1
|
Diamond KM, Nishiura L, Sakihara T, Schoenfuss HL, Blob RW. When to Go Against the Flow: Examining Patterns of Performance Over Multiday Migration Events in the Hawaiian Stream Fish, 'O'opu Nōpili (Sicyopterus stimpsoni). Integr Comp Biol 2024; 64:496-505. [PMID: 38925645 DOI: 10.1093/icb/icae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Many animals migrate across regions of their geographic range as part of extended events, with groups of individuals proceeding through areas of travel on several successive days. Early migrating individuals may have an advantage over late migrating individuals by gaining early access to the resources at the eventual destination. For situations where early access to resources would provide an advantage, specific sets of locomotor traits might be found among individuals that are earlier migrators. We tested for associations between migration timing and traits related to escape responses, climbing, and morphology in the amphidromous Hawaiian stream goby, 'o'opu nōpili (Sicyopterus stimpsoni). In this species, juvenile fish migrate in pulses over several days immediately following flash floods. We collected daily measurements of escape responses and waterfall climbing from juvenile fish arriving at streams from the ocean. We found that escape performance showed mainly stochastic variation across migrating individuals tested on successive days. In contrast, some metrics of climbing performance decrease over successive pulses during a migration event. We also found more variation in body shape among fish from early pulses during migration events compared to later in pulses. These results could have implications for guiding conservation efforts, identifying critical time windows for protection as periods with the greatest likelihood of successful migrants.
Collapse
Affiliation(s)
- Kelly M Diamond
- Department of Biology, Rhodes College, Memphis, TN 38112, USA
| | - Lance Nishiura
- Department of Land and Natural Resources, Division of Aquatic Resources, State of Hawai'i, Hilo, HI 96720, USA
| | - Troy Sakihara
- Department of Land and Natural Resources, Division of Aquatic Resources, State of Hawai'i, Hilo, HI 96720, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Wang C, Hu L, Song Y, Xie H, Yang L, Serekbol G, Huo B, Chen S. The Evolution of Three Schizothoracinae Species from Two Major River Systems in Northwest China Based on Otolith Morphology and Skeletal Structure. BIOLOGY 2024; 13:517. [PMID: 39056710 PMCID: PMC11274347 DOI: 10.3390/biology13070517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Schizothoracinae species are the largest group of Cypriniformes that readily adapt to the natural conditions of the Qinghai-Tibet Plateau. This group has habitat characteristics and distribution patterns centered on the Qinghai-Tibet Plateau. To study the evolution of three Schizothoracinae species in Northwest China, the evolutionary characteristics of these species were explored based on differences in otolith morphology and skeletal morphology. From 2020 to 2022, 138 samples (63 Aspiorhynchus laticeps, 35 Diptychus maculatus and 40 Schizothorax pseudaksaiensis) were collected from the Tarim River and Ili River, 6 basic morphological parameters of otoliths were measured and converted into 6 morphological factors and 7 morphological indices. A total of 77 Fourier transform coefficients of each otolith were selected The first three principal components accounted for 92.834% of the total variation in 13 otolith morphological indices of the three Schizothoracinae species, and the overall discrimination rate was 94.20%. According to the principal component analysis of 77 Fourier harmonic values of otoliths, the first 20 principal components explained 97.233% of the total variation, and the overall discrimination rate was 100%. The results of the cluster analysis directly reflected the relationships between related species. The differences in the bone morphology of the three Schizothoracinae species were particularly reflected in the number of whiskers, pharyngeal teeth and vertebrae, and there were also significant differences in the shapes of the sphenotic (SP), pterotic (PTE), preoperculum (PO), branchiostegal ray (BRA) and basibranchial (BB) bones. Their unique morphological and skeletal characteristics are closely related to geological changes and water system evolutionary trends. This study contributes to the understanding of species identification and the evolutionary status of plateau fishes, provides a reference for further evolutionary classification and for assessing the evolutionary mechanisms of plateau fishes, and provides a scientific basis for phylogeny and germplasm resource protection.
Collapse
Affiliation(s)
- Chengxin Wang
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China; (C.W.); (L.H.); (Y.S.); (H.X.); (L.Y.)
| | - Linghui Hu
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China; (C.W.); (L.H.); (Y.S.); (H.X.); (L.Y.)
| | - Yong Song
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China; (C.W.); (L.H.); (Y.S.); (H.X.); (L.Y.)
| | - Haoyang Xie
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China; (C.W.); (L.H.); (Y.S.); (H.X.); (L.Y.)
| | - Liting Yang
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China; (C.W.); (L.H.); (Y.S.); (H.X.); (L.Y.)
| | - Gulden Serekbol
- College of Animal Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China;
| | - Bin Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shengao Chen
- College of Life Science and Technology, Tarim Research Center of Rare Fishes, Tarim University, Alar 843300, China; (C.W.); (L.H.); (Y.S.); (H.X.); (L.Y.)
| |
Collapse
|
3
|
Ching C, Miller JA, Tsang Y, Fraiola K, Clilverd H, Honarvar S. Understanding amphidromy in Hawai'i: 'O'opu nākea (Awaous stamineus). JOURNAL OF FISH BIOLOGY 2023; 103:1163-1177. [PMID: 37492939 DOI: 10.1111/jfb.15511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Hawai'i is home to 'o'opu nākea (Awaous stamineus), a culturally significant, endemic, goby that exhibits an amphidromous life cycle characterized by a marine larval stage followed by post-larval recruitment to streams, where they live to become reproductive adults. However, it was recently suggested that their migration to the ocean might not be obligatory, as originally thought. Despite their importance in Hawaiian traditions and the ecology of Hawaiian freshwater ecosystems, we still lack a full understanding of their migratory patterns and life history due to the difficulties in determining the environmental migratory cues that set the timing and location of their migratory paths. This study examined environmental factors, such as mean annual rainfall, streamflow, and water chemistry, to determine if they play a role in whether A. stamineus spend their larval period in the ocean or their entire life cycle in freshwater streams. We sampled A. stamineus (n = 90) from three streams (Kahana, Kahalu'u, and Waimānalo) on the island of O'ahu, Hawai'i that represented the range of hydroclimatic gradient in wet-habitat conditions on the windward side of the island and characterized their migratory pattern using elemental analysis of sagittae, the largest pair of otoliths (calcareous ear structures). Based on otolith strontium:calcium and barium:calcium ratios, we determined if individuals spent their larval period in the ocean or the stream. We found that 100% of individuals displayed clear evidence of marine residence during their larval phase, regardless of the environmental factors the fish experienced. This study highlights the necessity of stream-ocean connectivity for the survival of A. stamineus and emphasizes the importance of stream-mouth conservation and management as it is a critical transition zone in stream-ocean-stream migratory pathways.
