1
|
Ziegler AK, Jensen JK, Jiménez-Gallardo L, Rissler J, Gudmundsson A, Nilsson JÅ, Isaksson C. Dietary fatty acids modulate oxidative stress response to air pollution but not to infection. Front Physiol 2024; 15:1391806. [PMID: 38784118 PMCID: PMC11112072 DOI: 10.3389/fphys.2024.1391806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Anthropogenic changes to the environment expose wildlife to many pollutants. Among these, tropospheric ozone is of global concern and a highly potent pro-oxidant. In addition, human activities include several other implications for wildlife, e.g., changed food availability and changed distribution of pathogens in cities. These co-occurring habitat changes may interact, thereby modulating the physiological responses and costs related to anthropogenic change. For instance, many food items associated with humans (e.g., food waste and feeders for wild birds) contain relatively more ω6-than ω3-polyunsaturated fatty acids (PUFAs). Metabolites derived from ω6-PUFAs can enhance inflammation and oxidative stress towards a stimulus, whereas the opposite response is linked to ω3-derived metabolites. Hence, we hypothesized that differential intake of ω6-and ω3-PUFAs modulates the oxidative stress state of birds and thereby affects the responses towards pro-oxidants. To test this, we manipulated dietary ω6:ω3 ratios and ozone levels in a full-factorial experiment using captive zebra finches (Taeniopygia guttata). Additionally, we simulated an infection, thereby also triggering the immune system's adaptive pro-oxidant release (i.e., oxidative burst), by injecting lipopolysaccharide. Under normal air conditions, the ω3-diet birds had a lower antioxidant ratio (GSH/GSSG ratio) compared to the ω6-diet birds. When exposed to ozone, however, the diet effect disappeared. Instead, ozone exposure overall reduced the total concentration of the key antioxidant glutathione (tGSH). Moreover, the birds on the ω6-rich diet had an overall higher antioxidant capacity (OXY) compared to birds fed a ω3-rich diet. Interestingly, only the immune challenge increased oxidative damage, suggesting the oxidative burst of the immune system overrides the other pro-oxidative processes, including diet. Taken together, our results show that ozone, dietary PUFAs, and infection all affect the redox-system, but in different ways, suggesting that the underlying responses are decoupled despite that they all increase pro-oxidant exposure or generation. Despite lack of apparent cumulative effect in the independent biomarkers, the combined single effects could together reduce overall cellular functioning and efficiency over time in wild birds exposed to pathogens, ozone, and anthropogenic food sources.
Collapse
Affiliation(s)
| | - Johan Kjellberg Jensen
- Department of Biology, Lund University, Lund, Sweden
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden
| | - Lucía Jiménez-Gallardo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Jenny Rissler
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
| | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
2
|
Saulnier A, Bleu J, Boos A, Millet M, Zahn S, Ronot P, El Masoudi I, Rojas ER, Uhlrich P, Del Nero M, Massemin S. Inter-annual variation of physiological traits between urban and forest great tits. Comp Biochem Physiol A Mol Integr Physiol 2023; 279:111385. [PMID: 36740170 DOI: 10.1016/j.cbpa.2023.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Urbanization is characterized by rapid environmental changes such as an increase in building surface, in pollution, or a decrease in invertebrate abundance. For many bird species, morphological and physiological differences have been observed between urban and rural individuals that seem to reflect a negative impact of urban life on the health and fitness of individuals. Studies on passerine birds also showed important differences between populations and species in their responses to the urban environment. We propose to test physiological differences between urban and forest individuals over 3 years to understand whether the observed patterns are constant or subject to variations across years. For this purpose, we assessed the health parameters of adults and fledgling of great tits, Parus major, living in an urban and in a forest site in the Eurometropole of Strasbourg, for three years. Bird health was estimated with morphological parameters (body condition and size) and also with physiological parameters (oxidative status and telomere length). Our results showed lower body condition of urban fledglings regardless of the year, but no site effects on telomere length. On the contrary, for adult breeders, urban individuals had longer telomeres than forest ones except for one year which coincide with bad weather conditions during reproduction where no difference was detected. Urban birds also had higher antioxidant capacity whatever the years. These results suggest that cities act as a filter in which only good quality individuals survive and achieve successful reproduction regardless of year, whereas in the forest the selection occurs only during harsh weather years.
