1
|
Liu L, Davidorf B, Dong P, Peng A, Song Q, He Z. Decoding the mosaic of inflammatory bowel disease: Illuminating insights with single-cell RNA technology. Comput Struct Biotechnol J 2024; 23:2911-2923. [PMID: 39421242 PMCID: PMC11485491 DOI: 10.1016/j.csbj.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBD), comprising ulcerative colitis (UC) and Crohn's disease (CD), are complex chronic inflammatory intestinal conditions with a multifaceted pathology, influenced by immune dysregulation and genetic susceptibility. The challenges in understanding IBD mechanisms and implementing precision medicine include deciphering the contributions of individual immune and non-immune cell populations, pinpointing specific dysregulated genes and pathways, developing predictive models for treatment response, and advancing molecular technologies. Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool to address these challenges, offering comprehensive transcriptome profiles of various cell types at the individual cell level in IBD patients, overcoming limitations of bulk RNA sequencing. Additionally, single-cell proteomics analysis, T-cell receptor repertoire analysis, and epigenetic profiling provide a comprehensive view of IBD pathogenesis and personalized therapy. This review summarizes significant advancements in single-cell sequencing technologies for enhancing our understanding of IBD, covering pathogenesis, diagnosis, treatment, and prognosis. Furthermore, we discuss the challenges that persist in the context of IBD research, including the need for longitudinal studies, integration of multiple single-cell and spatial transcriptomics technologies, and the potential of microbial single-cell RNA-seq to shed light on the role of the gut microbiome in IBD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Benjamin Davidorf
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peixian Dong
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alice Peng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Murthy S, Anbazhagan M, Maddipatla SC, Kolachala VL, Dodd A, Pelia R, Cutler DJ, Matthews JD, Kugathasan S. Single-cell transcriptomics of rectal organoids from individuals with perianal fistulizing Crohn's disease reveals patient-specific signatures. Sci Rep 2024; 14:26142. [PMID: 39477985 PMCID: PMC11526126 DOI: 10.1038/s41598-024-75947-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Perianal fistulizing Crohn's disease (CD) is a severe gastrointestinal disorder causing extensive mucosal damage with limited treatment options. Severe manifestations of the disease appear at higher rates in non-Europeans but the genetic and cellular mechanisms driving the disease phenotypes remain poorly understood. Herein, we tested whether pathologic determinants in the epithelial stem cell compartment could be detected at the transcript level in rectal organoids derived from a diverse patient population. Rectal organoid and mucosal cells from endoscopic biopsies of each patient having perianal fistulizing CD or no disease controls were prepared for and sequenced at the single cell level. After cell type annotations based on expressed marker genes, samples were analyzed by principal components, for differential transcript expression, cell type proportions, and pathway enrichment. After QC, we produced 77,044 rectal organoid cells (n = 13 patients; 8 CD, 5 controls) with high quality sequences that identified 10 distinct epithelial subtypes, that we compared to 141,367 mucosal epithelial cells (n = 29 patients; 18 CD, 11 controls). Consistent with mucosal epithelial cells, rectal organoids prominently displayed disease signatures represented by the stem and transit amplifying regions of the rectal crypt, including alterations in transcriptional signatures of metabolic, epigenetic, and proliferating pathways. Organoids also retained their gender- and ancestral-specific gene expression signatures. However, they lacked many of the inflammatory signatures observed in epithelial cells from diseased mucosa. Perianal CD patient derived rectal organoids reflect gene expression signatures related to disease, gender, and ancestry, suggesting they harbor inherent properties amenable to further patient-specific, disease-related experimentation.
Collapse
Affiliation(s)
- Shanta Murthy
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Murugadas Anbazhagan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Sushma Chowdary Maddipatla
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Ranjit Pelia
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jason D Matthews
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Emory University School of Medicine, Atlanta, GA, USA
| | - Subra Kugathasan
- Department of Pediatrics & Pediatric Research Institute, Division of Pediatric Gastroenterology, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
3
|
Vlajic K, Bie W, Gilic MB, Tyner AL. Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice. Cell Death Dis 2024; 15:777. [PMID: 39461944 PMCID: PMC11513114 DOI: 10.1038/s41419-024-07149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.