Collapse
Affiliation(s)
- Cody Ching
- University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | | | - Yinphan Tsang
- University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | | | | | | |
Collapse
|
4
|
Cesarini G, Gallitelli L, Traversetti L, Bandini T, Scalici M. Hydromorphological discontinuities deeply modify the benthic multi-species assemblage diversity in a Mediterranean running river. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Lagarde R, Ponton D. Predation pressure in amphidromous gobies: how their morphology is selected by predator species. J Zool (1987) 2022. [DOI: 10.1111/jzo.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Lagarde
- Environnements Méditerranéens, Centre de Formation et de Recherche sur les Université de Perpignan Via Domitia – CNRS Perpignan France
| | - D. Ponton
- ENTROPIE, IRD‐Université de La Réunion‐CNRS‐Université de la Nouvelle‐Calédonie‐IFREMER, c/o, Institut Halieutique et des Sciences Marines (IH.SM) Université de Toliara Toliara Madagascar
| |
Collapse
|
6
|
Palecek AM, Schoenfuss HL, Blob RW. Sucker Shapes, Skeletons and Bioinspiration: How Hard and Soft Tissue Morphology Generates Adhesive Performance in Waterfall Climbing Goby Fishes. Integr Comp Biol 2022; 62:934-944. [PMID: 35767861 DOI: 10.1093/icb/icac094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 11/14/2022] Open
Abstract
Many teleost fishes, such as gobies, have fused their paired pelvic fins into an adhesive disc. Gobies can use their pelvic suckers to generate passive adhesive forces (as in engineered suction cups) and different species exhibit a range of adhesive performance, with some even able to climb waterfalls. Previous studies have documented that, in the Hawaiian Islands, species capable of climbing higher waterfalls produce the highest passive pull-off forces, and species found at higher elevation sites are likely to have more rounded suction discs than those found in the lowest stream segments. Morphology of the pelvic girdle also varies between species, with more robust skeletons in taxa with superior passive adhesion. To investigate what factors impact the passive adhesive performance of waterfall climbing gobies, we tested biomimetic suction cups designed with a range of shapes and embedded bioinspired "skeletons" based on micro-CT scans of goby pelvic girdles. We found that while the presence of an internal skeleton may provide some support against failure, the performance of suction cups may be more strongly affected by their external shape. Nonetheless, factors besides external shape and skeletal morphology may still have a stronger influence on sucker tenacity. Our results suggest that the relationship between suction disc morphology and adhesive performance may be influenced by a variety of physical factors, and live animal performance likely is further complicated by muscle activation and climbing behavior. These results have implications for the evolution of suction disc shape in adhesive fishes and for improving the design of biomimetic suction cups.
Collapse
Affiliation(s)
- A M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - R W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
7
|
Assessing Occurrence and Biological Consequences of Contaminants of Emerging Concern on Oceanic Islands. WATER 2022. [DOI: 10.3390/w14030275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freshwater streams on oceanic islands serve critical ecological and economic functions. However, these are underrepresented in assessments of pollution from contaminants of emerging concern (CEC). Furthermore, freshwater streams and their endemic fauna often have characteristics that are distinct from those of continental streams and model species, calling extrapolations from studies of such systems into question for island streams. In the current study, we assessed the presence of CEC across three sampling events and five freshwater streams on the Island of Hawai’i. We also exposed juveniles of the native fish species Sicyopterus stimpsoni to a mixture of commonly co-occurring CEC for 96 h in static renewal experiments, testing for impacts of CEC in two ecologically relevant assays of functional performance. CEC from multiple sources were ubiquitous in Hawaiian streams, including human-use pharmaceuticals, agricultural herbicides, and industrial runoff. Concentrations of CEC were comparable to published studies from continental streams, exceeding total concentrations of 1000 ng/L for the eight quantified CEC in four samples, and approaching 2500 ng/L in one sample. Effects on exposed fish were subtle and limited to treatments with higher CEC concentrations but indicated potential impacts of CEC on locomotor performance. These results indicate that Hawaiian streams follow a global trend of widespread freshwater pollution by CEC that are accompanied by subtle effects on native fish species and highlight the need for the inclusion of endemic species and ecologically relevant assays when assessing the effects of contaminants in island habitats.
Collapse
|
8
|
Maie T, Blob RW. Adhesive force and endurance of the pelvic sucker across different modes of waterfall-climbing in gobiid fishes: Contrasting climbing mechanisms share aspects of ontogenetic change. ZOOLOGY 2021; 149:125969. [PMID: 34601374 DOI: 10.1016/j.zool.2021.125969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022]
Abstract
Waterfall-climbing gobiids from oceanic islands use a suction-based adhesive mechanism formed by fused pelvic fins (pelvic sucker) and exhibit rock-climbing behavior during upstream migration. Although adhesion is a common feature of locomotion in these fishes, two distinct climbing styles - powerburst climbing and inching - have evolved. We compared the performance of the pelvic sucker during climbing across a range of body sizes between two species that use these different styles, collecting new data from the powerburst climber Lentipes concolor, and comparing these to published data for the inching climber Sicyopterus japonicus. Suction force for adhesion generated during continuous climbing did not differ between the species, with similar mean safety factors of 2.5-3.0. However, L. concolor engaged its pelvic sucker for a significantly longer duration of time (approximately 34 % longer per climbing cycle) than S. japonicus during continuous climbing. During sustained adhesion, both species exhibited non-linear scaling of fatigue time, with intermediate-sized individuals (e.g., large juveniles to small adults) showing the greatest endurance. However, the two species exhibited strikingly different maxima and variability in the endurance of their pelvic suckers. Maximum time to fatigue in L. concolor was less than half that of S. japonicus, but L. concolor showed more than double the variability of S. japonicus in time to fatigue. Our comparisons of these species reveal that despite differences in several aspects of their adhesive performance, some features of sucker function remain similar across climbing styles, including several related to how performance changes through ontogeny.
Collapse
Affiliation(s)
- Takashi Maie
- Department of Biology, College of Arts and Sciences, University of Lynchburg, Hobbs Hall, 1501 Lakeside Drive, Lynchburg, VA, 24501, USA.
