, characterized by endometrial-like mucosal tissue outside the uterine cavity, is a reproductive disorder afflicting about 10% of women within the reproductive age. The pathogenesis of endometriosis has been attributed to factors like genetics, environmental particles, and hormones. A comprehensive review of studies from July 2010 to July 2023 across multiple databases was done to aid in a better understanding of the same. The investigation focused on studies delineating the correlation between endocrine disruptors, microRNAs, and endometriosis. To optimize the search scope, keywords and subject headings were used as search terms. Then, two authors rigorously assessed studies using criteria, selecting 27 studies from various databases. Notably, dioxins, organochlorine pesticides, and polychlorinated biphenyls exhibited a solid connection for endometriosis, while bisphenol A and phthalates yielded conflicting results. The heightened presence of bisphenol A, polychlorinated biphenyls, and phthalates was linked to altered gene expression, including genes like AKR1B10, AKR1C3, and FAM49B. MicroRNAs like miRNA-31, miRNA-144, and miRNA-145 emerged as vital factors in the onset of endometriosis and progression. Furthermore, elevated expression of miR-1304-3p, miR-544, and miR-3684 and reduced expression of miR-3935 and miR-4427 exert substantial influence on signaling pathways like NF-κB, MAPK, and Wnt/β-catenin. Currently, literature shows an independent link between endocrine disruptor exposure and endometriosis and between microRNA dysregulation and endometriosis. However, research lacks the combination of all three factors. The review delves into the effects of endocrine disruptors and microRNAs on the pathogenesis of endometriosis to improve our understanding of the disorder and in finding therapies.
Collapse
Affiliation(s)
- Akshaya Chandrakanth
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sana Firdous
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ramasamy Vasantharekha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Winkins Santosh
- P.G. & Research Department of Advanced Zoology and Biotechnology, Government College for Men, Nandanam, Chennai, Tamil Nadu, India
| | - Barathi Seetharaman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
9
|
Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. MiRNAs related in signaling pathways of women's reproductive diseases: an overview. Mol Biol Rep 2024; 51:414. [PMID: 38472662 DOI: 10.1007/s11033-024-09357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND One of the main health issues that can affect women's health is reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis (EMs), uterine leiomyomas (ULs), and ovarian cancer (OC). Although these diseases are very common, we do not have a complete understanding of their underlying cellular and molecular mechanisms. It is important to mention that the majority of patients are diagnosed with these diseases at later stages because of the absence of early diagnostic techniques and dependable molecular indicators. Hence, it is crucial to discover novel and non-invasive biomarkers that have prognostic, diagnostic and therapeutic capabilities. MiRNAs, also known as microRNAs, are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are short in length, typically consisting of around 22 nucleotides, and are highly conserved across species. Numerous studies have shown that miRNAs are expressed differently in various diseases and can act as either oncogenes or tumor suppressors. METHODS The author conducted a comprehensive review of all the pertinent papers available in web of science, PubMed, Google Scholar, and Scopus databases. RESULTS We achieved three goals: providing readers with better information, enhancing search results, and making peer review easier. CONCLUSIONS This review focuses on the investigation of miRNAs and their involvement in various reproductive disorders in women, including their molecular targets. Additionally, it explores the role of miRNAs in the development and progression of these disorders.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohadeseh Azimi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Shima Alavi
- Department of Obstetrics and Gynecology, Ghods Hospital, Arak, Iran
| |
Collapse
|
10
|
Włodarczyk M, Ciebiera M, Nowicka G, Łoziński T, Ali M, Al-Hendy A. Epigallocatechin Gallate for the Treatment of Benign and Malignant Gynecological Diseases-Focus on Epigenetic Mechanisms. Nutrients 2024; 16:559. [PMID: 38398883 PMCID: PMC10893337 DOI: 10.3390/nu16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The most common malignant gynecologic diseases are cervical, uterine, ovarian, vaginal, and vulvar cancer. Among them, ovarian cancer causes more deaths than any other cancer of the female reproductive system. A great number of women suffer from endometriosis, uterine fibroids (UFs), adenomyosis, dysmenorrhea, and polycystic ovary syndrome (PCOS), which are widespread benign health problems causing troublesome and painful symptoms and significantly impairing the quality of life of affected women, and they are some of the main causes of infertility. In addition to the available surgical and pharmacological options, the effects of supporting standard treatment with naturally occurring compounds, mainly polyphenols, are being studied. Catechins are responsible for the majority of potential health benefits attributed to green tea consumption. Epigallocatechin gallate (EGCG) is considered a non-toxic, natural compound with potential anticancer properties. Antioxidant action is its most common function, but attention is also drawn to its participation in cell division inhibition, apoptosis stimulation and epigenetic regulation. In this narrative review, we describe the role of EGCG consumption in preventing the development of benign reproductive disorders such as UF, endometriosis, and PCOS, as well as malignant gynecologic conditions. We discuss possible epigenetic mechanisms that may be related to the action of EGCG.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland;
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, 35-302 Rzeszów, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Tomasz Łoziński
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, 35-302 Rzeszow, Poland;
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (M.A.); (A.A.-H.)
| |
Collapse
|
11
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-Induced Altered miRNA Expression Links to NF-κB Signaling Pathway in Endometriosis. Inflammation 2023; 46:2055-2070. [PMID: 37389684 PMCID: PMC10673760 DOI: 10.1007/s10753-023-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-qPCR, the expression of several miRNAs was quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC), and also TNFα-treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT, and ERK was measured by western blot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly in EESCs compared to NESCs. Also, treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppressing the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Aaron Doctor
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ceana Nezhat
- Nezhat Medical Center, 5555 Peachtree Dunwoody Road, Atlanta, GA, 30342, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
12
|
Begum MIA, Chuan L, Hong ST, Chae HS. The Pathological Role of miRNAs in Endometriosis. Biomedicines 2023; 11:3087. [PMID: 38002087 PMCID: PMC10669455 DOI: 10.3390/biomedicines11113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Association studies investigating miRNA in relation to diseases have consistently shown significant alterations in miRNA expression, particularly within inflammatory pathways, where they regulate inflammatory cytokines, transcription factors (such as NF-κB, STAT3, HIF1α), and inflammatory proteins (including COX-2 and iNOS). Given that endometriosis (EMS) is characterized as an inflammatory disease, albeit one influenced by estrogen levels, it is natural to speculate about the connection between EMS and miRNA. Recent research has indeed confirmed alterations in the expression levels of numerous microRNAs (miRNAs) in both endometriotic lesions and the eutopic endometrium of women with EMS, when compared to healthy controls. The undeniable association of miRNAs with EMS hints at the emergence of a new era in the study of miRNA in the context of EMS. This article reviews the advancements made in understanding the pathological role of miRNA in EMS and its association with EMS-associated infertility. These findings contribute to the ongoing pursuit of developing miRNA-based therapeutics and diagnostic markers for EMS.
Collapse
Affiliation(s)
- Mst Ismat Ara Begum
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Lin Chuan
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Hee-Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
13
|
Soltani-Fard E, Asadi M, Taghvimi S, Vafadar A, Vosough P, Tajbakhsh A, Savardashtaki A. Exosomal microRNAs and long noncoding RNAs: as novel biomarkers for endometriosis. Cell Tissue Res 2023; 394:55-74. [PMID: 37480408 DOI: 10.1007/s00441-023-03802-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/23/2023] [Indexed: 07/24/2023]
Abstract
Endometriosis is a gynecological inflammatory disorder characterized by the development of endometrial-like cells outside the uterine cavity. This disease is associated with a wide range of clinical presentations, such as debilitating pelvic pain and infertility issues. Endometriosis diagnosis is not easily discovered by ultrasound or clinical examination. Indeed, difficulties in noninvasive endometriosis diagnosis delay the confirmation and management of the disorder, increase symptoms, and place a significant medical and financial burden on patients. So, identifying specific and sensitive biomarkers for this disease should therefore be a top goal. Exosomes are extracellular vesicles secreted by most cell types. They transport between cells' bioactive molecules such as noncoding RNAs and proteins. MicroRNAs and long noncoding RNAs which are key molecules transferred by exosomes have recently been identified to have a significant role in endometriosis by modulating different proteins and their related genes. As a result, the current review focuses on exosomal micro-and-long noncoding RNAs that are involved in endometriosis disease. Furthermore, major molecular mechanisms linking corresponding RNA molecules to endometriosis development will be briefly discussed to better clarify the potential functions of exosomal noncoding RNAs in the therapy and diagnosis of endometriosis.