Collapse
Affiliation(s)
- Agnès Saulnier
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France.
| | - Josefa Bleu
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Anne Boos
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Maurice Millet
- ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France; Université de Strasbourg, CNRS, ICPEES 7515, F-67087 Strasbourg Cedex 3, France
| | - Sandrine Zahn
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Pascale Ronot
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Islah El Masoudi
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France
| | - Emilio R Rojas
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; Wildstat, 43 rue de la Hoube, 67280 Urmatt, France
| | - Pierre Uhlrich
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France
| | - Mirella Del Nero
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| | - Sylvie Massemin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000 Strasbourg, France; ZAEU, Maison Interuniversitaire des Sciences de l'Homme - Alsace (MISHA), 5, allée du Général Rouvillois, CS 50008, 67083 Strasbourg cedex, France
| |
Collapse
|
3
|
Deviche P, Sweazea K, Angelier F. Past and future: Urbanization and the avian endocrine system. Gen Comp Endocrinol 2023; 332:114159. [PMID: 36368439 DOI: 10.1016/j.ygcen.2022.114159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022]
Abstract
Urban environments are evolutionarily novel and differ from natural environments in many respects including food and/or water availability, predation, noise, light, air quality, pathogens, biodiversity, and temperature. The success of organisms in urban environments requires physiological plasticity and adjustments that have been described extensively, including in birds residing in geographically and climatically diverse regions. These studies have revealed a few relatively consistent differences between urban and non-urban conspecifics. For example, seasonally breeding urban birds often develop their reproductive system earlier than non-urban birds, perhaps in response to more abundant trophic resources. In most instances, however, analyses of existing data indicate no general pattern distinguishing urban and non-urban birds. It is, for instance, often hypothesized that urban environments are stressful, yet the activity of the hypothalamus-pituitary-adrenal axis does not differ consistently between urban and non-urban birds. A similar conclusion is reached by comparing blood indices of metabolism. The origin of these disparities remains poorly understood, partly because many studies are correlative rather than aiming at establishing causality, which effectively limits our ability to formulate specific hypotheses regarding the impacts of urbanization on wildlife. We suggest that future research will benefit from prioritizing mechanistic approaches to identify environmental factors that shape the phenotypic responses of organisms to urbanization and the neuroendocrine and metabolic bases of these responses. Further, it will be critical to elucidate whether factors affect these responses (a) cumulatively or synergistically; and (b) differentially as a function of age, sex, reproductive status, season, and mobility within the urban environment. Research to date has used various taxa that differ greatly not only phylogenetically, but also with regard to ecological requirements, social systems, propensity to consume anthropogenic food, and behavioral responses to human presence. Researchers may instead benefit from standardizing approaches to examine a small number of representative models with wide geographic distribution and that occupy diverse urban ecosystems.
Collapse
Affiliation(s)
- Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Karen Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| |
Collapse
|
4
|
Jiménez-Peñuela J, Ferraguti M, Martínez-De La Puente J, Soriguer RC, Figuerola J. Oxidative status in relation to blood parasite infections in house sparrows living along an urbanization gradient. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120712. [PMID: 36423890 DOI: 10.1016/j.envpol.2022.120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Living organisms are exposed to a wide range of substances - internal and external - which act like reactive oxygen species (ROS). Oxidative damage accurs when the balance between ROS and antioxidant defenses is altered. Urbanization and parasite infection are both important sources of ROS with different harmful effects on wildlife health, but the potential synergies between both factors are poorly known. Here, we analyse the oxidative stress of wild juvenile male house sparrows (Passer domesticus) along an urbanization gradient in relation to the infection status by three common blood parasites (Plasmodium, Haemoproteus and Leucocytozoon) and bird body condition. We analysed samples from 688 birds captured at 45 localities from southern Spain grouped into triplets including an urban, a rural and a natural habitat, with 15 localities per habitat type. We measured i) thiobarbituric acid reactive substances (TBARS) levels as indicator of the oxidative damage to lipids, and the activity of three antioxidant enzymes ii) glutathione peroxidase (GPx), iii) superoxide dismutase (SOD) and iv) glutathione reductase (GR) as indicators of bird's antioxidant capacity. Birds infected with Haemoproteus and urban birds showed significantly and marginally higher levels of TBARS than uninfected and rural birds, respectively. The relationship between TBARS and body condition is different regarding the infection status (significative) and habitat (marginally significant) being negative for Haemoproteus infected and urban birds but positive for uninfected and non-urban birds. The antioxidant activity was significantly lower in Plasmodium infected birds but marginally higher in Leucocytozoon infected birds than in uninfected ones. Individuals with higher body condition had higher GPx and SOD activity in relation to a lower GR activity. Overall, these results suggest that blood parasites infections and urbanization affect the oxidative status of wild birds and highlight the role of bird's body condition on the regulation of the oxidative stress status.