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| |
Collapse
|
9
|
Forker GK, Schoenfuss HL, Blob RW, Diamond KM. Bendy to the bone: Links between vertebral morphology and waterfall climbing in amphidromous gobioid fishes. J Anat 2021; 239:747-754. [PMID: 33928628 PMCID: PMC8349408 DOI: 10.1111/joa.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/28/2022] Open
Abstract
Locomotor force production imposes strong demands on organismal form. Thus, the evolution of novel locomotor modes is often associated with morphological adaptations that help to meet those demands. In the goby lineage of fishes, most species are marine and use their fused pelvic fins to facilitate station holding in wave-swept environments. However, several groups of gobies have evolved an amphidromous lifecycle, in which larvae develop in the ocean but juveniles migrate to freshwater for their adult phase. In many of these species, the pelvic fins have been co-opted to aid in climbing waterfalls during upstream migrations to adult habitats. During horizontal swimming, forces are produced by axial musculature pulling on the vertebral column. However, during vertical climbing, gravity also exerts forces along the length of the vertebral column. In this study, we searched for novel aspects of vertebral column form that might be associated with the distinctive locomotor strategies of climbing gobies. We predicted that stiffness would vary along the length of the vertebral column due to competing demands for stability of the suction disk anteriorly and flexibility for axial thrust production posteriorly. We also predicted that derived, climbing goby species would require stiffer backbones to aid in vertical thrust production compared to non-climbing species. To test these predictions, we used microcomputed tomography scans to compare vertebral anatomy (centrum length, centrum width, and intervertebral space) along the vertebral column for five gobioid species that differ in climbing ability. Our results support our second prediction, that gobies are more flexible in the posterior portion of the body. However, the main variation in vertebral column form associated with climbing ability was the presence of larger intervertebral spaces in Sicyopterus stimpsoni, a species that uses a distinctive inching behavior to climb. These results build on past kinematic studies of goby climbing performance and lend insights into how the underlying vertebral structure of these fishes may enable their novel locomotion.
Collapse
Affiliation(s)
- Grace K. Forker
- Department of Biological SciencesClemson UniversityClemsonSCUSA
- School of Veterinary MedicineUniversity of GeorgiaAthensGAUSA
| | | | - Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSCUSA
| | - Kelly M. Diamond
- Department of Biological SciencesClemson UniversityClemsonSCUSA
- Center for Developmental Biology and Regenerative MedicineSeattle Children’s Research InstituteSeattleWAUSA
| |
Collapse
|
10
|
Diamond KM, Lagarde R, Griner JG, Ponton D, Powder KE, Schoenfuss HL, Walker JA, Blob RW. Interactions among multiple selective pressures on the form–function relationship in insular stream fishes. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Relationships between body shape and escape performance are well established for many species. However, organisms can face multiple selection pressures that might impose competing demands. Many fishes use fast starts for escaping predator attacks, whereas some species of gobiid fishes have evolved the ability to climb waterfalls out of predator-dense habitats. The ancestral ‘powerburst’ climbing mechanism uses lateral body undulations to move up waterfalls, whereas a derived ‘inching’ mechanism uses rectilinear locomotion. We examined whether fast-start performance is impacted by selection imposed from the new functional demands of climbing. We predicted that non-climbing species would show morphology and fast-start performance that facilitate predator evasion, because these fish live consistently with predators and are not constrained by the demands of climbing. We also predicted that, by using lateral undulations, powerburst climbers would show escape performance superior to that of inchers. We compared fast starts and body shape across six goby species. As predicted, non-climbing fish exhibited distinct morphology and responded more frequently to an attack stimulus than climbing species. Contrary to our predictions, we found no differences in escape performance among climbing styles. These results indicate that selection for a competing pressure need not limit the ability of prey to escape predator attacks.
Collapse
Affiliation(s)
- Kelly M Diamond
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Raphaël Lagarde
- Hydrô Réunion, Z.I. Les Sables, Etang Salé, La Réunion, France
- Université de Perpignan Via Domitia – CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR, Perpignan, France
| | - J Gill Griner
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Dominique Ponton
- ENTROPIE, IRD-Université de La Réunion-CNRS-Université de la Nouvelle-Calédonie-IFREMER, c/o Institut Halieutique et des Sciences Marines (IH.SM), Université de Toliara, Rue Dr. Rabesandratana, BP, Toliara, Madagascar
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN, USA
| | - Jeffrey A Walker
- Department of Biological Sciences, University of Southern Maine, Portland, ME, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
11
|
Palecek AM, Schoenfuss HL, Blob RW. Sticking to it: testing passive pull-off forces in waterfall-climbing fishes across challenging substrates. J Exp Biol 2021; 224:jeb228718. [PMID: 33328291 DOI: 10.1242/jeb.228718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/04/2020] [Indexed: 11/20/2022]
Abstract
The pelvic sucker of Hawaiian waterfall climbing gobies allows these fishes to attach to substrates while climbing waterfalls tens to hundreds of meters tall. Climbing ability varies by species and may be further modulated by the physical characteristics of the waterfall substrate. In this study, we investigated the influence of surface wettability (hydrophobic versus hydrophilic surface charges) and substrate roughness on the passive adhesive system of four species of gobies with different climbing abilities. Overall, passive adhesive performance varied by species and substrate, with the strongest climbers showing the highest shear pull-off forces, particularly on rough surfaces. Thus, differences in passive adhesive performance may help to explain the ability of some species to migrate further upstream than others and contribute to their ability to invade new habitats.
Collapse
Affiliation(s)
- Amanda M Palecek
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, MN 56301, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
12
|
Tian G, Fan D, Feng X, Zhou H. Thriving artificial underwater drag-reduction materials inspired from aquatic animals: progresses and challenges. RSC Adv 2021; 11:3399-3428. [PMID: 35424313 PMCID: PMC8694127 DOI: 10.1039/d0ra08672j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023] Open
Abstract
In the past decades, drag-reduction surfaces have attracted more and more attention due to their potentiality and wide applications in various fields such as traffic, energy transportation, agriculture, textile industry, and military. However, there are still some drag-reduction materials that need to be deeply explored. Fortunately, natural creatures always have the best properties after long-term evolution; aquatic organisms have diversified surface microstructures and drag-reducing materials, which provide design templates for the development of thriving artificial underwater drag-reduction materials. Aquatic animals are tamed by the current while fighting against the water, and thus have excellent drag reduction that is unparalleled in water. Inspired by biological principles, using aquatic animals as a bionic object to develop and reduce frictional resistance in fluids has attracted more attention in the past few years. More and more aquatic animals bring new inspiration for drag-reduction surfaces and a tremendous amount of research effort has been put into the study of surface drag-reduction, with an aim to seek the surface structure with the best drag-reduction effect and explore the drag-reduction mechanism. This present paper reviews the research on drag-reduction surfaces inspired by aquatic animals, including sharks, dolphins, and other aquatic animals. Aquatic animals as bionic objects are described in detail, with a discussion on the drag-reduction mechanism and drag-reduction effect to understand the development of underwater drag-reduction fully. In bionic manufacturing, the effective combination of various preparation methods is summarized. Moreover, bionic surfaces are briefly explained in terms of traffic, energy sources, sports, and agriculture. In the end, both existing problems in bionic research and future research prospects are proposed. This paper may provide a better and more comprehensive understanding of the current research status of aquatic animals-inspired drag reduction.