Collapse
Affiliation(s)
- Elahe Soltani-Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Marzieh Asadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and, Technologies, Shiraz University of, Medical Sciences, Shiraz, 71362 81407, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Abbaszadeh M, Karimi M, Rajaei S. The landscape of non-coding RNAs in the immunopathogenesis of Endometriosis. Front Immunol 2023; 14:1223828. [PMID: 37675122 PMCID: PMC10477370 DOI: 10.3389/fimmu.2023.1223828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Endometriosis is a complex disorder that is characterized by the abnormal growth of endometrial-like tissue outside the uterus. It is associated with chronic inflammation, severe pelvic pain, infertility, and significantly reduced quality of life. Although the exact mechanism of endometriosis remains unknown, inflammation and altered immunity are considered key factors in the immunopathogenesis of the disorder. Disturbances of immune responses result in reduced clearance of regurgitated endometrial cells, which elicits oxidative stress and progression of inflammation. Proinflammatory mediators could affect immune cells' recruitment, fate, and function. Reciprocally, the activation of immune cells can promote inflammation. Aberrant expression of non-coding RNA (ncRNA) in patient and animal lesions could be suggestive of their role in endometriosis establishment. The engagement of these RNAs in regulating diverse biological processes, including inflammatory responses and activation of inflammasomes, altered immunity, cell proliferation, migration, invasion, and angiogenesis are widespread and far-reaching. Therefore, ncRNAs can be identified as a determining candidate regulating the inflammatory responses and immune system. This review aims in addition to predict the role of ncRNAs in the immunopathogenesis of endometriosis through regulating inflammation and altered immunity based on previous studies, it presents a comprehensive view of inflammation role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
| | | | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zhu J, Xu Z, Wu P, Zeng C, Peng C, Zhou Y, Xue Q. MicroRNA-92a-3p Inhibits Cell Proliferation and Invasion by Regulating the Transcription Factor 21/Steroidogenic Factor 1 Axis in Endometriosis. Reprod Sci 2023; 30:2188-2197. [PMID: 36650372 PMCID: PMC10310800 DOI: 10.1007/s43032-021-00734-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023]
Abstract
Endometriosis (EMS) is an estrogen-dependent disease. However, little is known about the regulation of estrogen, a potential therapeutic target, in EMS, which remains very poorly managed in the clinic. We hypothesized that microRNAs (miRNAs) can be exploited therapeutically to regulate transcription factor 21 (TCF21) and steroidogenic factor-1 (SF-1) gene expression. In our study, paired eutopic and ectopic endometrial samples were obtained from women with EMS and processed by a standard protocol to obtain human endometrial stromal cells (EMs) for in vitro studies. We found that miR-92a-3p levels were decreased in ectopic endometrium and ectopic stromal cells (ESCs) compared with paired eutopic lesions. miR-92a-3p overexpression significantly suppressed the proliferation and migration of ESCs, whereas a decreased level of miR-92a-3p generated the opposite results. Next, we identified TCF21 as a candidate target gene of miR-92a-3p. In vitro cell experiments showed that miR-92a-3p negatively regulated the expression of TCF21 and its downstream target gene SF-1. Moreover, cell proliferation and invasion ability decreased after the silencing of SF-1 and increased after SF-1 overexpression. We also observed that silencing SF-1 while inhibiting miR-92a-3p partially blocked the increase in cell proliferation and invasion ability caused by miR-92a-3p knockdown while overexpressing both SF-1 and miR-92a-3p mitigated the impairment in cell proliferation and invasion ability caused by miR-92a-3p overexpression. Our results may provide a novel potential therapeutic target for the treatment of EMS.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Zijin Xu
- Department of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, and Key Laboratory for Reproduction and Genetics of Guangdong Higher Education Institutes, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peili Wu
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Cheng Zeng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Chao Peng
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Yingfang Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China
| | - Qing Xue
- Department of Obstetrics and Gynecology, Peking University First Hospital, No.1 Xi'anmen Street, Beijing, 100034, China.
| |
Collapse
|
16
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-induced altered miRNA expression links to NF-κB signaling pathway in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-2870585. [PMID: 37205467 PMCID: PMC10187425 DOI: 10.21203/rs.3.rs-2870585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB-signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-QPCR, the expression of several miRNAs were quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC) and also TNFα treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT and ERK was measured by westernblot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly (p < 0.05) in EESCs compared to NESC. Also treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppresses the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
| | - Wei Xu
- Morehouse School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ruiz-Magaña MJ, Puerta JM, Llorca T, Méndez-Malagón C, Martínez-Aguilar R, Abadía-Molina AC, Olivares EG, Ruiz-Ruiz C. Influence of the ectopic location on the antigen expression and functional characteristics of endometrioma stromal cells. Reprod Biomed Online 2023; 46:460-469. [PMID: 36586747 DOI: 10.1016/j.rbmo.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
RESEARCH QUESTION Are the alterations observed in the endometriotic cells, such as progesterone resistance, already present in the eutopic endometrium or acquired in the ectopic location? DESIGN The response to decidualization with progesterone and cyclic AMP for up to 28 days was compared in different endometrial stromal cell (EnSC) lines established from samples of endometriomas (eEnSC), eutopic endometrium from women with endometriosis (eBEnSC), endometrial tissue from healthy women (BEnSC) and menstrual blood from healthy donors (mEnSC). RESULTS Usual features of decidualized cells, such as changes in cell morphology and expression of prolactin, were similarly observed in the three types of eutopic EnSC studied, but not in the ectopic cells upon decidualization. Among the phenotypic markers analysed, CD105 was down-regulated under decidualization in all cell types (mEnSC, P = 0.005; BEnSC, P = 0.029; eBEnSC, P = 0.022) except eEnSC. mEnSC and BEnSC underwent apoptosis during decidualization, whereas eBEnSC and eEnSC were resistant to the induction of cell death. Lastly, migration studies revealed that mEnSC secreted undetermined factors during decidualization that inhibited cell motility, whereas eEnSC showed a significantly lower ability to produce those migration-regulating factors (P < 0.0001, P < 0.001 and P = 0.0013 for the migration of mEnSC at 24, 48 and 72 h, respectively; P < 0.0001 for the migration of eEnSC at all times studied). CONCLUSIONS This study provides novel insights into the differences between endometriotic and eutopic endometrial cells and reinforces the idea that the microenvironment in the ectopic location plays additional roles in the acquisition of the alterations that characterize the cells of the endometriotic foci.
Collapse
Affiliation(s)
- María José Ruiz-Magaña
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - José M Puerta
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Hospital Quirón Ruber Juan Bravo, Madrid, Spain
| | - Tatiana Llorca
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Cristina Méndez-Malagón
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Rocío Martínez-Aguilar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain; Medical Research Council Centre for Reproductive Health, University of Edinburgh, Scotland, UK
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain; Unidad de Gestión Clínica Laboratorios, Complejo Hospitalario Universitario de Granada, Granada, Spain.
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain; Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain.
| |
Collapse
|
18
|
Liu T, Xiao L, Pei T, Luo B, Tan J, Long Y, Huang X, Ouyang Y, Huang W. miR-297 inhibits expression of progesterone receptor and decidualization in eutopic endometria of endometriosis. J Obstet Gynaecol Res 2023; 49:956-965. [PMID: 36572643 DOI: 10.1111/jog.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
AIM Progesterone resistance is an epigenetic factor that reduces endometrial receptivity and causes implantation failure in women with endometriosis. In addition, dysregulated miRNAs contribute to the underlying pathogenic mechanisms of endometriosis. This study aimed to determine the effect of miR-297 on the progesterone receptor (PR) expression and on insufficient decidualization of endometrial stromal cells (ESCs) within the eutopic endometria of infertile women with minimal or mild endometriosis. METHODS ESCs were isolated from infertile endometriosis and normal patients and were transfected with miR-297 mimic or miR-297 inhibitor or respective control. qRT-PCR and western blot were conducted to quantify the expression of miR-297 and PR. The effect of miR-297 on ESCs decidualization was investigated by induced decidualization in vitro. RESULTS We observed an increase in miR-297 expression and a decrease in the expression of PR in the ESCs from endometriosis patients. Moreover, the expression of PR, most notably PRB, was found to be downregulated following transfection with miR-297 mimic and upregulated following treatment with miR-297 inhibitor. In addition, overexpressed miR-297 inhibited the decidualization of ESCs in vitro. We further determined that miR-297 exerts direct regulatory effects on PR expression. CONCLUSIONS We demonstrated that miR-297 interferes with fertility by repressing the expression of PR and preventing efficient decidualization in eutopic endometria. Further, miR-297 directly contributes to progesterone resistance in minimal or mild cases of endometriosis. Thus, regulation of miR-297 may prove to be a promising therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Obstetrics and Gynecology, The People's Hospital of Leshan, Leshan, China.,Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Bin Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Jing Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ying Long
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Xin Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yunwei Ouyang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Lamceva J, Uljanovs R, Strumfa I. The Main Theories on the Pathogenesis of Endometriosis. Int J Mol Sci 2023; 24:ijms24054254. [PMID: 36901685 PMCID: PMC10001466 DOI: 10.3390/ijms24054254] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Endometriosis is a complex disease, which is defined by abnormal growth of endometrial tissue outside the uterus. It affects about 10% of women of reproductive age all over the world. Endometriosis causes symptoms that notably worsen patient's well-being-such as severe pelvic pain, dysfunction of the organs of pelvic cavity, infertility and secondary mental issues. The diagnosis of endometriosis is quite often delayed because of nonspecific manifestations. Since the disease was defined, several different pathogenetic pathways have been considered, including retrograde menstruation, benign metastasis, immune dysregulation, coelomic metaplasia, hormonal disbalance, involvement of stem cells and alterations in epigenetic regulation, but the true pathogenesis of endometriosis remains poorly understood. The knowledge of the exact mechanism of the origin and progression of this disease is significant for the appropriate treatment. Therefore, this review reports the main pathogenetic theories of endometriosis based on current studies.