Collapse
Affiliation(s)
- Jéssica Jiménez-Peñuela
- Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), C\Américo Vespucio, 26, Seville, E-41092, Spain.
| | - Martina Ferraguti
- Department of Theoretical and Computational Ecology (TCE), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098XH, Amsterdam, Netherlands.
| | - Josué Martínez-De La Puente
- Department of Parasitology, University of Granada, Granada, E-18071, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | - Ramón C Soriguer
- Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), C\Américo Vespucio, 26, Seville, E-41092, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| | - Jordi Figuerola
- Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), C\Américo Vespucio, 26, Seville, E-41092, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Spain.
| |
Collapse
|
5
|
Hüppi E, Geiger M. Fast‐paced city life? Tempo and mode of phenotypic changes in urban birds from Switzerland. Ecol Evol 2022. [DOI: 10.1002/ece3.9217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Evelyn Hüppi
- University of Zurich, Palaeontological Institute and Museum Zürich Switzerland
| | - Madeleine Geiger
- Naturmuseum St. Gallen St. Gallen Switzerland
- SWILD, Urban Ecology & Wildlife Research Zurich Switzerland
| |
Collapse
|
6
|
Peneaux C, Grainger R, Lermite F, Machovsky-Capuska GE, Gaston T, Griffin AS. Detrimental effects of urbanization on the diet, health, and signal coloration of an ecologically successful alien bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148828. [PMID: 34271392 DOI: 10.1016/j.scitotenv.2021.148828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Theory suggests that overcrowding and increased competition in urban environments might be detrimental to individual condition in avian populations. Unfavourable living conditions could be compounded by changes in dietary niche with additional consequences for individual quality of urban birds. We analysed the isotopic signatures, signal coloration, body condition, parasitic loads (feather mites and coccidia), and immune responsiveness of 191 adult common (Indian) mynas (Acridotheres tristis) captured in 19 localities with differing levels of urbanization. The isotopic signature of myna feathers differed across low and high urbanized habitats, with a reduced isotopic niche breadth found in highly urbanized birds. This suggests that birds in high urban environments may occupy a smaller foraging niche to the one of less urbanized birds. In addition, higher degrees of urbanization were associated with a decrease in carotenoid-based coloration, higher ectoparasite loads and higher immune responsiveness. This pattern of results suggests that the health status of mynas from more urbanized environments was poorer than mynas from less modified habitats. Our findings are consistent with the theory that large proportions of individual birds that would otherwise die under natural conditions survive due to prevailing top-down and bottom-up ecological processes in cities. Detrimental urban ecological conditions and search for more favourable, less crowded habitats offers the first reasonable explanation for why an ecological invader like the common myna continues to spread within its global invasive range.
Collapse
Affiliation(s)
- Chloe Peneaux
- School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Richard Grainger
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2050, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Françoise Lermite
- School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Troy Gaston
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrea S Griffin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
7
|
Schaper L, Hutton P, McGraw KJ. Bird-feeder cleaning lowers disease severity in rural but not urban birds. Sci Rep 2021; 11:12835. [PMID: 34145310 PMCID: PMC8213693 DOI: 10.1038/s41598-021-92117-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/02/2020] [Indexed: 11/24/2022] Open
Abstract
Animals inhabiting urban areas often experience elevated disease threats, putatively due to factors such as increased population density and horizontal transmission or decreased immunity (e.g. due to nutrition, pollution, stress). However, for animals that take advantage of human food subsidies, like feeder-visiting birds, an additional mechanism may include exposure to contaminated feeders as fomites. There are some published associations between bird feeder presence/density and avian disease, but to date no experimental study has tested the hypothesis that feeder contamination can directly impact disease status of visiting birds, especially in relation to the population of origin (i.e. urban v. rural, where feeder use/densities naturally vary dramatically). Here we used a field, feeder-cleaning experimental design to show that rural, but not urban, house finches (Haemorhous mexicanus) showed increased infection from a common coccidian endoparasite (Isospora spp.) when feeders were left uncleaned and that daily cleaning (with diluted bleach solution) over a 5-week period successfully decreased parasite burden. Moreover, this pattern in rural finches was true for males but not females. These experimental results reveal habitat- and sex-specific harmful effects of bird feeder use (i.e. when uncleaned in rural areas). Our study is the first to directly indicate to humans who maintain feeders for granivorous birds that routine cleaning can be critical for ensuring the health and viability of visiting avian species.