Collapse
Affiliation(s)
- Guizhong Tian
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology Zhenjiang P. R. China
| | - Dongliang Fan
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology Zhenjiang P. R. China
| | - Xiaoming Feng
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology Zhenjiang P. R. China
| | - Honggen Zhou
- College of Mechanical Engineering, Jiangsu Provincial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, Jiangsu University of Science and Technology Zhenjiang P. R. China
| |
Collapse
|
13
|
Comparative analysis of the morphology, karyotypes and biochemical composition of muscle in Siniperca chuatsi, Siniperca scherzeri and the F1 hybrid (S. chuatsi ♀ × S. scherzeri ♂). AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2020.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Phenotypically Induced Intraspecific Variation in the Morphological Development of Wetland and Stream Galaxias gollumoides McDowall and Chadderton. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12060220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hypothesis that contrasting hydrology induces divergent intraspecific phenotypic plastic responses in non-migratory freshwater fish was investigated. Morphologies of wetland and stream Galaxias gollumoides from South Island, New Zealand, at different stages of ontogeny, were examined. Phenotypic responses were tested for in a 2 × 2 factorial laboratory based controlled reciprocal transplant experiment with flow (current or no current) and source habitat (wetland or stream), as treatments. There was a shift in the overall head morphology of wetland current treatment G. gollumoides away from the wetland no current treatment, and toward the stream current treatment, demonstrating convergence in head morphology in the presence of flow of wetland and stream sourced captive G. gollumoides. Morphologies of captive reared G. gollumoides were also compared to developmental trajectories of morphological characters during the ontogeny of field reared first year, and adult conspecifics. In combination, experimental and field results support the hypothesis, finding habitat hydrology to be the potential mechanism inducing and maintaining intraspecific morphological divergence in G. gollumoides. Recognition of this mechanism inducing morphological divergence between populations also aids the taxonomic description of long genetically recognised lineages of co-members of the Galaxias vulgaris species complex.
Collapse
|
15
|
Blob RW, Baumann T, Diamond KM, Young VKH, Schoenfuss HL. Functional correlations of axial muscle fiber type proportions in the waterfall-climbing Hawaiian stream fish Sicyopterus stimpsoni. J Anat 2020; 236:1160-1166. [PMID: 32092791 PMCID: PMC7219618 DOI: 10.1111/joa.13169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/27/2022] Open
Abstract
Assessing the factors that contribute to successful locomotor performance can provide critical insight into how animals survive in challenging habitats. Locomotion is powered by muscles, so that differences in the relative proportions of red (slow-oxidative) vs. white (fast-glycolytic) fibers can have significant implications for locomotor performance. We compared the relative proportions of axial red muscle fibers between groups of juveniles of the amphidromous gobiid fish, Sicyopterus stimpsoni, from the Hawaiian Islands. Juveniles of this species migrate from the ocean into freshwater streams, navigating through a gauntlet of predators that require rapid escape responses, before reaching waterfalls which must be climbed (using a slow, inching behavior) to reach adult breeding habitats. We found that fish from Kaua'i have a smaller proportion of red fibers in their tail muscles than fish from Hawai'i, matching expectations based on the longer pre-waterfall stream reaches of Kaua'i that could increase exposure to predators, making reduction of red muscle and increases in white muscle advantageous. However, no difference in red muscle proportions was identified between fish that were either successful or unsuccessful in scaling model waterfalls during laboratory climbing trials, suggesting that proportions of red muscle are near a localized fitness peak among Hawaiian individuals.
Collapse
Affiliation(s)
- Richard W. Blob
- Department of Biological SciencesClemson UniversityClemsonSCUSA
| | - Travis Baumann
- Aquatic Toxicology LaboratorySt. Cloud State UniversitySt. CloudMNUSA
| | | | | | | |
Collapse
|
16
|
Heim-Ballew H, Moody KN, Blum MJ, McIntyre PB, Hogan JD. Migratory flexibility in native Hawai'ian amphidromous fishes. JOURNAL OF FISH BIOLOGY 2020; 96:456-468. [PMID: 31814124 DOI: 10.1111/jfb.14224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
We assessed the prevalence of life history variation across four of the five native amphidromous Hawai'ian gobioids to determine whether some or all exhibit evidence of partial migration. Analysis of otolith Sr.: Ca concentrations affirmed that all are amphidromous and revealed evidence of partial migration in three of the four species. We found that 25% of Lentipes concolor (n = 8), 40% of Eleotris sandwicensis (n = 20) and 29% of Stenogobius hawaiiensis (n = 24) did not exhibit a migratory life-history. In contrast, all individuals of Sicyopterus stimpsoni (n = 55) included in the study went to sea as larvae. Lentipes concolor exhibited the shortest mean larval duration (LD) at 87 days, successively followed by E. sandwicensis (mean LD = 102 days), S. hawaiiensis (mean LD = 114 days) and S. stimpsoni (mean LD = 120 days). These findings offer a fresh perspective on migratory life histories that can help improve efforts to conserve and protect all of these and other at-risk amphidromous species that are subject to escalating anthropogenic pressures in both freshwater and marine environments.