Collapse
Affiliation(s)
- Jelizaveta Lamceva
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Romans Uljanovs
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
- Correspondence:
| |
Collapse
|
20
|
Zubrzycka A, Migdalska-Sęk M, Jędrzejczyk S, Brzeziańska-Lasota E. The Expression of TGF-β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int J Mol Sci 2023; 24:ijms24032453. [PMID: 36768775 PMCID: PMC9917033 DOI: 10.3390/ijms24032453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023] Open
Abstract
The molecular pathogenesis of endometriosis has been associated with pathological alterations of protein expression via disturbances in homeostatic genes, miRNA expression profiles, and signaling pathways that play an essential role in the epithelial-mesenchymal transition (EMT) process. TGF-β1 has been hypothesized to play a key role in the development and progression of endometriosis, but the activation of a specific mechanism via the TGF-β-SMAD-ILK axis in the formation of endometriotic lesions is poorly understood. The aim of this study was to assess the expression of EMT markers (TGF-β1, SMAD3, ILK) and miR-21 in ectopic endometrium (ECE), in its eutopic (EUE) counterpart, and in the endometrium of healthy women. The expression level of the tested genes and miRNA was also evaluated in peripheral blood mononuclear cells (PBMC) in women with and without endometriosis. Fifty-four patients (n = 54; with endometriosis, n = 29, and without endometriosis, n = 25) were enrolled in the study. The expression levels (RQ) of the studied genes and miRNA were evaluated using qPCR. Endometriosis patients manifested higher TGF-β1, SMAD3, and ILK expression levels in the eutopic endometrium and a decreased expression level in the ectopic lesions in relation to control tissue. Compared to the endometrium of healthy participants, miR-21 expression levels did not change in the eutopic endometrium of women with endometriosis, but the RQ was higher in their endometrial implants. In PBMC, negative correlations were found between the expression level of miR-21 and the studied genes, with the strongest statistically significant correlation observed between miR-21 and TGF-β1. Our results suggest the loss of the endometrial epithelial phenotype defined by the differential expression of the TGF-β1, SMAD3 and ILK genes in the eutopic and ectopic endometrium. We concluded that the TGF-β1-SMAD3-ILK signaling pathway, probably via a mechanism related to the EMT, may be important in the pathogenesis of endometriosis. We also identified miR-21 as a possible inhibitor of this TGF-β1-SMAD3-ILK axis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Monika Migdalska-Sęk
- Department of Biomedicine and Genetics, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.Z.); (M.M.-S.)
| | - Sławomir Jędrzejczyk
- Operative and Conservative Gynecology Ward, Dr K. Jonscher Municipal Medical Centre, 93-113 Lodz, Poland
- Institute of Medical Expertises, 91-205 Lodz, Poland
| | | |
Collapse
|
21
|
Evaluation of the potential of miR-21 as a diagnostic marker for oocyte maturity and embryo quality in women undergoing ICSI. Sci Rep 2023; 13:1440. [PMID: 36697494 PMCID: PMC9876918 DOI: 10.1038/s41598-023-28686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs are small molecules that play a crucial role in regulating a woman's reproductive system. The present study evaluates the expression of miR-21 in the serum, follicular fluid (FF), and cumulus cells (CCs) and their association with oocyte maturity and embryo quality in women undergoing intracytoplasmic sperm injection. Women subjects were divided into the case (54 Patients with female factor infertility) and control groups (33 patients with male factor infertility). The level of miR-21 was measured using Real-Time PCR. The level of miR-21 was significantly lower in the CCs, FF, and serum in the case compared to the control group (p < 0.05). MiR-21 abundance was higher in FF and CCs samples than in serum. Furthermore, there was a significant increase in CCs to FF in the case group (p < 0.05). A significant decrease in oocyte count, MII oocytes, and percentage of mature oocytes were observed in the case group (p < 0.05). The expression of miR-21 in FF and CCs was positively related to oocyte maturation, but no correlation with embryo development was observed. This study found that miR-21 is expressed less in women with female factor infertility, and human oocytes' development is crucially affected by the expression of miR-21. Therefore, miR-21 could provide new helpful biomarkers of oocyte maturity.
Collapse
|
22
|
Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin Chim Acta 2023; 538:70-86. [PMID: 36375526 DOI: 10.1016/j.cca.2022.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, a benign gynecologic and chronic inflammatory disease, is defined by the presence of endometrial tissue outside the uterus characterized mainly by pelvic pain and infertility. Because endometriosis affects approximately 10% of females, it represents a significant socioeconomic burden worldwide having tremendous impact on daily quality of life. Accurate and prompt diagnosis is crucial for the management of this debilitating disorder. Unfortunately, diagnosis is typically delayed to lack of specific symptoms and readily accessible biomarkers. Although histopathologic examination remains the current gold standard, this approach is highly invasive and not applicable for early screening. Recent work has focused on the identification of reliable biomarkers including immunologic, ie, immune cells, antibodies and cytokines, as well as genetic and biochemical markers, ie, microRNAs, lncRNAs, circulating and mitochondrial nucleic acids, along with some hormones, glycoproteins and signaling molecules. Confirmatory research studies are, however, needed to more fully establish these markers in the diagnosis, progression and staging of these endometrial lesions.
Collapse
|
23
|
Rozati R, Khan AA, Mehdi AG, Tabasum W, Begum S. Circulating oncomiR-21 as a potential biomarker of mild and severe forms of endometriosis for early diagnosis and management. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Ghasemi F, Alemzadeh E, Allahqoli L, Alemzadeh E, Mazidimoradi A, Salehiniya H, Alkatout I. MicroRNAs Dysregulation as Potential Biomarkers for Early Diagnosis of Endometriosis. Biomedicines 2022; 10:biomedicines10102558. [PMID: 36289820 PMCID: PMC9599310 DOI: 10.3390/biomedicines10102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is a benign chronic disease in women that is characterized by the presence of active foci of the endometrium or endometrial tissue occurring outside of the uterus. The disease causes disabling symptoms such as pelvic pain and infertility, which negatively affect a patient's quality of life. In addition, endometriosis imposes an immense financial burden on the healthcare system. At present, laparoscopy is the gold standard for diagnosing the disease because other non-invasive diagnostic tests have less accuracy. In addition, other diagnostic tests have low accuracy. Therefore, there is an urgent need for the development of a highly sensitive, more specific, and non-invasive test for the early diagnosis of endometriosis. Numerous researchers have suggested miRNAs as potential biomarkers for endometriosis diagnosis due to their specificity and stability. However, the greatest prognostic force is the determination of several miRNAs, the expression of which varies in a given disease. Despite the identification of several miRNAs, the studies are investigatory in nature, and there is no consensus on them. In the present review, we first provide an introduction to the dysregulation of miRNAs in patients with endometriosis and the potential use of miRNAs as biomarkers in the detection of endometriosis. Then we will describe the role of the mir-200 family in endometriosis. Several studies have shown that the expression of the mir-200 family changes in endometriosis patients, suggesting that they could be used as a diagnostic biomarker and therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Effat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Leila Allahqoli
- Midwifery Department, Ministry of Health and Medical Education, Tehran 1467664961, Iran
| | - Esmat Alemzadeh
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Afrooz Mazidimoradi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Ibrahim Alkatout
- Kiel School of Gynaecological Endoscopy, Campus Kiel, University Hospitals Schleswig-Holstein, Ar-nold-Heller-Str. 3, Haus 24, 24105 Kiel, Germany
- Correspondence:
| |
Collapse
|
25
|
Hu F, Wang Y, Wu X, Liu S, Ren H, Zhou W. RETRACTED: Overexpressed miR-106b-5p promotes epithelial-mesenchymal transition in endometriosis by targeting PTEN. Reprod Toxicol 2022; 113:62-70. [PMID: 35902026 DOI: 10.1016/j.reprotox.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/25/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The journal was contacted by the corresponding author to claim that they were not aware of the submission of the article, do not own the email address listed by the paper, and did not participate in the study. When contacted by the journal, the co-authors Shan Liu and Haiying Ren also denied that they participated in the study and that they were aware of the article. The co-authors Fen Hu, Yonglian Wang and Xueqing Wu did not respond to the journal's request for clarifications. The uncertainty about the identity of the author who submitted the article also cast doubt on the data and the Editor decided to retract the paper.
Collapse
Affiliation(s)
- Fen Hu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China; Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Yonglian Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi, China
| | - Shan Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haiying Ren
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
An HJ, Cho SH, Park HS, Kim JH, Kim YR, Lee WS, Lee JR, Joo SS, Ahn EH, Kim NK. Genetic Variations miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G and the Risk of Recurrent Pregnancy Loss in Korean Women. Biomedicines 2022; 10:biomedicines10102395. [PMID: 36289656 PMCID: PMC9598437 DOI: 10.3390/biomedicines10102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
This study investigated the genetic association between recurrent pregnancy loss (RPL) and microRNA (miRNA) polymorphisms in miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G in Korean women. Blood samples were collected from 381 RPL patients and 281 control participants, and genotyping of miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G was carried out by TaqMan miRNA RT-Real Time polymerase chain reaction (PCR). Four polymorphisms were identified, including miR-10aA>T, miR-30cA>G, miR-181aT>C, and miR-499bA>G. MiR-10a dominant model (AA vs. AT + TT) and miR-499bGG genotypes were associated with increased RPL risk (adjusted odds ratio [AOR] = 1.520, 95% confidence interval [CI] = 1.038−2.227, p = 0.032; AOR = 2.956, 95% CI = 1.168−7.482, p = 0.022, respectively). Additionally, both miR-499 dominant (AA vs. AG + GG) and recessive (AA + AG vs. GG) models were significantly associated with increased RPL risk (AOR = 1.465, 95% CI = 1.062−2.020, p = 0.020; AOR = 2.677, 95% CI = 1.066−6.725, p = 0.036, respectively). We further propose that miR-10aA>T, miR-30cA>G, and miR-499bA>G polymorphisms effects could contribute to RPL and should be considered during RPL patient evaluation.