Collapse
Affiliation(s)
- Laren Schaper
- Barrett The Honors College, Arizona State University, Tempe, AZ, 85287, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
8
|
Abstract
Natural habitats are rapidly declining due to urbanisation, with a concomitant decline in biodiversity in highly urbanised areas. Yet thousands of different species have colonised urban environments. These organisms are exposed to novel urban conditions, which are sometimes beneficial, but most often challenging, such as increased ambient temperature, chemicals, noise and light pollution, dietary alterations and disturbance by humans. Given the fundamental role of physiological responses in coping with such conditions, certain physiological systems such as the redox system, metabolism and hormones are thought to specifically influence organisms' ability to persist and cope with urbanisation. However, these physiological systems often show mixed responses to urbanisation. Does this mean that some individuals, populations or species are resilient to the urban environmental challenges? Or is something missing from our analyses, leading us to erroneous conclusions regarding the impact of urbanisation? To understand the impact of urbanisation, I argue that a more integrated mechanistic and ecological approach is needed, along with experiments, in order to fully understand the physiological responses; without knowledge of their ecological and evolutionary context, physiological measures alone can be misinterpreted. Furthermore, we need to further investigate the causes of and capacity for individual plasticity in order to understand not only the impact of urbanisation, but also species resilience. I argue that abiotic and biotic urban factors can interact (e.g. pollution with micro- and macronutrients) to either constrain or relax individual physiological responses - and, thereby, plasticity - on a temporal and/or spatial scale, which can lead to erroneous conclusions regarding the impact of urbanisation.
Collapse
|
9
|
Sykes BE, Hutton P, McGraw KJ. Sex-specific relationships between urbanization, parasitism, and plumage coloration in house finches. Curr Zool 2020. [DOI: 10.1093/cz/zoaa060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Historically, studies of condition-dependent signals in animals have been male-centric, but recent work suggests that female ornaments can also communicate individual quality (e.g., disease state, fecundity). There also has been a surge of interest in how urbanization alters signaling traits, but we know little about if and how cities affect signal expression in female animals. We measured carotenoid-based plumage coloration and coccidian (Isospora spp.) parasite burden in desert and city populations of house finches Haemorhous mexicanus to examine links between urbanization, health state, and feather pigmentation in males and females. In earlier work, we showed that male house finches are less colorful and more parasitized in the city, and we again detected such patterns in this study for males; however, urban females were less colorful, but not more parasitized, than rural females. Moreover, contrary to rural populations, we found that urban birds (regardless of sex) with larger patches of carotenoid coloration were also more heavily infected with coccidia. These results show that urban environments can disrupt condition-dependent color expression and highlight the need for more studies on how cities affect disease and signaling traits in both male and female animals.
Collapse
Affiliation(s)
- Brooke E Sykes
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
10
|
Salmón P, Watson H, Nord A, Isaksson C. Effects of the Urban Environment on Oxidative Stress in Early Life: Insights from a Cross-fostering Experiment. Integr Comp Biol 2019; 58:986-994. [PMID: 30052952 PMCID: PMC6204991 DOI: 10.1093/icb/icy099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As urban areas expand rapidly worldwide, wildlife is exposed to a wide range of novel environmental stressors, such as increased air pollution and artificial light at night. Birds in highly polluted and/or urbanized habitats have been found to have increased antioxidant protection, which is likely important to avoid accumulation of oxidative damage, which can have negative fitness consequences. Yet, the current knowledge about the ontogeny of antioxidant protection in urban areas is limited; i.e., is the capacity to up-regulate the antioxidant defences already established during pre-natal development, or does it manifest itself during post-natal development? We cross-fostered great tit (Parus major) nestlings within and between urban and rural habitats, to determine if oxidative stress (measured as non-enzymatic total antioxidant capacity, superoxide dismutase (SOD), and plasma lipid peroxidation) is affected by habitat of origin and/or by habitat of rearing. The results demonstrate that being reared in the urban environment triggers an increase in SOD (an intracellular, enzymatic antioxidant) independent of natal habitat. Oxidative damage increased with hatching date in urban-reared nestlings, but there was little seasonal change in rural-reared nestlings. Total antioxidant capacity was neither affected by habitat of rearing or habitat of origin, but we observed a decline with hatching date in both rearing habitats. Taken together, our results support the growing evidence that the urban environment induces a direct plastic adjustment in antioxidant protection, but that up-regulation is not sufficient to avoid increased oxidative damage in late-hatched broods. Future studies should explore the underlying causes for this effect in late-hatched broods and whether it has any negative long-term implications, both at the individual- and the population level.