Collapse
Affiliation(s)
- Katarina Vlajic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- University of Washington, Seattle, WA, USA
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Milica B Gilic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- St Jude Children's Hospital, Memphis, TN, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Wang JX, Yu SJ, Huang G, Yu YB, Li YQ. Apolipoprotein A-I: Potential Protection Against Intestinal Injury Induced by Dietary Lipid. J Inflamm Res 2024; 17:5711-5721. [PMID: 39219814 PMCID: PMC11366247 DOI: 10.2147/jir.s468842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The intestinal barrier system protects the human body from harmful factors, by continuously renewing the intestinal epithelium, tight junctions and enteric microbes. However, dietary fat can harm the intestinal epithelial barrier enhancing gut permeability. In recent years, Apolipoprotein A-I has attracted much attention because of its anti-inflammatory properties. Numerous studies have demonstrated that Apolipoprotein A-I can regulate mucosal immune cells, inhibit the progression of inflammation, promote epithelial proliferation and repair, and maintain physical barrier function; it can also regulate angiogenesis, thereby improving local circulation. This article is intended to elucidate the mechanism by which Apolipoprotein A-I improves intestinal barrier damage caused by dietary fat and to review the role of Apolipoprotein A-I in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Jue-Xin Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Weifang Medical College, Weifang People’s Hospital, Weifang, Shandong Province, People’s Republic of China
| | - Shi-Jia Yu
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Gang Huang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Yan-Bo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| |
Collapse
|
5
|
Kilian C, Ulrich H, Zouboulis VA, Sprezyna P, Schreiber J, Landsberger T, Büttner M, Biton M, Villablanca EJ, Huber S, Adlung L. Longitudinal single-cell data informs deterministic modelling of inflammatory bowel disease. NPJ Syst Biol Appl 2024; 10:69. [PMID: 38914538 PMCID: PMC11196733 DOI: 10.1038/s41540-024-00395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics. We derived longitudinal changes in cell numbers of colonic cell types during inflammatory bowel disease (IBD) from flow cytometry and scRNA-seq data of murine colitis using ODE-based models. Our mathematical model generalised well across different protocols and experimental techniques, and we hypothesised that the estimated model parameters reflect biological processes. We validated this prediction of cellular turnover rates with KI-67 staining and with gene expression information from the scRNA-seq data not used for model fitting. Finally, we tested the translational relevance of the mathematical model by deconvolution of longitudinal bulk mRNA-sequencing data from a cohort of human IBD patients treated with olamkicept. We found that neutrophil depletion may contribute to IBD patients entering remission. The predictive power of IBD deterministic modelling highlights its potential to advance our understanding of immune dynamics in health and disease.
Collapse
Affiliation(s)
- Christoph Kilian
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Hanna Ulrich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Viktor A Zouboulis
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Paulina Sprezyna
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Jasmin Schreiber
- Leibniz Institute for the Analysis of Biodiversity Change, D-20146, Hamburg, Germany
| | - Tomer Landsberger
- Department of statistics and data science, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maren Büttner
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany
| | - Lorenz Adlung
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI) and Center for Biomedical AI (bAIome), University Medical Center Hamburg-Eppendorf (UKE), D-20246, Hamburg, Germany.
| |
Collapse
|
6
|
Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, Johnson K, Condray CD, Hong S, Cressall BK, Pizarro TT, Hurtado-Lorenzo A, Heller CA, Moss AC, Swantek JL, Garrett WS. Challenges in IBD Research 2024: Preclinical Human IBD Mechanisms. Inflamm Bowel Dis 2024; 30:S5-S18. [PMID: 38778627 PMCID: PMC11491665 DOI: 10.1093/ibd/izae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Preclinical human inflammatory bowel disease (IBD) mechanisms is one of 5 focus areas of the Challenges in IBD Research 2024 document, which also includes environmental triggers, novel technologies, precision medicine, and pragmatic clinical research. Herein, we provide a comprehensive overview of current gaps in inflammatory bowel diseases research that relate to preclinical research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in IBD interception, remission, and restoration. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders and represents a valuable resource for patient-centric research prioritization. This preclinical human IBD mechanisms section identifies major research gaps whose investigation will elucidate pathways and mechanisms that can be targeted to address unmet medical needs in IBD. Research gaps were identified in the following areas: genetics, risk alleles, and epigenetics; the microbiome; cell states and interactions; barrier function; IBD complications (specifically fibrosis and stricturing); and extraintestinal manifestations. To address these gaps, we share specific opportunities for investigation for basic and translational scientists and identify priority actions.