Collapse
Affiliation(s)
- Hui-Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sung-Hwan Cho
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Korea
| | - Han-Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Ji-Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Young-Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
| | - Woo-Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea
| | - Jung-Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Seong-Soo Joo
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Eun-Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam 13488, Korea
- Correspondence: (E.-H.A.); (N.-K.K.)
| | - Nam-Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Korea
- Correspondence: (E.-H.A.); (N.-K.K.)
| |
Collapse
|
27
|
Roles of microRNAs in Regulating Apoptosis in the Pathogenesis of Endometriosis. Life (Basel) 2022; 12:life12091321. [PMID: 36143357 PMCID: PMC9500848 DOI: 10.3390/life12091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a gynecologic disorder characterized by the presence of endometrial tissues outside the uterine cavity affecting reproductive-aged women. Previous studies have shown that microRNAs and their target mRNAs are expressed differently in endometriosis, suggesting that this molecule may play a role in the development and persistence of endometriotic lesions. microRNA (miRNA), a small non-coding RNA fragment, regulates cellular functions such as cell proliferation, differentiation, and apoptosis by the post-transcriptional modulation of gene expression. In this review, we focused on the dysregulated miRNAs in women with endometriosis and their roles in the regulation of apoptosis. The dysregulated miRNAs and their target genes in this pathophysiology were highlighted. Circulating miRNAs as potential biomarkers for the diagnosis of endometriosis have also been identified. As shown by various studies, miRNAs were reported to be a potent regulator of gene expression in endometriosis; thus, identifying the dysregulated miRNAs and their target genes could help discover new therapeutic targets for treating this disease. The goal of this review is to draw attention to the functions that miRNAs play in the pathophysiology of endometriosis, particularly those that govern cell death.
Collapse
|
28
|
Neuhausser WM, Faure-Kumar E, Mahurkar-Joshi S, Iliopoulos D, Sakkas D. Identification of miR-34-3p as a candidate follicular phase serum marker for endometriosis: a pilot study. F&S SCIENCE 2022; 3:269-278. [PMID: 35977804 DOI: 10.1016/j.xfss.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To identify early follicular phase microribonucleic acids (miRNAs) that are altered in serum of women with endometriosis. DESIGN Case-control study. SETTING Large university-affiliated in vitro fertilization center. PATIENT(S) Women with (n = 21) and without (n = 24) endometriosis. INTERVENTION(S) Serum samples were obtained from laparoscopy-confirmed patients with endometriosis. MAIN OUTCOME MEASURE(S) The differential expression of serum miRNAs relative to controls was measured using the NanoString nCounter technology and validated by quantitative real-time polymerase chain reaction in an independent cohort of 27 patients with endometriosis and controls (n = 24). Microribonucleic acid target signaling pathways and genes were analyzed bioinformatically. A chemically modified stable miR-34-3p oligonucleotide was used to examine the effect on proliferation of VK2E6/E7 endometrial cells in vitro. RESULT(S) Eighteen miRNAs were significantly up-regulated, and 1 miRNA (hsa-miR-34c-3p) was significantly down-regulated in the follicular phase of patients with endometriosis. The analysis of target signaling pathways using TargetScan predicted regulation of the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Hippo, adenosine monophosphate-activated protein kinase, transforming growth factor beta, and endometrial cancer pathways, which have been implicated in the pathogenesis of endometriosis, by these miRNAs. The analysis of sequence complementarity identified prostaglandin E2 receptor 4, interleukin 6 signal transducer, and polo-like kinase 4 genes as possible direct targets of hsa-miR-34-3p. DSDI-1, a chemically modified stable miR-34-3p oligonucleotide, reduced cell proliferation in VK2E6/E7 endometrial cells in vitro. CONCLUSION(S) The follicular phase miRNA levels are altered in serum of women with endometriosis and may be useful as reproducible detection biomarkers for early diagnosis of endometriosis. hsa-miR-34-3p is significantly down-regulated in endometriosis, targets endometriosis genes, and reduces endometrial cell proliferation in vitro. These results support hsa-miR-34-3p as a potential therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Werner Maria Neuhausser
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Emmanuelle Faure-Kumar
- UCLA Center for Systems Biomedicine, David Geffen School of Medicine, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- UCLA Center for Systems Biomedicine, David Geffen School of Medicine, Los Angeles, California
| | - Dimitrios Iliopoulos
- UCLA Center for Systems Biomedicine, David Geffen School of Medicine, Los Angeles, California
| | | |
Collapse
|
29
|
Khan KN, Fujishita A, Mori T. Pathogenesis of Human Adenomyosis: Current Understanding and Its Association with Infertility. J Clin Med 2022; 11:4057. [PMID: 35887822 PMCID: PMC9316454 DOI: 10.3390/jcm11144057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this review article was to summarize our current understanding on the etiologies and pathogenesis of human adenomyosis and to clarify the relative association between adenomyosis and infertility. The exact pathogenesis of adenomyosis is still elusive. Among different reported concepts, direction invagination of gland cells from the basalis endometrium deep into myometrium is the most widely accepted opinion on the development of adenomyosis. According to this concept, endometrial epithelial cells and changed fibroblasts, abnormally found in the myometrium in response to repeated tissue injury and/or disruption at the endometrium-myometrium interface (EMI), elicit hyperplasia and hypertrophy of the surrounding smooth muscle cells. In this review, a comprehensive review was performed with a literature search using PubMed for all publications in English and Japanese (abstract in English), related to adenomyosis and infertility, from inception to April 2021. As an estrogen-regulated factor, hepatocyte growth factor (HGF) exhibits multiple functions in endometriosis, a disease commonly believed to arise from the functionalis endometrium. As a mechanistic basis of gland invagination, we investigated the role of HGF, either alone or in combination with estrogen, in the occurrence of epithelial-mesenchymal transition (EMT) in adenomyosis. Aside from microtrauma at the EMI, metaplasia of displaced Müllerian remnants, differentiation of endometrial stem/progenitor cells within the myometrium and somatic mutation of some target genes have been put forward to explain how adenomyosis develops. In addition, the possible role of microRNAs in adenomyosis is also discussed. Besides our knowledge on the conventional classification (focal and diffuse), two recently proposed classifications (intrinsic and extrinsic) of adenomyosis and the biological differences between them have been described. Although the mechanistic basis is unclear, the influence of adenomyosis on fertility outcome is important, especially considering the recent tendency to delay pregnancy among women. Besides other proposed mechanisms, a recent transmission election microscopic (TEM) study indicated that microvilli damage and an axonemal alteration in the apical endometria of human adenomyosis, in response to endometrial inflammation, may be involved in negative fertility outcomes. We present a critical analysis of the literature data concerning the mechanistic basis of infertility in women with adenomyosis and its impact on fertility outcome.
Collapse
Affiliation(s)
- Khaleque N. Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Akira Fujishita
- Department of Gynecology, Saiseikai Nagasaki Hospital, Nagasaki 850-0003, Japan;
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| |
Collapse
|
30
|
Horie K, Nanashima N, Yokoyama Y, Yoshioka H, Watanabe J. Exosomal MicroRNA as Biomarkers for Diagnosing or Monitoring the Progression of Ovarian Clear Cell Carcinoma: A Pilot Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123953. [PMID: 35745075 PMCID: PMC9228939 DOI: 10.3390/molecules27123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the most common cause of gynecological malignancy-related mortality since early-stage disease is difficult to diagnose. Advanced clear cell carcinoma of the ovary (CCCO) has dismal prognosis, and its incidence has been increasing in Japan, emphasizing the need for highly sensitive diagnostic and prognostic CCCO biomarkers. Exosomal microRNAs (miRNAs) secreted by tumor cells are known to play a role in carcinogenesis; however, their involvement in ovarian cancer is unclear. In this study, we performed expression profiling of miRNAs from exosomes released by five cell lines representing different histological types of ovarian cancer. Exosomes isolated from culture media of cancer and normal cells were compared for miRNA composition using human miRNA microarray. We detected 143 exosomal miRNAs, whose expression was ≥1.5-fold higher in ovarian cancer cells than in the control. Among them, 28 miRNAs were upregulated in cells of all histological ovarian cancer types compared to control, and three were upregulated in CCCO cells compared to other types. Functional analyses indicated that miR-21 overexpressed in CCCO cells targeted tumor suppressor genes PTEN, TPM1, PDCD4, and MASP1. The identified miRNAs could represent novel candidate biomarkers to diagnose or monitor progression of ovarian cancer, particularly CCCO.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
- Correspondence: ; Tel.: +81-172-39-5527
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8203, Japan;
| | - Haruhiko Yoshioka
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| | - Jun Watanabe
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| |
Collapse
|
31
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
32
|
Nasu K, Aoyagi Y, Zhu R, Okamoto M, Kai K, Kawano Y. Promising therapeutic targets of endometriosis obtained from microRNA studies. Med Mol Morphol 2022; 55:85-90. [PMID: 34846581 DOI: 10.1007/s00795-021-00308-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Endometriosis is a benign tumor that affect 6-10% women of reproductive age. To date, it is suggested that the aberrant microRNA (miRNA) expressions play important roles in the pathogenesis of endometriosis. Reviewing the literature, we found nine overexpressed miRNAs, which were thoroughly investigated in the context of endometriotic tissues and cells. Most of the overexpressed miRNAs induced endometriosis-specific characteristics including inhibition of apoptosis and decidualization, upregulation of fibrogenesis, invasion, migration, cell proliferation, attachment to extracellular matrix, inflammation, and angiogenesis in the endometriotic cells. Then, we found that the downstream target molecules of these miRNAs, such as early growth response protein-1, extracellular signal-regulated kinase, matrix metallopeptidase 1, signal transducer and activator of transcription 3, cyclooxygenase-2, phosphoinositide 3-kinase, AKT, mammalian target of rapamycin, and vascular endothelial growth factor-A are promising for the therapeutic targets of endometriosis. Recent findings suggest that complex molecular mechanisms leading to development and progression of endometriosis by miRNAs may exist in endometriosis. The meticulous balance between tumorigenic miRNAs and tumoristatic miRNAs may destine the natural course and response to the surgical, medical, and hormonal treatments of this disease. Further investigations into endometriosis-associated miRNAs may elucidate the pathogenesis of endometriosis and help to develop novel therapeutics.