Collapse
Affiliation(s)
- Heidi Heim-Ballew
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Kristine N Moody
- Department of Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| | - Peter B McIntyre
- Center for Limnology, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Natural Resources, Cornell University, Ithaca, New York, USA
| | - James D Hogan
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
17
|
Styga JM, Pienaar J, Scott PA, Earley RL. Does Body Shape in Fundulus Adapt to Variation in Habitat Salinity? Front Physiol 2019; 10:1400. [PMID: 31803063 PMCID: PMC6872640 DOI: 10.3389/fphys.2019.01400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/30/2019] [Indexed: 01/29/2023] Open
Abstract
Understanding the ecological pressures that generate variation in body shape is important because body shape profoundly affects physiology and overall fitness. Using Fundulus, a genus of fish that exhibits considerable morphological and physiological variation with evidence of repeated transitions between freshwater and saltwater habitats, we tested whether habitat salinity has influenced the macroevolution of body shape at different stages in development. After accounting for phylogenetic inertia, we find that body shape deviates from the optimal streamlined shape in a manner consistent with different osmoregulatory pressures exerted by different salinity niches at every stage of ontogeny that we examined. We attribute variation in body shape to differential selection for osmoregulatory efficiency because: (1) saline intolerant species developed body shapes with relatively low surface areas more conducive to managing osmoregulatory demands and (2) inland species that exhibit high salinity tolerances have body shapes similar to saline tolerant species in marine environments.
Collapse
Affiliation(s)
- Joseph M Styga
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States.,Biology Program, Centre College, Danville, KY, United States
| | - Jason Pienaar
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Peter A Scott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States.,Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ryan L Earley
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
18
|
Lord C, Bellec L, Dettaï A, Bonillo C, Keith P. Does your lip stick? Evolutionary aspects of the mouth morphology of the Indo‐Pacific clinging goby of the Sicyopterusgenus (Teleostei: Gobioidei: Sicydiinae) based on mitogenome phylogeny. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clara Lord
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d’Histoire naturelle, Université de Caen Normandie, CNRS, IRD, CP26 Université des Antilles Paris France
| | - Laure Bellec
- IFREMER, Centre Brest, REM/EEP/LEP ZI de la Pointe du Diable Plouzané France
| | - Agnès Dettaï
- Institut Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, École Pratique des Hautes Études, CNRS, CP30 Sorbonne Université Paris France
| | - Céline Bonillo
- Département Systématique et Évolution, UMS 2700 “Outils et Méthodes de la Systématique Intégrative” MNHN‐CNRS, Service de Systématique Moléculaire Muséum national d’Histoire naturelle, CP26 Paris cedex 05 France
| | - Philippe Keith
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Université, Muséum national d’Histoire naturelle, Université de Caen Normandie, CNRS, IRD, CP26 Université des Antilles Paris France
| |
Collapse
|
19
|
Mayerl CJ, Hicks KE, Blob RW. Differences in kinematic plasticity between freshwater turtle species underlie differences in swimming performance in response to varying flow conditions. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The distribution and performance of aquatic vertebrates can be linked strongly to their ability to perform in variable conditions of flowing water. Performance in these variable conditions can be affected by both morphology and behaviour, and animals that experience more variable environments often show greater behavioural plasticity that improves performance in those environments. One common metric of performance is swimming stability, which can constitute a majority of the daily energy budget of swimming animals. We compared the body oscillations arising from recoil forces of the limbs of two species of freshwater turtles as they swam in different flow conditions: the lentic specialist Emydura subglobosa and the habitat generalist Chrysemys picta. We found that E. subglobosa experienced more limited oscillations in still water than C. picta, but that C. picta had a greater kinematic response to increased flow speed that might contribute to their improved performance in flowing water. These results provide insight into how secondarily aquatic tetrapods respond to the functional demands of variation in flow, helping to build understanding of the relationship between energetics, kinematics and performance of such lineages in different environments.
Collapse
Affiliation(s)
- Christopher J Mayerl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kirsten E Hicks
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
20
|
Adhesive force and endurance during waterfall climbing in an amphidromous gobiid, Sicyopterus japonicus (Teleostei: Gobiidae): Ontogenetic scaling of novel locomotor performance. ZOOLOGY 2019; 133:10-16. [PMID: 30979386 DOI: 10.1016/j.zool.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/21/2022]
Abstract
An amphidromous sicydiine goby, Sicyopterus japonicus, exhibits rock-climbing behavior during upstream migration along rivers and streams. Using a pelvic sucker formed by fused pelvic fins, S. japonicus generates suction adhesion on the climbing surface. By measuring performance variables that correlate with successful rock-climbing capability, we evaluated scaling relationships of adhesive suction force generated by the pelvic sucker and fatigue during climbing in S. japonicus during ontogeny. In continuous climbing on the experimental 60°-inclined surface, the pelvic sucker of S. japonicus exhibited strong positive allometry in generating suction force for adhesion during ontogeny. In contrast, fatigue time of the pelvic sucker muscles for sustained adhesion scaled non-linearly with body mass during ontogeny. In addition, fatigue time and body mass showed the best fit to a quadratic regression, which predicted intermediate-sized individuals (large juveniles to small adults) to have better performance in adhesive endurance than smaller or larger individuals. Our experimental results indicate that different sizes of waterfall-climbing gobies have different performance capacities for rock climbing perhaps because of physiological differences in their pelvic muscles. In addition, our data from S. japonicus indicates that selection pressures on the locomotor capacities of waterfall-climbing gobiids vary during ontogeny.
Collapse
|
21
|
Moody KN, Wren JLK, Kobayashi DR, Blum MJ, Ptacek MB, Blob RW, Toonen RJ, Schoenfuss HL, Childress MJ. Evidence of local adaptation in a waterfall-climbing Hawaiian goby fish derived from coupled biophysical modeling of larval dispersal and post-settlement selection. BMC Evol Biol 2019; 19:88. [PMID: 30975077 PMCID: PMC6458715 DOI: 10.1186/s12862-019-1413-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background Local adaptation of marine and diadromous species is thought to be a product of larval dispersal, settlement mortality, and differential reproductive success, particularly in heterogeneous post-settlement habitats. We evaluated this premise with an oceanographic passive larval dispersal model coupled with individual-based models of post-settlement selection and reproduction to infer conditions that underlie local adaptation in Sicyopterus stimpsoni, an amphidromous Hawaiian goby known for its ability to climb waterfalls. Results Our model results demonstrated that larval dispersal is spatio-temporally asymmetric, with more larvae dispersed from the southeast (the Big Island) to northwest (Kaua‘i) along the archipelago, reflecting prevailing conditions such as El Niño/La Niña oscillations. Yet connectivity is nonetheless sufficient to result in homogenous populations across the archipelago. We also found, however, that ontogenetic shifts in habitat can give rise to adaptive morphological divergence when the strength of predation-driven post-settlement selection crosses a critical threshold. Notably, our simulations showed that larval dispersal is not the only factor determining the likelihood of morphological divergence. We found adaptive potential and evolutionary trajectories of S. stimpsoni were greater on islands with stronger environmental gradients and greater variance in larval cohort morphology due to fluctuating immigration. Conclusions Contrary to expectation, these findings indicate that immigration can act in concert with selection to favor local adaptation and divergence in species with marine larval dispersal. Further development of model simulations, parameterized to reflect additional empirical estimates of abiotic and biotic factors, will help advance our understanding of the proximate and ultimate mechanisms driving adaptive evolution, population resilience, and speciation in marine-associated species. Electronic supplementary material The online version of this article (10.1186/s12862-019-1413-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristine N Moody
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA. .,The ByWater Institute, Tulane University, New Orleans, LA, 70118, USA. .,Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA.