Collapse
Affiliation(s)
- Pablo Salmón
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, SE-223 62, Sweden.,Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Hannah Watson
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Andreas Nord
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Caroline Isaksson
- Section for Evolutionary Ecology, Department of Biology, Lund University, Lund, SE-223 62, Sweden
| |
Collapse
|
11
|
Łopucki R, Klich D, Ścibior A, Gołębiowska D. Hormonal adjustments to urban conditions: stress hormone levels in urban and rural populations of Apodemus agrarius. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-0832-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Giraudeau M, Toomey MB, Hutton P, McGraw KJ. Expression of and choice for condition-dependent carotenoid-based color in an urbanizing context. Behav Ecol 2018. [DOI: 10.1093/beheco/ary093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mathieu Giraudeau
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Matthew B Toomey
- Department of Pathology and Immunology, Washington University School of Medicine, South Euclid Avenue, St. Louis, MO, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, E. Tyler Mall, Tempe, AZ, USA
| |
Collapse
|
13
|
Amdekar MS, Kakkar A, Thaker M. Measures of Health Provide Insights Into the Coping Strategies of Urban Lizards. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
14
|
Rapid Antagonistic Coevolution in an Emerging Pathogen and Its Vertebrate Host. Curr Biol 2018; 28:2978-2983.e5. [PMID: 30197084 DOI: 10.1016/j.cub.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/24/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023]
Abstract
Host-pathogen coevolution is assumed to play a key role in eco-evolutionary processes, including epidemiological dynamics and the evolution of sexual reproduction [1-4]. Despite this, direct evidence for host-pathogen coevolution is exceptional [5-7], particularly in vertebrate hosts. Indeed, although vertebrate hosts have been shown to evolve in response to pathogens or vice versa [8-12], there is little evidence for the necessary reciprocal changes in the success of both antagonists over time [13]. Here, we generate a time-shift experiment to demonstrate adaptive, reciprocal changes in North American house finches (Haemorhous mexicanus) and their emerging bacterial pathogen, Mycoplasma gallisepticum [14-16]. Our experimental design is made possible by the existence of disease-exposed and unexposed finch populations, which were known to exhibit equivalent responses to experimental inoculation until the recent spread of genetic resistance in the former [14, 17]. Whereas inoculations with pathogen isolates from epidemic outbreak caused comparable sub-lethal eye swelling in hosts from exposed (hereafter adapted) and unexposed (hereafter ancestral) populations, inoculations with isolates sampled after the spread of resistance were threefold more likely to cause lethal symptoms in hosts from ancestral populations. Similarly, the probability that pathogens successfully established an infection in the primary host and, before inducing death, transmitted to an uninfected sentinel was highest when recent isolates were inoculated in hosts from ancestral populations and lowest when early isolates were inoculated in hosts from adapted populations. Our results demonstrate antagonistic host-pathogen coevolution, with hosts and pathogens displaying increased resistance and virulence in response to each other over time.
Collapse
|
15
|
Brans KI, Stoks R, De Meester L. Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea Daphnia magna. Proc Biol Sci 2018; 285:rspb.2018.0169. [PMID: 30051844 DOI: 10.1098/rspb.2018.0169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/22/2018] [Indexed: 11/12/2022] Open
Abstract
Natural and human-induced stressors elicit changes in energy metabolism and stress physiology in populations of a wide array of species. Cities are stressful environments that may lead to differential selection on stress-coping mechanisms. Given that city ponds are exposed to the urban heat island effect and receive polluted run-off, organisms inhabiting these ecosystems might show genetic differentiation for physiological traits enabling them to better cope with higher overall stress levels. A common garden study with 62 Daphnia magna genotypes from replicated urban and rural populations revealed that urban Daphnia have significantly higher concentrations of total body fat, proteins and sugars. Baseline activity levels of the antioxidant defence enzymes superoxide dismutase (SOD) and glutathione-S-transferase (GST) were higher in rural compared with city populations, yet urban animals were equally well protected against lipid peroxidation. Our results add to the recent evidence of urbanization-driven changes in stress physiology and energy metabolism in terrestrial organisms. Combining our results with data on urban life history evolution in Daphnia revealed that urban genotypes show a structured pace-of-life syndrome involving both life-history and physiological traits, whereas this is absent in rural populations.