Collapse
Affiliation(s)
- Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan.
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kentaro Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
33
|
Shekibi M, Heng S, Nie G. MicroRNAs in the Regulation of Endometrial Receptivity for Embryo Implantation. Int J Mol Sci 2022; 23:ijms23116210. [PMID: 35682889 PMCID: PMC9181585 DOI: 10.3390/ijms23116210] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
Development of endometrial receptivity is crucial for successful embryo implantation and pregnancy initiation. Understanding the molecular regulation underpinning endometrial transformation to a receptive state is key to improving implantation rates in fertility treatments such as IVF. With microRNAs (miRNAs) increasingly recognized as important gene regulators, recent studies have investigated the role of miRNAs in the endometrium. Studies on miRNAs in endometrial disorders such as endometriosis and endometrial cancer have been reviewed previously. In this minireview, we aim to provide an up-to-date knowledge of miRNAs in the regulation of endometrial receptivity. Since endometrial remodelling differs considerably between species, we firstly summarised the key events of the endometrial cycle in humans and mice and then reviewed the miRNAs identified so far in these two species with likely functional significance in receptivity establishment. To date, 29 miRNAs have been reported in humans and 15 miRNAs in mice within various compartments of the endometrium that may potentially modulate receptivity; miRNAs regulating the Wnt signalling and those from the let-7, miR-23, miR-30, miR-200 and miR-183 families are found in both species. Future studies are warranted to investigate miRNAs as biomarkers and/or therapeutic targets to detect/improve endometrial receptivity in human fertility treatment.
Collapse
|
34
|
Azari ZD, Aljubran F, Nothnick WB. Inflammatory MicroRNAs and the Pathophysiology of Endometriosis and Atherosclerosis: Common Pathways and Future Directions Towards Elucidating the Relationship. Reprod Sci 2022; 29:2089-2104. [PMID: 35476352 DOI: 10.1007/s43032-022-00955-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
Emerging data indicates an association between endometriosis and subclinical atherosclerosis, with women with endometriosis at a higher risk for cardiovascular disease later in life. Inflammation is proposed to play a central role in the pathophysiology of both diseases and elevated levels of systemic pro-inflammatory cytokines including macrophage migration inhibitory factor (MIF), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) are well documented. However, a thorough understanding on the mediators and mechanisms which contribute to altered cytokine expression in both diseases remain poorly understood. MicroRNAs (miRNAs) are important post-transcriptional regulators of inflammatory pathways and numerous studies have reported altered circulating levels of miRNAs in both endometriosis and atherosclerosis. Potential contribution of miRNA-mediated inflammatory cascades common to the pathophysiology of both diseases has not been evaluated but could offer insight into common pathways and early manifestation relevant to both diseases which may help understand cause and effect. In this review, we discuss and summarize differentially expressed inflammatory circulating miRNAs in endometriosis subjects, compare this profile to that of circulating levels associated with atherosclerosis when possible, and then discuss mechanistic studies focusing on these miRNAs in relevant cell, tissue, and animal models. We conclude by discussing the potential utility of targeting the relevant miRNAs in the MIF-IL-6-TNF-α pathway as therapeutic options and offer insight into future studies which will help us better understand not only the role of these miRNAs in the pathophysiology of both endometriosis and atherosclerosis but also commonality between both diseases.
Collapse
Affiliation(s)
- Zubeen D Azari
- Kansas City University of Medicine and Biosciences, Kansas City, MO, 64106, USA
| | - Fatimah Aljubran
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Obstetrics and Gynecology, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Sciences, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
35
|
Li B, Wang Y, Wang Y, Li S, Liu K. Deep Infiltrating Endometriosis Malignant Invasion of Cervical Wall and Rectal Wall With Lynch Syndrome: A Rare Case Report and Review of Literature. Front Oncol 2022; 12:832228. [PMID: 35402227 PMCID: PMC8983876 DOI: 10.3389/fonc.2022.832228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMalignant transformation of deep infiltrating endometriosis (DIE) invading the cervix and rectum is quite rare, especially in patients combined with Lynch syndrome (LS). We report a rare case of a 49-year-old perimenopausal woman with endometrioid carcinoma arising from the pouch of Douglas, invading the cervix and rectum 1 year after a unilateral salpingo-oophorectomy treatment for ovarian endometriosis. The genetic testing of the patient showed germline mutations in MSH2, which combined with the special family history of colorectal cancer of the patient, was also thought to be associated with LS. We have analyzed the reported cases of DIE malignant transformation over the last 10 years, and reviewed the relevant literature, in order to strengthen the clinical management of patients with endometriosis, particularly patients with DIE, and reveal a possible correlation between malignant transformation of endometriosis and LS.Case PresentationA 49-year-old perimenopausal woman presented with hypogastralgia, diarrhea, and intermittent fever for more than 1 month. A Transvaginal ultrasound (TVS) showed a cervix isthmus mass, and a magnetic resonance imaging (MRI) showed a mass in pouch of Douglas with high suspicion of malignancy, possibly invading the anterior wall of the rectum. Prior to surgery, the patient performed the ultrasound guided pelvic mass biopsy through the vagina, and the pathology of the mass showed endometrioid carcinoma. The patient received a gynecological–surgical laparotomy and enterostomy, and a histopathology revealed endometrioid carcinoma infiltrating the cervical wall and rectal wall. In the family genetic history of the patient, her mother and two sisters suffered from colorectal cancer, so lesion tissue and blood were taken for genetic testing, which showed a germline mutation in MSH2, with LS being considered. After the surgical treatment, the patient received six courses of paclitaxel–carboplatin chemotherapy. During the course of treatment, bone marrow suppression occurred, but was healed after symptomatic treatment. To date, the patient is generally in good health, and imaging examination showed no evidence of recurrence.ConclusionThe risk of malignant transformation of endometriosis is increased in perimenopause and postmenopause, as DIE is a rare malignant transformation of endometriosis. DIE can invade other adjacent organs and cause poor prognosis, thus, comprehensive gynecological–surgical treatment should be necessary. In addition, if histopathology showed endometrioid carcinoma, the possibility of LS should be considered, and if necessary, immunohistochemical staining and gene detection should be improved to provide follow-up targeted therapy and immunotherapy.
Collapse
|
36
|
Nasu K, Aoyagi Y, Zhu R, Okamoto M, Yano M, Kai K, Kawano Y. Role of repressed microRNAs in endometriosis. Med Mol Morphol 2022; 55:1-7. [PMID: 34463829 DOI: 10.1007/s00795-021-00303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Endometriosis is a common, estrogen-dependent benign tumor that affect 3-10% women of reproductive age, and is characterized by the ectopic growth of endometrial tissue, which is found primarily in the rectovaginal septum, ovaries, and pelvic peritoneum. To date, accumulating evidence suggests that various epigenetic aberrations, including the expression of aberrant microRNAs (miRNAs), play definite roles in the pathogenesis of endometriosis. This review summarizes the recent findings on the aberrantly repressed miRNAs, as well as their potential roles regarding the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan.
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mitsutake Yano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kentaro Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
37
|
Sorrentino F, DE Padova M, Falagario M, D'Alteri O MN, DI Spiezio Sardo A, Pacheco LA, Carugno JT, Nappi L. Endometriosis and adverse pregnancy outcome. Minerva Obstet Gynecol 2022; 74:31-44. [PMID: 34096691 DOI: 10.23736/s2724-606x.20.04718-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Endometriosis is a gynecologic disease affecting approximately 10% of reproductive age women, around 21-47% of women presenting subfertility and 71-87% of women with chronic pelvic pain. Main symptoms are chronic pelvic pain, dysmenorrhea, dyspareunia and infertility that seem to be well controlled by oral contraceptive pill, progestogens, GnRh antagonists. The aim of this review was to illustrate the modern diagnosis of endometriosis during pregnancy, to evaluate the evolution of endometriotic lesions during pregnancy and the incidence of adverse outcomes. EVIDENCE ACQUISITION Published literature was retrieved through searches of the database PubMed (National Center for Biotechnology Information, US National Library of Medicine, Bethesda, MD, USA). We searched for all original articles published in English through April 2020 and decided to extract every notable information for potential inclusion in this review. The search included the following MeSH search terms, alone or in combination: "endometriosis" combined with "endometrioma," "biomarkers," "complications," "bowel," "urinary tract," "uterine rupture," "spontaneous hemoperitoneum in pregnancy" and more "adverse pregnancy outcome," "preterm birth," "miscarriage," "abruption placentae," "placenta previa," "hypertensive disorder," "preeclampsia," "fetal grow restriction," "small for gestation age," "cesarean delivery." EVIDENCE SYNTHESIS Pregnancy in women with endometriosis does not always lead to disappearance of symptoms and decrease in the size of endometriotic lesions, but it may be possible to observe a malignant transformation of ovarian endometriotic lesions. Onset of complications may be caused by many factors: chronic inflammation, adhesions, progesterone resistance and a dysregulation of genes involved in the embryo implantation. As results, the pregnancy can be more difficult because of endometriosis related complications (spontaneous hemoperitoneum [SH], bowel complications, etc.) or adverse outcomes like preterm birth, FGR, hypertensive disorders, obstetrics hemorrhages (placenta previa, abruptio placenta), miscarriage or cesarean section. Due to insufficient knowledge about its pathogenesis, currently literature data are contradictory and do not show a strong correlation between endometriosis and these complications except for miscarriage and cesarean delivery. CONCLUSIONS Future research should focus on the potential biological pathways underlying these relationships in order to inform patients planning a birth about possible complications during pregnancy.