| | - Johanna L K Wren
- Department of Oceanography, School of Ocean and Earth Science and Technology (SOEST), University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.,Joint Institute of Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.,Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRC, Honolulu, HI, 96818, USA
| | - Donald R Kobayashi
- Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRC, Honolulu, HI, 96818, USA
| | - Michael J Blum
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA.,The ByWater Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St Cloud, MN, 56301, USA
| | - Michael J Childress
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
22
|
Lagarde R, Borie G, Blob RW, Schoenfuss HL, Ponton D. Intra‐ and inter‐specific morphological diversity of amphidromous gobies influences waterfall‐climbing performance. J Zool (1987) 2018. [DOI: 10.1111/jzo.12600] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R. Lagarde
- Hydrô Réunion Etang Sale France
- Laboratoire d'Excellence CORAIL ENTROPIE, IRD CNRS Université de La Réunion Sainte Clotilde Cedex France
| | - G. Borie
- Hydrô Réunion Etang Sale France
- OCEA Consult’ Ravine des Cabris France
| | - R. W. Blob
- Department of Biological Sciences Clemson University Clemson SC USA
| | - H. L. Schoenfuss
- Aquatic Toxicology Laboratory St Cloud State University St Cloud MN USA
| | - D. Ponton
- Laboratoire d'Excellence CORAIL ENTROPIE, IRD CNRS Université de La Réunion Sainte Clotilde Cedex France
| |
Collapse
|
23
|
Heers AM. New Perspectives on the Ontogeny and Evolution of Avian Locomotion. Integr Comp Biol 2016; 56:428-41. [DOI: 10.1093/icb/icw065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Ord TJ, Cooke GM. Repeated evolution of amphibious behavior in fish and its implications for the colonization of novel environments. Evolution 2016; 70:1747-59. [DOI: 10.1111/evo.12971] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Terry J. Ord
- Evolution and Ecology Research Centre University of New South Wales Kensington NSW 2052 Australia
- School of Biological, Earth and Environmental Sciences University of New South Wales Kensington NSW 2052 Australia
| | - Georgina M. Cooke
- Evolution and Ecology Research Centre University of New South Wales Kensington NSW 2052 Australia
- School of Biological, Earth and Environmental Sciences University of New South Wales Kensington NSW 2052 Australia
- Australian Museum Research Institute Australian Museum Sydney 2010 NSW Australia
| |
Collapse
|
25
|
Causes and consequences of intra-specific variation in vertebral number. Sci Rep 2016; 6:26372. [PMID: 27210072 PMCID: PMC4876516 DOI: 10.1038/srep26372] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022] Open
Abstract
Intraspecific variation in vertebral number is taxonomically widespread. Much scientific attention has been directed towards understanding patterns of variation in vertebral number among individuals and between populations, particularly across large spatial scales and in structured environments. However, the relative role of genes, plasticity, selection, and drift as drivers of individual variation and population differentiation remains unknown for most systems. Here, we report on patterns, causes and consequences of variation in vertebral number among and within sympatric subpopulations of pike (Esox lucius). Vertebral number differed among subpopulations, and common garden experiments indicated that this reflected genetic differences. A QST-FST comparison suggested that population differences represented local adaptations driven by divergent selection. Associations with fitness traits further indicated that vertebral counts were influenced both by stabilizing and directional selection within populations. Overall, our study enhances the understanding of adaptive variation, which is critical for the maintenance of intraspecific diversity and species conservation.
Collapse
|
26
|
Heers AM, Baier DB, Jackson BE, Dial KP. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development. PLoS One 2016; 11:e0153446. [PMID: 27100994 PMCID: PMC4872793 DOI: 10.1371/journal.pone.0153446] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/29/2016] [Indexed: 12/05/2022] Open
Abstract
Some of the greatest transformations in vertebrate history involve developmental
and evolutionary origins of avian flight. Flight is the most power-demanding
mode of locomotion, and volant adult birds have many anatomical features that
presumably help meet these demands. However, juvenile birds, like the first
winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of
large wings they have small “protowings”, and instead of robust, interlocking
forelimb skeletons their limbs are more gracile and their joints less
constrained. Such traits are often thought to preclude extinct theropods from
powered flight, yet young birds with similarly rudimentary anatomies flap-run up
slopes and even briefly fly, thereby challenging longstanding ideas on skeletal
and feather function in the theropod-avian lineage. Though skeletons and
feathers are the common link between extinct and extant theropods and figure
prominently in discussions on flight performance (extant birds) and flight
origins (extinct theropods), skeletal inter-workings are hidden from view and
their functional relationship with aerodynamically active wings is not known.
For the first time, we use X-ray Reconstruction of Moving Morphology to
visualize skeletal movement in developing birds, and explore how development of
the avian flight apparatus corresponds with ontogenetic trajectories in skeletal
kinematics, aerodynamic performance, and the locomotor transition from
pre-flight flapping behaviors to full flight capacity. Our findings reveal that
developing chukars (Alectoris chukar) with rudimentary flight
apparatuses acquire an “avian” flight stroke early in ontogeny, initially by
using their wings and legs cooperatively and, as they acquire flight capacity,
counteracting ontogenetic increases in aerodynamic output with greater skeletal
channelization. In conjunction with previous work, juvenile birds thereby
demonstrate that the initial function of developing wings is to enhance leg
performance, and that aerodynamically active, flapping wings might better be
viewed as adaptations or exaptations for enhancing leg performance.