Collapse
Affiliation(s)
- Kristien I Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Ch. Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
16
|
Salmón P, Stroh E, Herrera-Dueñas A, von Post M, Isaksson C. Oxidative stress in birds along a NO x and urbanisation gradient: An interspecific approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:635-643. [PMID: 29223087 DOI: 10.1016/j.scitotenv.2017.11.354] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Urbanisation is regarded as one of the most threatening global issues for wildlife, however, measuring its impact is not always straight forward. Oxidative stress physiology has been suggested to be a useful biomarker of health and therefore, a potentially important indicator of the impact that urban environmental stressors, especially air pollution, can have on wildlife. For example, nitrogen oxides (NOx), released during incomplete combustion of fossil fuels, are highly potent pro-oxidants, thus predicted to affect either the protective antioxidants and/or cause oxidative damage to bio-molecules. To date, epidemiological modelling of the predicted association between oxidative stress and NOx exposure has not been performed in wild animals. Here, we address this short-coming, by investigating multiple oxidative stress markers in four common passerine bird species, the blue tit (Cyanistes caeruleus), great tit (Parus major), house sparrow (Passer domesticus) and tree sparrow (Passer montanus), living along a gradient of NOx and urbanisation levels in southern Sweden. First of all, the results revealed that long- and medium-term (one month and one week, respectively) NOx levels were highly correlated with the level of urbanisation. This confirms that the commonly used urbanisation index is a reliable proxy for urban air pollution. Furthermore, in accordance to our prediction, individuals exposed to higher long- and medium-term NOx levels/urbanisation had higher plasma antioxidant capacity. However, only tree sparrows showed higher oxidative damage (protein carbonyls) in relation to NOx levels and this association was absent with urbanisation. Lipid peroxidation, glutathione and superoxide dismutase levels did not co-vary with NOx/urbanisation. Given that most oxidative stress biomarkers showed strong species-specificity, independent of variation in NOx/urbanisation, the present study highlights the need to study variation in oxidative stress across contexts, seasons and life-stages in order to understand how the ecology and phylogeny of species interact to affect species resilience to urban environmental stress.
Collapse
Affiliation(s)
- Pablo Salmón
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden.
| | - Emilie Stroh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Sweden
| | - Amparo Herrera-Dueñas
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden; Evolution and Conservation Biology, Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Maria von Post
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| | - Caroline Isaksson
- Evolutionary Ecology, Department of Biology, Lund University, Ecology Building, Lund, Sweden
| |
Collapse
|
17
|
Sepp T, McGraw KJ, Kaasik A, Giraudeau M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life? GLOBAL CHANGE BIOLOGY 2018; 24:1452-1469. [PMID: 29168281 DOI: 10.1111/gcb.13969] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
The concept of a pace-of-life syndrome describes inter- and intraspecific variation in several life-history traits along a slow-to-fast pace-of-life continuum, with long lifespans, low reproductive and metabolic rates, and elevated somatic defences at the slow end of the continuum and the opposite traits at the fast end. Pace-of-life can vary in relation to local environmental conditions (e.g. latitude, altitude), and here we propose that this variation may also occur along an anthropogenically modified environmental gradient. Based on a body of literature supporting the idea that city birds have longer lifespans, we predict that urban birds have a slower pace-of-life compared to rural birds and thus invest more in self maintenance and less in annual reproduction. Our statistical meta-analysis of two key traits related to pace-of-life, survival and breeding investment (clutch size), indicated that urban birds generally have higher survival, but smaller clutch sizes. The latter finding (smaller clutches in urban habitats) seemed to be mainly a characteristic of smaller passerines. We also reviewed urbanization studies on other traits that can be associated with pace-of-life and are related to either reproductive investment or self-maintenance. Though sample sizes were generally too small to conduct formal meta-analyses, published literature suggests that urban birds tend to produce lower-quality sexual signals and invest more in offspring care. The latter finding is in agreement with the adult survival hypothesis, proposing that higher adult survival prospects favour investment in fewer offspring per year. According to our hypothesis, differences in age structure should arise between urban and rural populations, providing a novel alternative explanation for physiological differences and earlier breeding. We encourage more research investigating how telomere dynamics, immune defences, antioxidants and oxidative damage in different tissues vary along the urbanization gradient, and suggest that applying pace-of-life framework to studies of variation in physiological traits along the urbanization gradient might be the next direction to improve our understanding of urbanization as an evolutionary process.