Collapse
Affiliation(s)
- Felice Sorrentino
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, Foggia, Italy
| | - Maristella DE Padova
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, Foggia, Italy
| | - Maddalena Falagario
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, Foggia, Italy
| | - Maurizio N D'Alteri O
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Attilio DI Spiezio Sardo
- School of Medicine, Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Luis A Pacheco
- Unit of Gynecologic Endoscopy, Gutenberg Center, Xanit International Hospital, Málaga, Spain
| | - Jose T Carugno
- Miller School of Medicine, Department of Obstetrics and Gynecology, University of Miami, Miami, FL, USA
| | - Luigi Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynecology, University of Foggia, Foggia, Italy -
| |
Collapse
|
38
|
de Oliveira RZ, de Oliveira Buono F, Cressoni ACL, Penariol LBC, Padovan CC, Tozetti PA, Poli-Neto OB, Ferriani RA, Orellana MD, Rosa-E-Silva JC, Meola J. Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women. Reprod Sci 2022; 29:734-742. [PMID: 35075610 DOI: 10.1007/s43032-022-00860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
The key relationship between Sampson's theory and the presence of mesenchymal stem cells in the menstrual flow (MenSCs), as well as the changes in post-transcriptional regulatory processes as actors in the etiopathogenesis of endometriosis, are poorly understood. No study to date has investigated the imbalance of miRNAs in MenSCs related to the disease. Thus, through literature and in silico analyses, we selected four predicted miRNAs as regulators of EGR1, SNAI1, NR4A1, NR4A2, ID1, LAMC3, and FOSB involved in pathways of apoptosis, angiogenesis, response to steroid hormones, migration, differentiation, and cell proliferation. These genes are frequently overexpressed in the endometriosis condition in our group studies. They were the trigger for the miRNAs search. Therefore, a case-control study was conducted with MenSCs of women with and without endometriosis (ten samples per group). Crossing information obtained from the STRING, PubMed, miRPathDB, miRWalk, and DIANA TOOLS databases, we chose to explore the expression of miR-21-5p, miR-100-5p, miR-143-3p, and miR-200b-3p by RT-qPCR. We found an upregulation of the miR-200b-3p in endometriosis MenSCs (P = 0.0207), with a 7.93-fold change (ratio of geometric means) compared to control. Overexpression of miR-200b has been associated with increased cell proliferation, stemness, and accentuated mesenchymal-epithelial transition process in eutopic endometrium of endometriosis. We believe that dysregulated miR-200b-3p may establish primary changes in the MenSCs, thus favoring tissue implantation at the ectopic site.
Collapse
Affiliation(s)
- Rafael Zucco de Oliveira
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fabiana de Oliveira Buono
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Clara Lagazzi Cressoni
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Letícia Bruna Corrêa Penariol
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Patricia Aparecida Tozetti
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Omero Benedito Poli-Neto
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Maristela Delgado Orellana
- Center for Cell Therapy and Reginal Blood Center, University of São Paulo, Ribeirão Preto, São Paulo, 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
| |
Collapse
|
39
|
A Comparative Study of Gene Expression in Menstrual Blood-Derived Stromal Cells between Endometriosis and Healthy Women. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7053521. [PMID: 35059465 PMCID: PMC8766185 DOI: 10.1155/2022/7053521] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/18/2021] [Indexed: 02/05/2023]
Abstract
Background. Research into the pathogenesis of endometriosis would substantially promote its effective treatment and early diagnosis. Currently, accumulating evidence has shed light on the importance of endometrial stem cells within the menstrual blood which are involved in the establishment and progression of endometriotic lesions in a retrograde manner. Objectives. We aimed to identify the differences in some genes’ expression between menstrual blood-derived mesenchymal stem cells (MenSCs) isolated from endometriosis patients (E-MenSCs) and MenSCs from healthy women (NE-MenSCs). Methods. Menstrual blood samples (2-3 mL) from healthy and endometriosis women in the age range of 22–35 years were collected. Isolated MenSCs by the Ficoll-Paque density-gradient centrifugation method were characterized by flow cytometry. MenSCs were evaluated for key related endometriosis genes by real-time-PCR. Results. E-MenSCs were morphologically different from NE-MenSCs and showed, respectively, higher and lower expression of CD10 and CD9. Furthermore, E-MenSCs had higher expression of Cyclin D1 (a cell cycle-related gene) and MMP-2 and MMP-9 (migration- and invasion-related genes) genes compared with NE-MenSCs. Despite higher cell proliferation in E-MenSCs, the BAX/BCL-2 ratio was significantly lower in E-MenSCs compared to NE-MenSCs. Also, the level of inflammatory genes such as IL1β, IL6, IL8, and NF-κB and stemness genes including SOX2 and SALL4 was increased in E-MenSCs compared with NE-MenSCs. Further, VEGF, as a potent angiogenic factor, showed a significant increase in E-MenSCs rather than NE-MenSCs. However, NE-MenSCs showed increased ER-α and β-catenin when compared with E-MenSCs. Conclusion. Here, we showed that there are gene expression differences between E-MenSCs and NE-MenSCs. These findings propose that MenSCs could play key role in the pathogenesis of endometriosis and further support the menstrual blood retrograde theory of endometriosis formation. This could be of great importance in exploiting promising therapeutic targets and new biomarkers for endometriosis treatment and prognosis.
Collapse
|
40
|
Hu M, Gao T, Du Y. MiR-98-3p regulates ovarian granulosa cell proliferation and apoptosis in polycystic ovary syndrome by targeting YY1. Med Mol Morphol 2021; 55:47-59. [PMID: 34796378 DOI: 10.1007/s00795-021-00307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy related to female infertility. We investigated the function of the microRNA-98-3p (miR-98-3p)/Yin-Yang-1 (YY1) axis to the pathophysiological processes in PCOS mice. A mouse model of PCOS was established using dehydroepiandrosterone (DHEA). Hematoxylin and eosin (HE) staining was used to assess morphologic changes of the ovaries. Hormonal serum levels were measured by ELISA. Estrogen synthesis in OGCs was measured using chemiluminescence immunoassay. The viability, cell cycle, and apoptosis of ovarian granulosa cells (OGCs) were assessed by CCK-8, flow cytometry, and western blot. Luciferase reporter assays were conducted to examine the binding of miR-98-3p to YY1. YY1 was upregulated, while miR-98-3p was downregulated both in the ovarian tissues of PCOS mice and OGCs separated from PCOS mice and patients. YY1 Knockdown promoted OGC proliferation and inhibited apoptosis as well as increased estrogen production in OGCs. YY1 was verified to be targeted by miR-98-3p. Additionally, YY1 overexpression prevented the effects of miR-98-3p overexpression on the proliferation and apoptosis of OGCs. Importantly, miR-98-3p attenuated ovarian injury in PCOS mice. MiR-98-3p targets and downregulates YY1 expression, thereby affecting the proliferation and apoptosis of OGCs in PCOS.
Collapse
Affiliation(s)
- Min Hu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tian Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China.
| | - Ying Du
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
41
|
Sun Y, Liu G. Endometriosis-associated Ovarian Clear Cell Carcinoma: A Special Entity? J Cancer 2021; 12:6773-6786. [PMID: 34659566 PMCID: PMC8518018 DOI: 10.7150/jca.61107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent disease, which serves as a precursor of ovarian cancer, especially clear cell carcinoma (OCCC) and endometrial carcinoma. Although micro-environmental factors such as oxidative stress, immune cell dysfunction, inflammation, steroid hormones, and stem cells required for malignant transformation have been found in endometriosis, the exact carcinogenic mechanism remains unclear. Recent research suggest that many putative driver genes and aberrant pathways including ARID1A mutations, PIK3CA mutations, MET activation, HNF-1β activation, and miRNAs dysfunction, play crucial roles in the malignant transformation of endometriosis to OCCC. The clinical features of OCCC are different from other histological types. Patients usually present with a large, unilateral pelvic mass, and occasionally have thromboembolic vascular complications. OCCC patients are easier to be resistant to chemotherapy, have a worse prognosis, and are usually difficult to treat. To improve the survival of OCCC patients, it is necessary to better understand its specific carcinogenic mechanism and explore new treatment strategy, including molecular target.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| |
Collapse
|
42
|
Zafari N, Bahramy A, Majidi Zolbin M, Emadi Allahyari S, Farazi E, Hassannejad Z, Yekaninejad MS. microRNAs as novel diagnostic biomarkers in endometriosis patients: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 22:479-495. [PMID: 34304687 DOI: 10.1080/14737159.2021.1960508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To investigate whether miRNAs have a remarkable pooled diagnostic accuracy, sensitivity, and specificity as noninvasive biomarkers to distinguish endometriosis patients from non-endometriosis women.Methods: A comprehensive literature search of PubMed, Embase, and ProQuest was performed through February 21, 2021 to find relevant studies. Two reviewers independently screened each article, and discrepancies were resolved by consensus. Deeks' funnel plot asymmetry test was performed to assess the publication bias of included studies. The STATA software and RevMan 5.4 were used for data analysis and quality assessment, respectively.Results: The overall quality of the studies was moderate to high. In total 87 datasets were assessed miRNAs' performance which results in sensitivity: 0.82, specificity: 0.79, DOR: 18, NPV: 0.80, PPV: 0.78, PLR: 3.97, and NLR: 022. We conducted subgroup analyses, which showed panels of miRNAs (DOR: 54) and serum (DOR: 43) as a target tissue was more reliable to utilize as biomarkers. Deeks' funnel plot showed that there is no publication bias (P-value = 0.25).Conclusions: Panels of miRNAs differentiate endometriosis patients from non-endometriosis women with high sensitivity and specificity; therefore, it has the potential to use as a noninvasive biomarker.