Collapse
Affiliation(s)
- Matthew A Ciorba
- Inflammatory Bowel Diseases Center, Division of Gastroenterology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Liza Konnikova
- Departments of Pediatrics, Immunobiology, and Obstetric, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Dept. of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Elena M Lucchetta
- The Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | - Jerrold R Turner
- Departments of Pathology and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Cass D Condray
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Sungmo Hong
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Brandon K Cressall
- Patient Representative for the Crohn’s & Colitis Foundation, New York, NY, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Caren A Heller
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | - Alan C Moss
- Research Department, Crohn’s & Colitis Foundation, New York, NY, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Kymera Therapeutics, Watertown, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Malonga T, Vialaneix N, Beaumont M. BEST4 + cells in the intestinal epithelium. Am J Physiol Cell Physiol 2024; 326:C1345-C1352. [PMID: 38557358 PMCID: PMC11371329 DOI: 10.1152/ajpcell.00042.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
The recent development of single-cell transcriptomics highlighted the existence of a new lineage of mature absorptive cells in the human intestinal epithelium. This subpopulation is characterized by the specific expression of Bestrophin 4 (BEST4) and of other marker genes including OTOP2, CA7, GUCA2A, GUCA2B, and SPIB. BEST4+ cells appear early in development and are present in all regions of the small and large intestine at a low abundance (<5% of all epithelial cells). Location-specific gene expression profiles in BEST4+ cells suggest their functional specialization in each gut region, as exemplified by the small intestine-specific expression of the ion channel CFTR. The putative roles of BEST4+ cells include sensing and regulation of luminal pH, tuning of guanylyl cyclase-C signaling, transport of electrolytes, hydration of mucus, and secretion of antimicrobial peptides. However, most of these hypotheses lack functional validation, notably because BEST4+ cells are absent in mice. The presence of BEST4+ cells in human intestinal organoids indicates that this in vitro model should be suitable to study their role. Recent studies showed that BEST4+ cells are also present in the intestinal epithelium of macaque, pig, and zebrafish and, here, we report their presence in rabbits, which suggests that these species could be appropriate animal models to study BEST4+ cells during the development of diseases and their interactions with environmental factors such as diet or the microbiota. In this review, we summarize the existing literature regarding BEST4+ cells and emphasize the description of their predicted roles in the intestinal epithelium in health and disease.NEW & NOTEWORTHY BEST4+ cells are a novel subtype of mature absorptive cells in the human intestinal epithelium highlighted by single-cell transcriptomics. The gene expression profile of BEST4+ cells suggests their role in pH regulation, electrolyte secretion, mucus hydration, and innate immune defense. The absence of BEST4+ cells in mice requires the use of alternative animal models or organoids to decipher the role of this novel type of intestinal epithelial cells.
Collapse
Affiliation(s)
- Tania Malonga
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
- Université de Toulouse, INRAE, UR MIAT, Castanet-Tolosan, France
| | - Nathalie Vialaneix
- Université de Toulouse, INRAE, UR MIAT, Castanet-Tolosan, France
- Université de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France
| |
Collapse
|
8
|
Brown M, Dodd A, Shi F, Greenwood E, Nagpal S, Kolachala VL, Kugathasan S, Gibson G. Concordant B and T Cell Heterogeneity Inferred from the Multiomic Landscape of Peripheral Blood Mononuclear Cells in a Crohn's Disease Cohort. J Crohns Colitis 2024; 18:jjae055. [PMID: 38613150 PMCID: PMC11637485 DOI: 10.1093/ecco-jcc/jjae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 04/14/2024]
Abstract
BACKGROUND AND AIMS Crohn's disease is characterized by inflammation in the gastrointestinal tract due to a combination of genetic, immune, and environmental factors. Transcriptomic and epigenomic profiling of intestinal tissue of Crohn's disease patients have revealed valuable insights into pathology, however have not been conducted jointly on less invasive peripheral blood mononuclear cells (PBMCs). Furthermore, the heterogeneous responses to treatments among individuals with Crohn's disease imply hidden diversity of pathological mechanisms. METHODS We employed single nucleus multiomic analysis, integrating both snRNA-seq and snATAC-seq of PBMCs with a variety of open source bioinformatics applications. RESULTS Our findings reveal a diverse range of transcriptional signatures among individuals, highlighting the heterogeneity in PBMC profiles. Nevertheless, striking concordance between three heterogeneous groups was observed across B cells and T cells. Differential gene regulatory mechanisms partially explain these profiles, notably including a signature involving TGFß signaling in two individuals with Crohn's disease. A mutation mapped to a transcription factor binding site within a differentially accessible peak associated with the expression of this pathway, with implications for a personalized approach to understanding disease pathology. CONCLUSIONS This study highlights how multiomic analysis can reveal common regulatory mechanisms that underlie heterogeneity of PBMC profiles, one of which may be specific to inflammatory disease.
Collapse
Affiliation(s)
- Margaret Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Fang Shi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Emily Greenwood
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sini Nagpal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
9
|
Karmele EP, Moldoveanu AL, Kaymak I, Jugder BE, Ursin RL, Bednar KJ, Corridoni D, Ort T. Single cell RNA-sequencing profiling to improve the translation between human IBD and in vivo models. Front Immunol 2023; 14:1291990. [PMID: 38179052 PMCID: PMC10766350 DOI: 10.3389/fimmu.2023.1291990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.