Collapse
Affiliation(s)
- Tuul Sepp
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ants Kaasik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
18
|
|
19
|
Biard C, Brischoux F, Meillère A, Michaud B, Nivière M, Ruault S, Vaugoyeau M, Angelier F. Growing in Cities: An Urban Penalty for Wild Birds? A Study of Phenotypic Differences between Urban and Rural Great Tit Chicks (Parus major). Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00079] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
20
|
|
21
|
Polich RL. Stress hormone levels in a freshwater turtle from sites differing in human activity. CONSERVATION PHYSIOLOGY 2016; 4:cow016. [PMID: 27293763 PMCID: PMC4892809 DOI: 10.1093/conphys/cow016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/14/2016] [Accepted: 04/09/2016] [Indexed: 05/26/2023]
Abstract
Glucocorticoids, such as corticosterone (CORT), commonly serve as a measure of stress levels in vertebrate populations. These hormones have been implicated in regulation of feeding behaviour, locomotor activity, body mass, lipid metabolism and other crucial behaviours and physiological processes. Thus, understanding how glucocorticoids fluctuate seasonally and in response to specific stressors can yield insight into organismal health and the overall health of populations. I compared circulating CORT concentrations between two similar populations of painted turtle, Chrysemys picta, which differed primarily in the level of exposure to human recreational activities. I measured basal CORT concentrations as well as the CORT stress response and did not find any substantive difference between the two populations. This similarity may indicate that painted turtles are not stressed by the presence of humans during the nesting season. The results of this study contribute to our understanding of CORT concentrations in freshwater reptiles, a group that is historically under-represented in studies of circulating hormone concentrations; specifically, studies that seek to use circulating concentrations of stress hormones, such as CORT, as a measure of the effect of human activities on wild populations. They also give insight into how these species as a whole may respond to human recreational activities during crucial life-history stages, such as the nesting season. Although there was no discernable difference between circulating CORT concentrations between the urban and rural populations studied, I did find a significant difference in circulating CORT concentrations between male and female C. picta. This important finding provides better understanding of the sex differences between male and female painted turtles and adds to our understanding of this species and other species of freshwater turtle.
Collapse
Affiliation(s)
- Rebecca L. Polich
- Corresponding author: Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA. Tel: +1 818 585 9763.
| |
Collapse
|
22
|
Watson H, Cohen AA, Isaksson C. A theoretical model of the evolution of actuarial senescence under environmental stress. Exp Gerontol 2015; 71:80-8. [PMID: 26335620 PMCID: PMC4710637 DOI: 10.1016/j.exger.2015.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/16/2023]
Abstract
Free-living organisms are exposed to a wide range of stressors, all of which can disrupt components of stress-related and detoxification physiology. The subsequent accumulation of somatic damage is widely believed to play a major role in the evolution of senescence. Organisms have evolved sophisticated physiological regulatory mechanisms to maintain homeostasis in response to environmental perturbations, but these systems are likely to be constrained in their ability to optimise robustness to multiple stressors due to functional correlations among related traits. While evolutionary change can accelerate due to human ecological impacts, it remains to be understood how exposure to multiple environmental stressors could affect senescence rates and subsequently population dynamics and fitness. We used a theoretical evolutionary framework to quantify the potential consequences for the evolution of actuarial senescence in response to exposure to simultaneous physiological stressors – one versus multiple and additive versus synergistic – in a hypothetical population of avian “urban adapters”. In a model in which multiple stressors have additive effects on physiology, species may retain greater capacity to recover, or respond adaptively, to environmental challenges. However, in the presence of high synergy, physiological dysregulation suddenly occurs, leading to a rapid increase in age-dependent mortality and subsequent population collapse. Our results suggest that, if the synergistic model is correct, population crashes in environmentally-stressed species could happen quickly and with little warning, as physiological thresholds of stress resistance are overcome. Environmental stressors challenge physiological systems linked to senescence. Various scenarios of stress exposure were simulated on a hypothetical “urban adapter”. Actuarial senescence increased rapidly in synergistic models of stress. Wild populations may be at greater risk of collapse than demography alone suggests. An explicit model of how stressors affect physiology underlying ageing is required.