Collapse
Affiliation(s)
- Narges Zafari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Sima Emadi Allahyari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Farazi
- Department of Medicine, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. Int J Mol Sci 2021; 22:ijms22116127. [PMID: 34200157 PMCID: PMC8201216 DOI: 10.3390/ijms22116127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to investigate whether polymorphisms in five microRNAs (miRNAs), miR-604A>G, miR-608C>G, 631I/D, miR-938G>A, and miR-1302-3C>T, are associated with the risk of idiopathic recurrent pregnancy loss (RPL). Blood samples were collected from 388 patients with idiopathic RPL (at least two consecutive spontaneous abortions) and 227 control participants. We found the miR-604 AG and AG + GG genotypes of miR-604, the miR-938 GA and GA + AA genotypes of miR-938, and the miR-1302-3CT and CT + TT genotypes of miR-1302-3 are less frequent than the wild-type (WT) genotypes, miR-604AA, miR-938GG, and miR-1302-3CC, respectively, in RPL patients. Using allele-combination multifactor dimensionality reduction (MDR) analysis, we found that eight haplotypes conferred by the miR-604/miR-608/miR-631/miR-938/miR-1302-3 allele combination, A-C-I-G-T, A-C-I-A-C, G-C-I-G-C, G-C-I-G-T, G-G-I-G-C, G-G-I-G-T, G-G-I-A-C, G-G-D-G-C, three from the miR-604/miR-631/miR-938/miR-1302-3 allele combination, A-I-G-T, G-I-G-C, G-I-A-T, one from the miR-604/miR-631/miR-1302-3 allele combination, G-I-C, and two from the miR-604/miR-1302-3 allele combination, G-C and G-T, were less frequent in RPL patients, suggesting protective effects (all p < 0.05). We also identified the miR-604A>G and miR-938G>A polymorphisms within the seed sequence of the mature miRNAs and aligned the seed sequences with the 3′UTR of putative target genes, methylenetetrahydrofolate reductase (MTHFR) and gonadotropin-releasing hormone receptor (GnRHR), respectively. We further found that the binding affinities between miR-604/miR-938 and the 3′UTR of their respective target genes (MTHFR, GnRHR) were significantly different for the common (miR-604A, miR-938G) and variant alleles (miR-604G, miR-938A). These results reveal a significant association between the miR-604A>G and miR-938G>A polymorphisms and idiopathic RPL and suggest that miRNAs can affect RPL in Korean women.
Collapse
|
44
|
Nazarian H, Novin MG, Khaleghi S, Habibi B. Small non-coding RNAs in embryonic pre-implantation. Curr Mol Med 2021; 22:287-299. [PMID: 34042034 DOI: 10.2174/1566524021666210526162917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/22/2022]
Abstract
Failure of embryo implantation has been introduced as an important limiting parameter in early assisted reproduction and pregnancy. The embryo-maternal interactions, endometrial receptivity, and detections of implantation consist of the embryo viability. For regulating the implantation, multiple molecules may be consisted, however, their specific regulatory mechanisms still stand unclear. MicroRNAs (miRNAs) have been highly concerned due to their important effect on human embryo implantation. MicroRNA (miRNA), which acts as the transcriptional regulator of gene expression, is consisted in embryo implantation. Scholars determined that miRNAs cannot affect the cells and release by cells in the extracellular environment considering facilitating intercellular communication, multiple packaging forms, and preparing indicative data in the case of pathological and physiological conditions. The detection of extracellular miRNAs provided new information in cases of implantation studies. For embryo-maternal communication, MiRNAs offered novel approaches. In addition, in assisted reproduction, for embryo choice and prediction of endometrial receptivity, they can act as non-invasive biomarkers and can enhance the accuracy in the process of reducing the mechanical damage for the tissue.
Collapse
Affiliation(s)
- Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Habibi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Yang H, Hu T, Hu P, Qi C, Qian L. miR‑143‑3p inhibits endometriotic stromal cell proliferation and invasion by inactivating autophagy in endometriosis. Mol Med Rep 2021; 23:356. [PMID: 33760149 PMCID: PMC7974257 DOI: 10.3892/mmr.2021.11995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis (EM) is a multifactorial and debilitating chronic benign gynecological disease, but the pathogenesis of the disease is not completely understood. Dysregulated expression of microRNAs (miRNA/miR) is associated with the etiology of EM due to their role in regulating endometrial stromal cell proliferation and invasion. The present study aimed to identify the functions and mechanisms underlying miR-143-3p in EM. To explore the role of miR-143-3p in EM, functional miRNAs were analyzed via bioinformatics analysis. miR-143-3p expression levels in endometriotic stromal cells (ESCs) and normal endometrial stromal cells (NESCs) were measured via reverse transcription-quantitative PCR. The role of miR-143-3p in regulating ESC proliferation and invasion was assessed by performing Cell Counting Kit-8 and Transwell assays, respectively. miR-143-3p expression was significantly upregulated in ESCs compared with NESCs. Functionally, miR-143-3p overexpression inhibited ESC proliferation and invasion, whereas miR-143-3p knockdown promoted ESC proliferation and invasion. Moreover, miR-143-3p inhibited autophagy activation in ESCs, as indicated by decreased green puncta, which represented autophagic vacuoles, decreased microtubule associated protein 1 light chain 3α expression and increased p62 expression in the miR-143-4p mimic group compared with the control group. Moreover, compared with the control group, miR-143-3p overexpression significantly decreased the expression levels of autophagy-related 2B (ATG2B), a newly identified target gene of miR-143-3p, in ESCs. ATG2B overexpression reversed miR-143-3p overexpression-mediated inhibition of ESC proliferation and invasion. Collectively, the results of the present study suggested that miR-143-3p inhibited EM progression, thus providing a novel target for the development of therapeutic agents against EM.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gynaecology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Tianqi Hu
- Department of Gynaecology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Panwei Hu
- Department of Gynaecology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Cong Qi
- Department of Gynaecology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lin Qian
- Department of Gynaecology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
46
|
Genome-wide transcriptome profiling uncovers differential miRNAs and lncRNAs in ovaries of Hu sheep at different developmental stages. Sci Rep 2021; 11:5865. [PMID: 33712687 PMCID: PMC7971002 DOI: 10.1038/s41598-021-85245-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Ovary development is an important determinant of the procreative capacity of female animals. Here, we performed genome-wide sequencing of long non-coding RNAs (lncRNAs) and mRNAs on ovaries of 1, 3 and 8 months old Hu sheep to assess their expression profiles and roles in ovarian development. We identified 37,309 lncRNAs, 45,404 messenger RNAs (mRNAs) and 330 novel micro RNAs (miRNAs) from the transcriptomic analysis. Six thousand, seven hundred and sixteen (6716) mRNAs and 1972 lncRNAs were significantly and differentially expressed in ovaries of 1 month and 3 months old Hu sheep (H1 vs H3). These mRNAs and target genes of lncRNAs were primarily enriched in the TGF-β and PI3K-Akt signalling pathways which are closely associated with ovarian follicular development and steroid hormone biosynthesis regulation. We identified MSTRG.162061.1, MSTRG.222844.7, MSTRG.335777.1, MSTRG.334059.16, MSTRG.188947.6 and MSTRG.24344.3 as vital genes in ovary development by regulating CTNNB1, CCNA2, CDK2, CDC20, CDK1 and EGFR expressions. A total of 2903 mRNAs and 636 lncRNAs were differentially expressed in 3 and 8 months old ovaries of Hu sheep (H3 vs H8); and were predominantly enriched in PI3K-Akt, progesterone-mediated oocyte maturation, estrogen metabolism, ovulation from the ovarian follicle and oogenesis pathways. These lncRNAs were also found to regulate FGF7, PRLR, PTK2, AMH and INHBA expressions during follicular development. Our result indicates the identified genes participate in the development of the final stages of follicles and ovary development in Hu sheep.
Collapse
|
47
|
Chang CYY, Tseng CC, Lai MT, Chiang AJ, Lo LC, Chen CM, Yen MJ, Sun L, Yang L, Hwang T, Tsai FJ, Sheu JJC. Genetic impacts on thermostability of onco-lncRNA HOTAIR during the development and progression of endometriosis. PLoS One 2021; 16:e0248168. [PMID: 33667269 PMCID: PMC7935326 DOI: 10.1371/journal.pone.0248168] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
HOTAIR is a well-known long non-coding RNA (lncRNA) involved in various cellular signaling, whereas its functional impacts on endometriosis development are still largely unknown. To this end, six potential functional single nucleotide polymorphisms (SNPs) in HOTAIR, with minor allele frequencies more than 10% in Han population and altered net energy of RNA structures larger than 0.5 kcal/mol, were selected for genotyping study. The study included 207 endometriosis patients and 200 healthy women. Genetic substitutions at rs1838169 and rs17720428 were frequently found in endometriosis patients, and rs1838169 showed statistical significance (p = 0.0174). The G-G (rs1838169-rs17720428) haplotype showed the most significant association with endometriosis (p < 0.0001) with enhanced HOTAIR stability, and patients who harbor such haplotype tended to show higher CA125. Data mining further revealed higher mRNA HOTAIR levels in the endometria of patients with severe endometriosis which consistently showed reduced HOXD10 and HOXA5 levels. HOTAIR knockdown with specific shRNAs down-regulated cell proliferation and migration with the induction of HOXD10 and HOXA5 expression in human ovarian clear cancer cells. Our study therefore provided evidence to indicate a prominent role of HOTAIR in promoting endometriosis, which could be used as a potential target for clinical applications.