Collapse
Affiliation(s)
- Ashley M. Heers
- Division of Paleontology, American Museum of Natural History, Central
Park West and 79 St., New York, New York 10024, United States of
America
- * E-mail:
| | - David B. Baier
- Department of Biology, Providence College, 1 Cunningham Square,
Providence, Rhode Island 02918, United States of America
| | - Brandon E. Jackson
- Biology and Environmental Sciences, Longwood University, 201 High St.,
Farmville, Virginia 23909, United States of America
| | - Kenneth P. Dial
- Division of Biological Sciences, University of Montana, 32 Campus Drive,
Missoula, Montana 59812, United States of America
| |
Collapse
|
27
|
Wainwright PC. Why are marine adaptive radiations rare in Hawai'i? Mol Ecol 2015; 24:523-4. [PMID: 25602031 DOI: 10.1111/mec.13063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 11/29/2022]
Abstract
Islands can be sites of dynamic evolutionary radiations, and the Hawaiian Islands have certainly given us a bounty of insights into the processes and mechanisms of diversification. Adaptive radiations in silverswords and honeycreepers have inspired a generation of biologists with evidence of rapid diversification that resulted in exceptional levels of ecological and morphological diversity. In this issue of Molecular Ecology, tiny waterfall-climbing gobies make a case for their place among Hawaiian evolutionary elite. Moody et al. (2015) present an analysis of gene flow and local adaptation in six goby populations on Kaua'i and Hawai'i measured in three consecutive years to try to disentangle the relative role of local adaptation and gene flow in shaping diversity within Sicyopterus stimpsoni. Their study shows that strong patterns of local selection result in streams with gobies adapted to local conditions in spite of high rates of gene flow between stream populations and no evidence for significant genetic population structure. These results help us understand how local adaptation and gene flow are balanced in gobies, but these fishes also offer themselves as a model that illustrates why adaptive diversification in Hawai'i's marine fauna is so different from the terrestrial fauna.
Collapse
Affiliation(s)
- Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
28
|
Haas TC, Heins DC, Blum MJ. Predictors of body shape among populations of a stream fish (Cyprinella venusta, Cypriniformes: Cyprinidae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12539] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Travis C. Haas
- Department of Ecology and Evolutionary Biology; Tulane University; 6823 St Charles Avenue New Orleans LA 70118 USA
| | - David C. Heins
- Department of Ecology and Evolutionary Biology; Tulane University; 6823 St Charles Avenue New Orleans LA 70118 USA
| | - Michael J. Blum
- Department of Ecology and Evolutionary Biology; Tulane University; 6823 St Charles Avenue New Orleans LA 70118 USA
| |
Collapse
|
29
|
Moody KN, Hunter SN, Childress MJ, Blob RW, Schoenfuss HL, Blum MJ, Ptacek MB. Local adaptation despite high gene flow in the waterfall-climbing Hawaiian goby,Sicyopterus stimpsoni. Mol Ecol 2015; 24:545-63. [DOI: 10.1111/mec.13016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 11/12/2014] [Accepted: 11/22/2014] [Indexed: 01/27/2023]
Affiliation(s)
- K. N. Moody
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| | - S. N. Hunter
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
- Department of Ecology and Evolutionary Biology; Tulane University; 400 Lindy Boggs New Orleans LA 70118 USA
| | - M. J. Childress
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| | - R. W. Blob
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| | - H. L. Schoenfuss
- Aquatic Toxicology Laboratory; St. Cloud State University; 720 Fourth Ave S, WSB-273 St. Cloud MN 56301 USA
| | - M. J. Blum
- Department of Ecology and Evolutionary Biology; Tulane University; 400 Lindy Boggs New Orleans LA 70118 USA
| | - M. B. Ptacek
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| |
Collapse
|
30
|
Schoenfuss HL, Maie T, Moody KN, Lesteberg KE, Blob RW, Schoenfuss TC. Stairway to heaven: evaluating levels of biological organization correlated with the successful ascent of natural waterfalls in the Hawaiian stream goby Sicyopterus stimpsoni. PLoS One 2013; 8:e84851. [PMID: 24386424 PMCID: PMC3873996 DOI: 10.1371/journal.pone.0084851] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Selective pressures generated by locomotor challenges act at the level of the individual. However, phenotypic variation among individuals that might convey a selective advantage may occur across any of multiple levels of biological organization. In this study, we test for differences in external morphology, muscle mechanical advantage, muscle fiber type and protein expression among individuals of the waterfall climbing Hawaiian fish Sicyopterus stimpsoni collected from sequential pools increasing in elevation within a single freshwater stream. Despite predictions from previous laboratory studies of morphological selection, few directional morphometric changes in body shape were observed at successively higher elevations. Similarly, lever arm ratios associated with the main pelvic sucker, central to climbing ability in this species, did not differ between elevations. However, among climbing muscles, the adductor pelvicus complex (largely responsible for generating pelvic suction during climbing) contained a significantly greater red muscle fiber content at upstream sites. A proteomic analysis of the adductor pelvicus revealed two-fold increases in expression levels for two respiratory chain proteins (NADH:ubiquinone reductase and cytochrome b) that are essential for aerobic respiration among individuals from successively higher elevations. Assessed collectively, these evaluations reveal phenotypic differences at some, but not all levels of biological organization that are likely the result of selective pressures experienced during climbing.
Collapse
Affiliation(s)
- Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Takashi Maie
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristine N. Moody
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kelsey E. Lesteberg
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, United States of America
| | - Richard W. Blob
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tonya C. Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
31
|
Maie T, Furtek S, Schoenfuss HL, Blob RW. Feeding performance of the Hawaiian sleeper,Eleotris sandwicensis(Gobioidei: Eleotridae): correlations between predatory functional modulation and selection pressures on prey. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Takashi Maie
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| | - Steffanie Furtek
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| | - Heiko L. Schoenfuss
- Aquatic Toxicology Laboratory; St. Cloud State University; 273 Wick Science Building 720 Fourth Avenue South St. Cloud MN 56301 USA
| | - Richard W. Blob
- Department of Biological Sciences; Clemson University; 132 Long Hall Clemson SC 29634 USA
| |
Collapse
|
32
|
Tweedley JR, Bird DJ, Potter IC, Gill HS, Miller PJ, O'Donovan G, Tjakrawidjaja AH. Species compositions and ecology of the riverine ichthyofaunas in two Sulawesian islands in the biodiversity hotspot of Wallacea. JOURNAL OF FISH BIOLOGY 2013; 82:1916-1950. [PMID: 23731145 DOI: 10.1111/jfb.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
This account of the riverine ichthyofaunas from the islands of Buton and Kabaena, off south-eastern mainland Sulawesi, represents the first detailed quantitative checklist and ecological study of the riverine fish faunas in the biological hotspot of Wallacea. The results are based on analysis of samples collected by electrofishing at a wide range of sites from July to September in both 2001 and 2002. While the fauna was diverse, with the 2179 fishes caught comprising 64 species representing 43 genera and 22 families, the catches were dominated by the Gobiidae (26 species and 25% by numbers), Eleotridae (seven species and 27% by numbers), Zenarchopteridae (three species and 22% by numbers) and Anguillidae (two species and 12% by numbers). The most abundant species were the eleotrids Eleotris aff. fusca-melanosoma and Ophieleotris aff. aporos, the anguillid Anguilla celebesensis, the zenarchopterids Nomorhamphus sp. and Nomorhamphus ebrardtii and the gobiids Sicyopterus sp. and Glossogobius aff. celebius-kokius. The introduced catfish Clarias batrachus was moderately abundant at a few sites. Cluster analysis, allied with the similarity profiles routine SIMPROF, identified seven discrete groups, which represented samples from sites entirely or predominantly in either Buton (five clusters) or Kabaena (two clusters). Species composition was related to geographical location, distance from river mouth, per cent contribution of sand and silt, altitude and water temperature. The samples from the two islands contained only one species definitively endemic to Sulawesi, i.e. N. ebrardtii and another presumably so, i.e. Nomorhamphus sp., contrasting starkly with the 57 species that are endemic to Sulawesi and, most notably, its large central and deep lake systems on the mainland. This accounts for the ichthyofaunas of these two islands, as well as those of rivers in northern mainland Sulawesi and Flores, being more similar to each other than to those of the central mainland lake systems. This implies that the major adaptive radiation of freshwater fishes in Sulawesi occurred in those lacustrine environments rather than in rivers.
