1
|
Tate HM, Barone V, Schrankel CS, Hamdoun A, Lyons DC. Localization and origins of juvenile skeletogenic cells in the sea urchin Lytechinuspictus. Dev Biol 2024; 514:12-27. [PMID: 38862087 DOI: 10.1016/j.ydbio.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The development of the sea urchin larval body plan is well understood from extensive studies of embryonic patterning. However, fewer studies have investigated the late larval stages during which the unique pentaradial adult body plan develops. Previous work on late larval development highlights major tissue changes leading up to metamorphosis, but the location of specific cell types during juvenile development is less understood. Here, we improve on technical limitations by applying highly sensitive hybridization chain reaction fluorescent in situ hybridization (HCR-FISH) to the fast-developing and transparent sea urchin Lytechinus pictus, with a focus on skeletogenic cells. First, we show that HCR-FISH can be used in L. pictus to precisely localize skeletogenic cells in the rudiment. In doing so, we provide a detailed staging scheme for the appearance of skeletogenic cells around the rudiment prior to and during biomineralization and show that many skeletogenic cells unassociated with larval rods localize outside of the rudiment prior to localizing inside. Second, we show that downstream biomineralization genes have similar expression patterns during larval and juvenile skeletogenesis, suggesting some conservation of skeletogenic mechanisms during development between stages. Third, we find co-expression of blastocoelar and skeletogenic cell markers around juvenile skeleton located outside of the rudiment, which is consistent with data showing that cells from the non-skeletogenic mesoderm embryonic lineage contribute to the juvenile skeletogenic cell lineage. This work sets the foundation for subsequent studies of other cell types in the late larva of L. pictus to better understand juvenile body plan development, patterning, and evolution.
Collapse
Affiliation(s)
- Heidi M Tate
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Vanessa Barone
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Catherine S Schrankel
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA; San Diego State University, San Diego, CA, USA
| | - Amro Hamdoun
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Formery L, Wakefield A, Gesson M, Toisoul L, Lhomond G, Gilletta L, Lasbleiz R, Schubert M, Croce JC. Developmental atlas of the indirect-developing sea urchin Paracentrotus lividus: From fertilization to juvenile stages. Front Cell Dev Biol 2022; 10:966408. [DOI: 10.3389/fcell.2022.966408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The sea urchin Paracentrotus lividus has been used as a model system in biology for more than a century. Over the past decades, it has been at the center of a number of studies in cell, developmental, ecological, toxicological, evolutionary, and aquaculture research. Due to this previous work, a significant amount of information is already available on the development of this species. However, this information is fragmented and rather incomplete. Here, we propose a comprehensive developmental atlas for this sea urchin species, describing its ontogeny from fertilization to juvenile stages. Our staging scheme includes three periods divided into 33 stages, plus 15 independent stages focused on the development of the coeloms and the adult rudiment. For each stage, we provide a thorough description based on observations made on live specimens using light microscopy, and when needed on fixed specimens using confocal microscopy. Our descriptions include, for each stage, the main anatomical characteristics related, for instance, to cell division, tissue morphogenesis, and/or organogenesis. Altogether, this work is the first of its kind providing, in a single study, a comprehensive description of the development of P. lividus embryos, larvae, and juveniles, including details on skeletogenesis, ciliogenesis, myogenesis, coelomogenesis, and formation of the adult rudiment as well as on the process of metamorphosis in live specimens. Given the renewed interest for the use of sea urchins in ecotoxicological, developmental, and evolutionary studies as well as in using marine invertebrates as alternative model systems for biomedical investigations, this study will greatly benefit the scientific community and will serve as a reference for specialists and non-specialists interested in studying sea urchins.
Collapse
|
3
|
Wynen H, Heyland A. Hormonal Regulation of Programmed Cell Death in Sea Urchin Metamorphosis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death (PCD) has been identified as a key process in the metamorphic transition of indirectly developing organisms such as frogs and insects. Many marine invertebrate species with indirect development and biphasic life cycles face the challenge of completing the metamorphic transition of the larval body into a juvenile when they settle into the benthic habitat. Some key characteristics stand out during this transition in comparison to frogs and insects: (1) the transition is often remarkably fast and (2) the larval body is largely abandoned and few structures transition into the juvenile stage. In sea urchins, a group with a drastic and fast metamorphosis, development and destruction of the larval body is regulated by endocrine signals. Here we provide a brief review of the basic regulatory mechanisms of PCD in animals. We then narrow our discussion to metamorphosis with a specific emphasis on sea urchins with indirect life histories and discuss the function of thyroid hormones and histamine in larval development, metamorphosis and settlement of the sea urchin Strongylocentrotus purpuratus. We were able to annotate the large majority of PCD related genes in the sea urchin S. purpuratus and ongoing studies on sea urchin metamorphosis will shed light on the regulatory architecture underlying this dramatic life history transition. While we find overwhelming evidence for hormonal regulation of PCD in animals, especially in the context of metamorphosis, the mechanisms in many marine invertebrate groups with indirect life histories requires more work. Hence, we propose that studies of PCD in animals requires functional studies in whole organisms rather than isolated cells. We predict that future work, targeting a broader array of organisms will not only help to reveal important new functions of PCD but provide a fundamentally new perspective on its use in a diversity of taxonomic, developmental, and ecological contexts.