Collapse
Affiliation(s)
- Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Chen Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - An-Jen Chiang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Man-Ju Yen
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li Sun
- Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, People's Republic of China.,Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
48
|
Wang H, Yang Q, Li J, Chen W, Jin X, Wang Y. MicroRNA-15a-5p inhibits endometrial carcinoma proliferation, invasion and migration via downregulation of VEGFA and inhibition of the Wnt/β-catenin signaling pathway. Oncol Lett 2021; 21:310. [PMID: 33732386 PMCID: PMC7905532 DOI: 10.3892/ol.2021.12570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common malignant gynecological tumors. Dysregulation of microRNAs (miRNAs/miRs) is frequently identified in human tumors, playing key regulatory roles in tumor growth and metastasis. The present study aimed to explore the functions and potential mechanisms of miR-15a-5p in EC progression. RT-qPCR was used to detect the expression levels of miR-15a-5p and vascular endothelial growth factor A (VEGFA) mRNA. Western blot analysis was performed to examine the expression of related proteins. Functional assays, including proliferation and Transwell assays were performed to determine the roles of miR-15a-5p in EC progression. TargetScan and luciferase reporter assays were used to explore the potential target genes of miR-15a-5p. The results revealed that miR-15a-5p was underexpressed in EC tissue samples in comparison with that in matched normal tissue samples. The expression level of miR-15a-5p was associated with the clinicopathologic characteristics of EC patients. Notably, both in vitro and in vivo assays revealed that miR-15a-5p upregulation significantly inhibited EC growth and metastasis. Furthermore, bioinformatics analysis and dual luciferase reporter assay indicated that VEGFA was a candidate target of miR-15a-5p. Mechanistic investigation revealed that miR-15a-5p inhibited EC development via regulation of Wnt/β-catenin pathway and targeting of VEGFA. In summary, the present results demonstrated that miR-15a-5p could inhibit EC development and may serve as a promising therapeutic biomarker in EC.
Collapse
Affiliation(s)
- Honggang Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingju Yang
- Department of Gynaecology, Linyi People's Hospital, Dezhou, Shandong 251500, P.R. China
| | - Jieping Li
- Department of Anesthesiology, Qingdao Hospital of Traditional Chinese Medicine, Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Wenping Chen
- Department of Cardiothoracic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Xiao Jin
- Department of Rehabilitation Medicine, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, P.R. China
| | - Yaowen Wang
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
49
|
Wang P, Pan J, Tian X, Dong X, Ju W, Wang Y, Zhong N. Transcriptomics-determined chemokine-cytokine pathway presents a common pathogenic mechanism in pregnancy loss and spontaneous preterm birth. Am J Reprod Immunol 2021; 86:e13398. [PMID: 33565696 DOI: 10.1111/aji.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022] Open
Abstract
PROBLEM Various etiological factors, such as infection and inflammation, may induce the adverse outcomes of pregnancy of miscarriage, stillbirth, or preterm birth. The pathogenic mechanisms associated with these adverse pregnancies are yet unclear. We hypothesized that a common pathogenic mechanism may underlie variant adverse outcomes of pregnancy, which are induced by genetic-environmental factors. The specific objective of the current study is to uncover the common molecular mechanism(s) by identifying the specific transcripts that are present in variant subtypes of pregnancy loss and preterm birth. METHOD OF STUDY Transcriptomic profiling was performed with RNA expression microarray or RNA sequencing of placentas derived from pregnancy loss (which includes spontaneous miscarriage, recurrent miscarriage, and stillbirth) and spontaneous preterm birth, followed by bioinformatic analysis of multi-omic integration to identify pathogenic molecules and pathways involved in pathological pregnancies. RESULTS The enrichment of common differentially expressed genes between full-term birth and preterm birth and pregnancy loss of miscarriage and stillbirth revealed different pathophysiological pathway(s), including cytokine signaling dysregulated in spontaneous preterm birth, defense response, graft-versus-host disease, antigen processing and presentation, and T help cell differentiation in spontaneous miscarriage. Thirty-three genes shared between spontaneous preterm birth and spontaneous miscarriage were engaged in pathways of interferon gamma-mediated signaling and of antigen processing and presentation. For spontaneous miscarriage, immune response was enriched in the fetal tissue of chorionic villi and in the maternal facet of the placental sac. The transcript of nerve growth factor receptor was identified as the common molecule that is differentially expressed in all adverse pregnancies: spontaneous preterm birth, stillbirth, spontaneous miscarriage, and recurrent miscarriage. Superoxide dismutase 2 was up-regulated in all adverse outcomes of pregnancy except for recurrent miscarriage. Cytokine-cytokine receptor interaction was the common pathway in spontaneous preterm birth and spontaneous miscarriage. Defense response was enriched in the fetal tissue of miscarriage and in the maternal tissue in spontaneous miscarriage. CONCLUSIONS Our results indicated that the chemokine-cytokine pathway may play important roles in and function as a common pathogenic mechanism associated with, the different adverse outcomes of pregnancy, which demonstrated that differentially expressed transcripts could result from a common pathogenic mechanism associated with pregnancy loss and spontaneous preterm birth, although individual pregnancy outcomes may differ from each other phenotypically.
Collapse
Affiliation(s)
- Peirong Wang
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Center for Medical Device Evaluation, National Medical Product Administration, 50 Qixiang Road, Haidian District, Beijing, 100081, China
| | - Jing Pan
- Sanya Maternity and Child Care Hospital, Hainan, China
| | - Xiujuan Tian
- Sanya Maternity and Child Care Hospital, Hainan, China
| | - Xiaoyan Dong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Weina Ju
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yong Wang
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, St. Louis, MO, USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
50
|
Zhang D, Wang L, Guo HL, Zhang ZW, Wang C, Chian RC, Zhang ZF. MicroRNA‑202 inhibits endometrial stromal cell migration and invasion by suppressing the K‑Ras/Raf1/MEK/ERK signaling pathway. Int J Mol Med 2020; 46:2078-2088. [PMID: 33125090 PMCID: PMC7595674 DOI: 10.3892/ijmm.2020.4749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/06/2020] [Indexed: 12/23/2022] Open
Abstract
The enhanced migratory ability of endometrial stromal cells (ESCs) is a key factor in the formation of functional endometrium‑like tissues outside the uterine cavity during endometriosis (EMS). Although accumulating evidence has suggested the importance of microRNAs (miRNAs) in the pathogenesis of EMS, the role of particular miRNAs in the invasiveness of ESCs remain poorly understood. In the present study, the function of miRNAs in the invasiveness of ESCs, along with the associated underlying mechanism involved, were investigated. Initially, the expression patterns of miRNAs in the ectopic and eutopic endometrium isolated from patients with EMS were analyzed using microarray. MicroRNA‑202‑5p (miR‑202) was selected for further study due to its previously reported suppressive effects on the invasion in various types of cancers. The expression of miR‑202 and K‑Ras in eutopic and ectopic endometrioma tissues were detected using reverse transcription‑quantitative PCR, immunohistochemistry and western blotting. The migration and invasion ability of ESCs was determined using wound healing and Transwell invasion assays, respectively. Compared with that from healthy individuals, miR‑202 expression was demonstrated to be lower in the eutopic endometrium from patients with EMS, which was even lower in ectopic endometrium. Functional experiments in primary ESCs revealed that enhanced miR‑202 expression suppressed the cell invasion and migration abilities, which was also accompanied with increased E‑cadherin and reduced N‑cadherin expression in ESCs, suggesting its potentially suppressive role in epithelial‑mesenchymal transition. K‑Ras is a well‑known regulator of the ERK signaling pathway that was shown to be directly targeted and negatively regulated by miR‑202. In addition, K‑Ras expression was found to be upregulated in the ectopic endometrium, where it correlated negatively with that of miR‑202. Knocking down K‑Ras expression mimicked the anti‑invasive effects of miR‑202 overexpression on ESCs, whilst K‑Ras overexpression attenuated the inhibitory role of miR‑202 overexpression in ESC invasion. The K‑Ras/Raf1/MEK/ERK signaling pathway was also blocked by miR‑202 overexpression. These findings suggested that miR‑202 inhibited ESC migration and invasion by inhibiting the K‑Ras/Raf1/MEK/ERK signaling pathway, rendering miR‑202 a candidate for being a therapeutic target for EMS.
Collapse
Affiliation(s)
- Di Zhang
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310008
- Department of Reproductive Medicine, Shanghai Tenth People's Hospital, Affiliated to Tongji University, Shanghai 200003
| | - Ling Wang
- Department of Reproductive Medicine, Shanghai Tenth People's Hospital, Affiliated to Tongji University, Shanghai 200003
| | - Hua-Lei Guo
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008
| | - Zi-Wei Zhang
- Department of Ultrasound, Shanghai First Maternity and Infant Hospital, Shanghai 200000
| | - Chong Wang
- Department of Reproductive Medicine, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008
| | - Ri-Cheng Chian
- Department of Reproductive Medicine, Shanghai Tenth People's Hospital, Affiliated to Tongji University, Shanghai 200003
- Department of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhi-Fen Zhang
- Department of Gynecology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang 310008
| |
Collapse
|