Collapse
Affiliation(s)
- Erik P. Karmele
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ana Laura Moldoveanu
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Irem Kaymak
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Bat-Erdene Jugder
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Rebecca L. Ursin
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA, United States
| | - Kyle J. Bednar
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Tatiana Ort
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
10
|
Zheng HB. Application of single-cell omics in inflammatory bowel disease. World J Gastroenterol 2023; 29:4397-4404. [PMID: 37576705 PMCID: PMC10415967 DOI: 10.3748/wjg.v29.i28.4397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/26/2023] Open
Abstract
Over the past decade, the advent of single cell RNA-sequencing has revolutionized the approach in cellular transcriptomics research. The current technology offers an unbiased platform to understand how genotype correlates to phenotype. Single-cell omics applications in gastrointestinal (GI) research namely inflammatory bowel disease (IBD) has become popular in the last few years with multiple publications as single-cell omics techniques can be applied directly to the target organ, the GI tract at the tissue level. Through examination of mucosal tissue and peripheral blood in IBD, the recent boom in single cell research has identified a myriad of key immune players from enterocytes to tissue resident memory T cells, and explored functional heterogeneity within cellular subsets previously unreported. As we begin to unravel the complex mucosal immune system in states of health and disease like IBD, the power of exploration through single-cell omics can change our approach to translational research. As novel techniques evolve through multiplexing single-cell omics and spatial transcriptomics come to the forefront, we can begin to fully comprehend the disease IBD and better design targets of treatment. In addition, hopefully these techniques can ultimately begin to identify biomarkers of therapeutic response and answer clinically relevant questions in how to tailor individual therapy to patients through personalized medicine.
Collapse
Affiliation(s)
- Hengqi Betty Zheng
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, WA 98105, United States
| |
Collapse
|
11
|
Richard N, Savoye G, Leboutte M, Amamou A, Ghosh S, Marion-Letellier R. Crohn’s disease: Why the ileum? World J Gastroenterol 2023; 29:3222-3240. [PMID: 37377591 PMCID: PMC10292140 DOI: 10.3748/wjg.v29.i21.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Crohn’s disease (CD) is an inflammatory bowel disease characterized by immune-mediated flares affecting any region of the intestine alternating with remission periods. In CD, the ileum is frequently affected and about one third of patients presents with a pure ileal type. Moreover, the ileal type of CD presents epidemiological specificities like a younger age at onset and often a strong link with smoking and genetic susceptibility genes. Most of these genes are associated with Paneth cell dysfunction, a cell type found in the intestinal crypts of the ileum. Besides, a Western-type diet is associated in epidemiological studies with CD onset and increasing evidence shows that diet can modulate the composition of bile acids and gut microbiota, which in turn modulates the susceptibility of the ileum to inflammation. Thus, the interplay between environmental factors and the histological and anatomical features of the ileum is thought to explain the specific transcriptome profile observed in CD ileitis. Indeed, both immune response and cellular healing processes harbour differences between ileal and non-ileal CD. Taken together, these findings advocate for a dedicated therapeutic approach to managing ileal CD. Currently, interventional pharmacological studies have failed to clearly demonstrate distinct response profiles according to disease site. However, the high rate of stricturing disease in ileal CD requires the identification of new therapeutic targets to significantly change the natural history of this debilitating disease.
Collapse
Affiliation(s)
- Nicolas Richard
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- CHU Rouen, Department of Gastroenterology, Rouen University Hospital-Charles Nicolle, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| | - Guillaume Savoye
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- CHU Rouen, Department of Gastroenterology, Rouen University Hospital-Charles Nicolle, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| | - Mathilde Leboutte
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| | - Asma Amamou
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork T12 YT20, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, Biosciences Building, University College Cork, Cork T12 YT20, Ireland
| | - Rachel Marion-Letellier
- University of Rouen Normandie, INSERM, ADEN UMR 1073, Nutrition, Inflammation and Microbiota-Gut-Brain Axis, Rouen F-76000, France
- Institute for Research and Innovation in Biomedicine, University of Rouen Normandie, Rouen F-76000, France
| |
Collapse
|
12
|
Corridoni D, Pizarro TT. Single-cell Transcriptomics Reveal the Importance of Distinct Epithelial Cell Populations in Ileal-specific, Treatment-naïve, and Treated Crohn's Disease Patients. Inflamm Bowel Dis 2023; 29:334-336. [PMID: 36610699 DOI: 10.1093/ibd/izac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 01/09/2023]
Abstract
Lay Summary
The advent of single-cell technologies has revolutionized analyses of IBD-specific processes by identifying important, often novel, mucosal cells subpopulations and their associated functions. We discuss recent findings reporting transcriptomic and cellular diversity of treatment-naïve and treated patients with ileal-specific CD.
Collapse
Affiliation(s)
- Daniele Corridoni
- Bioscience Immunology, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|