Collapse
|
4
|
Strathmann RR, Strathmann MF, Sewell AT, Fenaux L. Initiation of Posterior Coeloms of an Ophiuroid (Brittle Star) and Plasticity in Their Development. THE BIOLOGICAL BULLETIN 2020; 239:153-163. [PMID: 33347800 DOI: 10.1086/711488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractIn the ophioplutei of brittle stars, the posterior coeloms are commonly assumed to be produced by a transverse fission of the initially formed coeloms; but in ophioplutei of Ophiopholis aculeata, the posterior coeloms first appear separately as aggregations of mesenchyme-like cells near the base of the posterolateral arms. Initiation of posterior coeloms was similar in ophioplutei of another family and may be similar in diverse ophiuroids. Initiation is easily missed without frequent observations. Early interpretations that diagrammed a fission of the first-formed coeloms appear to have influenced later authors for more than a century. Growth of posterior coeloms from a small initial size facilitated observations of developmental plasticity in growth of coeloms relative to that of larval arms. This plasticity, as observed in echinoplutei of echinoids, is relatively greater growth of a ciliary band for food capture when food is scarce and relatively greater growth of juvenile structures that will function after metamorphosis when food is abundant; however, juvenile structures develop extensively as a rudiment within the echinopluteus prior to settlement and metamorphosis, whereas in ophioplutei there is little development of juvenile structures until metamorphosis. In ophioplutei there is, therefore, less scope for shifting growth to structures that gain function after metamorphosis. Nevertheless, we found that when ophioplutei were at higher concentrations of food, the growth of the posterior coeloms was greater relative to the growth of the larval arms. Developmental plasticity in allocation of growth to larval and postlarval equipment can occur despite disparate patterns of development.
Collapse
|
5
|
Formery L, Orange F, Formery A, Yaguchi S, Lowe CJ, Schubert M, Croce JC. Neural anatomy of echinoid early juveniles and comparison of nervous system organization in echinoderms. J Comp Neurol 2020; 529:1135-1156. [PMID: 32841380 DOI: 10.1002/cne.25012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The echinoderms are a phylum of marine deuterostomes characterized by the pentaradial (five fold) symmetry of their adult bodies. Due to this unusual body plan, adult echinoderms have long been excluded from comparative analyses aimed at understanding the origin and evolution of deuterostome nervous systems. Here, we investigated the neural anatomy of early juveniles of representatives of three of the five echinoderm classes: the echinoid Paracentrotus lividus, the asteroid Patiria miniata, and the holothuroid Parastichopus parvimensis. Using whole mount immunohistochemistry and confocal microscopy, we found that the nervous system of echinoid early juveniles is composed of three main structures: a basiepidermal nerve plexus, five radial nerve cords connected by a circumoral nerve ring, and peripheral nerves innervating the appendages. Our whole mount preparations further allowed us to obtain thorough descriptions of these structures and of several innervation patterns, in particular at the level of the appendages. Detailed comparisons of the echinoid juvenile nervous system with those of asteroid and holothuroid juveniles moreover supported a general conservation of the main neural structures in all three species, including at the level of the appendages. Our results support the previously proposed hypotheses for the existence of two neural units in echinoderms: one consisting of the basiepidermal nerve plexus to process sensory stimuli locally and one composed of the radial nerve cords and the peripheral nerves constituting a centralized control system. This study provides the basis for more in-depth comparisons of the echinoderm adult nervous system with those of other animals, in particular hemichordates and chordates, to address the long-standing controversies about deuterostome nervous system evolution.