Collapse
Affiliation(s)
- H Watson
- Evolutionary Ecology Unit, Biology Department, Ecology Building, Lund University, SE-22362 Lund, Sweden
| | - A A Cohen
- Groupe de recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Québec J1J 3H5, Canada
| | - C Isaksson
- Evolutionary Ecology Unit, Biology Department, Ecology Building, Lund University, SE-22362 Lund, Sweden.
| |
Collapse
|
23
|
Influence of Urbanization on Body Size, Condition, and Physiology in an Urban Exploiter: A Multi-Component Approach. PLoS One 2015; 10:e0135685. [PMID: 26270531 PMCID: PMC4535910 DOI: 10.1371/journal.pone.0135685] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/25/2015] [Indexed: 12/03/2022] Open
Abstract
Consistent expanding urbanization dramatically transforms natural habitats and exposes organisms to novel environmental challenges, often leading to reduced species richness and diversity in cities. However, it remains unclear how individuals are affected by the urban environment and how they can or cannot adjust to the specific characteristics of urban life (e.g. food availability). In this study, we used an integrative multi-component approach to investigate the effects of urbanization on the nutritional status of house sparrows (Passer domesticus). We assessed several morphological and physiological indices of body condition in both juveniles (early post-fledging) and breeding adults from four sites with different levels of urbanization in France, Western Europe. We found that sparrows in more urbanized habitats have reduced body size and body mass compared to their rural conspecifics. However, we did not find any consistent differences in a number of complementary indices of condition (scaled mass index, muscle score, hematocrit, baseline and stress-induced corticosterone levels) between urban and rural birds, indicating that urban sparrows may not be suffering nutritional stress. Our results suggest that the urban environment is unlikely to energetically constrain adult sparrows, although other urban-related variables may constrain them. On the other hand, we found significant difference in juvenile fat scores, suggesting that food types provided to young sparrows differed highly between habitats. In addition to the observed smaller size of urban sparrows, these results suggest that the urban environment is inadequate to satisfy early-life sparrows’ nutritional requirements, growth, and development. The urban environment may therefore have life-long consequences for developing birds.
Collapse
|
24
|
Ge Z, Johnson JD, Cobine PA, McGraw KJ, Garcia R, Hill GE. High Concentrations of Ketocarotenoids in Hepatic Mitochondria ofHaemorhous mexicanus. Physiol Biochem Zool 2015; 88:444-50. [DOI: 10.1086/681992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Isaksson C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12477] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Simons MJP, Groothuis TGG, Verhulst S. An appraisal of how the vitamin A-redox hypothesis can maintain honesty of carotenoid-dependent signals. Ecol Evol 2014; 5:224-8. [PMID: 25628879 PMCID: PMC4298449 DOI: 10.1002/ece3.1364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/09/2022] Open
Abstract
The vitamin A-redox hypothesis provides an explanation for honest signaling of phenotypic quality by carotenoid-dependent traits. A key aspect of the vitamin A-redox hypothesis, applicable to both yellow and red coloration, is the hypothesized negative feedback of tightly regulated Vitamin A plasma levels on the enzyme responsible for sequestering both Vitamin A and carotenoids from the gut. We performed a meta-analysis and find that vitamin A levels are positively related to carotenoid plasma levels (r = 0.50, P = 0.0002). On the basis of this finding and further theoretical considerations, we propose that the vitamin A-redox hypothesis is unlikely to explain carotenoid-dependent honest signaling.
Collapse
Affiliation(s)
- Mirre J P Simons
- Department of Animal and Plant Sciences, University of SheffieldSheffield, S102TN, UK
- Behavioural Biology, University of GroningenPO-Box 11103, 9700CC, Groningen, the Netherlands
- Correspondence Mirre J. P. Simons, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S102TN, UK., Tel: +44 114 2220123; Fax: +44 114 2220002;, E-mail:
| | - Ton G G Groothuis
- Behavioural Biology, University of GroningenPO-Box 11103, 9700CC, Groningen, the Netherlands
| | - Simon Verhulst
- Behavioural Biology, University of GroningenPO-Box 11103, 9700CC, Groningen, the Netherlands
| |
Collapse
|
27
|
|