Collapse
Affiliation(s)
- J R Tweedley
- Centre for Fish and Fisheries Research, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Evolutionary novelty versus exaptation: oral kinematics in feeding versus climbing in the waterfall-climbing Hawaiian Goby Sicyopterus stimpsoni. PLoS One 2013; 8:e53274. [PMID: 23308184 PMCID: PMC3537660 DOI: 10.1371/journal.pone.0053274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 11/21/2022] Open
Abstract
Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an “inching” behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai’i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats.
Collapse
|
34
|
Kawano SM, Bridges WC, Schoenfuss HL, Maie T, Blob RW. Differences in locomotor behavior correspond to different patterns of morphological selection in two species of waterfall-climbing gobiid fishes. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9621-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Leonard G, Maie T, Moody KN, Schrank GD, Blob RW, Schoenfuss HL. Finding paradise: cues directing the migration of the waterfall climbing Hawaiian gobioid Sicyopterus stimpsoni. JOURNAL OF FISH BIOLOGY 2012; 81:903-920. [PMID: 22803741 DOI: 10.1111/j.1095-8649.2012.03352.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A series of waterfall-climbing trials were conducted to identify cues that direct the climbing of juvenile Sicyopterus stimpsoni. In the first experiment, whether climbing juveniles preferentially ascend water sources with conspecifics or whether the presence of just stream water is sufficient to attract fish to ascend a climbing path were assessed. In the second experiment, whether climbing juveniles create a trail of mucus that facilitates the ability of conspecifics to follow their lead was determined. The results indicate that juvenile S. stimpsoni are less likely to climb in waters devoid of organic cues but are strongly attracted to stream water with or without the odour of conspecifics. Once climbing, performance did not differ for juveniles climbing in differing water choices, suggesting an all-or-nothing commitment once climbing commences. Climbing S. stimpsoni did produce a mucous trail while climbing that was associated with a mucous gland that dramatically increases in size just prior to juveniles gaining the ability to climb. The trail was not followed closely by subsequent juveniles traversing the same channel, however, suggesting only weak trail-following in waterfall climbing S. stimpsoni. Previous genetic studies suggest that juvenile S. stimpsoni do not home to natal streams in the face of strong near-shore oceanic currents. Instead, these fish appear primarily to rely on cues that suggest the presence of organic growth in streams, a factor that may indicate suitable habitat in an ever-changing stream environment but which may also be vulnerable to interference through human activity.
Collapse
Affiliation(s)
- G Leonard
- Aquatic Toxicology Laboratory, Saint Cloud State University, St. Cloud, MN 56301, USA
| | | | | | | | | | | |
Collapse
|
36
|
Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior. ZOOLOGY 2011; 114:340-7. [DOI: 10.1016/j.zool.2011.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/22/2011] [Accepted: 05/14/2011] [Indexed: 11/17/2022]
|
37
|
Bonnet X, Delmas V, El-Mouden H, Slimani T, Sterijovski B, Kuchling G. Is sexual body shape dimorphism consistent in aquatic and terrestrial chelonians? ZOOLOGY 2010; 113:213-20. [PMID: 20832271 DOI: 10.1016/j.zool.2010.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 02/18/2010] [Accepted: 03/15/2010] [Indexed: 11/27/2022]
Abstract
Comparisons between aquatic and terrestrial species provide an opportunity to examine how sex-specific adaptations interact with the environment to influence body shape. In terrestrial female tortoises, selection for fecundity favors the development of a large internal abdominal cavity to accommodate the clutch; in conspecific males, sexual selection favors mobility with large openings in the shell. To examine to what extent such trends apply in aquatic chelonians we compared the body shape of males and females of two aquatic turtles (Chelodina colliei and Mauremys leprosa). In both species, females were larger than males. When controlled for body size, females exhibited a greater relative internal volume and a higher body condition index than males; both traits potentially correlate positively with fecundity. Males were more streamlined (hydrodynamic), and exhibited larger openings in the shell providing more space to move their longer limbs; such traits probably improve mobility and copulation ability (the males chase and grab the female for copulation). Overall, although the specific constraints imposed by terrestrial and aquatic locomotion shape the morphology of chelonians differently (aquatic turtles were flatter, hence more hydrodynamic than terrestrial tortoises), the direction for sexual shape dimorphism remained unaffected. Our main conclusion is that the direction of sexual shape dimorphism is probably more consistent than sexual size dimorphism in the animal kingdom.
Collapse
Affiliation(s)
- Xavier Bonnet
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique, UPR 1934, F-79360 Beauvoir sur Niort, France.
| | | | | | | | | | | |
Collapse
|
38
|
Blob RW, Kawano SM, Moody KN, Bridges WC, Maie T, Ptacek MB, Julius ML, Schoenfuss HL. Morphological Selection and the Evaluation of Potential Tradeoffs Between Escape from Predators and the Climbing of Waterfalls in the Hawaiian Stream Goby Sicyopterus stimpsoni. Integr Comp Biol 2010; 50:1185-99. [DOI: 10.1093/icb/icq070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|