Collapse
Affiliation(s)
- Laurent Formery
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Orange
- Centre Commun de Microscopie Appliquée (CCMA), Université Côte d'Azur, Nice, France
| | | | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California, USA
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Jenifer C Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intracellular Signaling in Development (EvoInSiDe), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
6
|
Hodin J, Heyland A, Mercier A, Pernet B, Cohen DL, Hamel JF, Allen JD, McAlister JS, Byrne M, Cisternas P, George SB. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol 2018; 150:125-169. [PMID: 30777174 DOI: 10.1016/bs.mcb.2018.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Echinoderms are favored study organisms not only in cell and developmental biology, but also physiology, larval biology, benthic ecology, population biology and paleontology, among other fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the post-embryonic stages that result. This is unfortunate, as such labs are thus unable to address many intriguing biological phenomena, related to their own cell and developmental biology studies, that emerge during larval and juvenile stages. To facilitate broader studies of post-embryonic echinoderms, we provide here our collective experience rearing these organisms, with suggestions to try and pitfalls to avoid. Furthermore, we present information on rearing larvae from small laboratory to large aquaculture scales. Finally, we review taxon-specific approaches to larval rearing through metamorphosis in each of the four most commonly-studied echinoderm classes-asteroids, echinoids, holothuroids and ophiuroids.
Collapse
Affiliation(s)
- Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, WA, United States.
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Annie Mercier
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Bruno Pernet
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, United States
| | - David L Cohen
- State of Hawai'i, Division of Aquatic Resources, Ānuenue Fisheries Research Center, Honolulu, HI, United States
| | - Jean-François Hamel
- Society for the Exploration and Valuing of the Environment (SEVE), Portugal Cove-St. Philips, NL, Canada
| | - Jonathan D Allen
- Biology Department, College of William and Mary, Williamsburg, VA, United States
| | - Justin S McAlister
- Department of Biology, College of the Holy Cross, Worcester, MA, United States
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Cisternas
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sophie B George
- Department of Biology, Georgia Southern University, Statesboro, GA, United States
| |
Collapse
|
7
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. Onset of feeding in juvenile sea urchins and its relation to nutrient signalling. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1513873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Heyland A, Hodin J, Bishop C. Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae. PLoS One 2014; 9:e113866. [PMID: 25436992 PMCID: PMC4250057 DOI: 10.1371/journal.pone.0113866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis.
Collapse
Affiliation(s)
- Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Jason Hodin
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States of America
| | - Cory Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
9
|
Heyland A, Hodin J. A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment. BMC DEVELOPMENTAL BIOLOGY 2014; 14:22. [PMID: 24886415 PMCID: PMC4055376 DOI: 10.1186/1471-213x-14-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/25/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND The purple sea urchin, Strongylocentrotus purpuratus, has long been the focus of developmental and ecological studies, and its recently-sequenced genome has spawned a diversity of functional genomics approaches. S. purpuratus has an indirect developmental mode with a pluteus larva that transforms after 1-3 months in the plankton into a juvenile urchin. Compared to insects and frogs, mechanisms underlying the correspondingly dramatic metamorphosis in sea urchins remain poorly understood. In order to take advantage of modern techniques to further our understanding of juvenile morphogenesis, organ formation, metamorphosis and the evolution of the pentameral sea urchin body plan, it is critical to assess developmental progression and rate during the late larval phase. This requires a staging scheme that describes developmental landmarks that can quickly and consistently be used to identify the stage of individual living larvae, and can be tracked during the final two weeks of larval development, as the juvenile is forming. RESULTS Notable structures that are easily observable in developing urchin larvae are the developing spines, test and tube feet within the juvenile rudiment that constitute much of the oral portion of the adult body plan. Here we present a detailed staging scheme of rudiment development in the purple urchin using soft structures of the rudiment and the primordia of these juvenile skeletal elements. We provide evidence that this scheme is robust and applicable across a range of temperature and feeding regimes. CONCLUSIONS Our proposed staging scheme provides both a useful method to study late larval development in the purple urchin, and a framework for developing similar staging schemes across echinoderms. Such efforts will have a high impact on evolutionary developmental studies and larval ecology, and facilitate research on this important deuterostome group.
Collapse
Affiliation(s)
- Andreas Heyland
- University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Jason Hodin
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
10
|
Hart MW, Popovic I, Emlet RB. LOW RATES OF BINDIN CODON EVOLUTION IN LECITHOTROPHIC HELIOCIDARIS SEA URCHINS. Evolution 2012; 66:1709-21. [DOI: 10.1111/j.1558-5646.2012.01606.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kroh A, Madeira P, Haring E. Species distributions: virtual or real – the case of
Arbaciella elegans
(Echinoidea: Arbaciidae). J ZOOL SYST EVOL RES 2011. [DOI: 10.1111/j.1439-0469.2011.00636.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Andreas Kroh
- Naturhistorisches Museum Wien, Geologisch‐Paläontologische Abteilung, Wien, Austria
| | - Patrícia Madeira
- MPB – Marine PalaeoBiogeography Working Group, Departamento de Biologia, Universidade dos Açores, Ponta Delgada, Azores
- Centro do IMAR da Universidade dos Açores, Horta, Azores, Portugal
| | - Elisabeth Haring
- Naturhistorisches Museum Wien, I. Zoologische Abteilung, Wien, Austria
| |
Collapse
|