1
|
Pepin KM, Leach CB, Barrett NL, Ellis JW, VanDalen KK, Webb CT, Shriner SA. Environmental transmission of influenza A virus in mallards. mBio 2023; 14:e0086223. [PMID: 37768062 PMCID: PMC10653830 DOI: 10.1128/mbio.00862-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Wild birds are the natural reservoir hosts of influenza A viruses. Highly pathogenic strains of influenza A viruses pose risks to wild birds, poultry, and human health. Thus, understanding how these viruses are transmitted between birds is critical. We conducted an experiment where we experimentally infected mallards which are ducks that are commonly exposed to influenza viruses. We exposed several contact ducks to the experimentally infected duck to estimate the probability that a contact duck would become infected from either exposure to the virus shed directly from the infected duck or shared water contaminated with the virus from the infected duck. We found that environmental transmission from contaminated water best predicted the probability of transmission to naïve contact ducks, relatively low levels of virus in the water were sufficient to cause infection, and the probability of a naïve duck becoming infected varied over time.
Collapse
Affiliation(s)
- Kim M. Pepin
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Clinton B. Leach
- Department of Fish Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicole L. Barrett
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Jeremy W. Ellis
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Kaci K. VanDalen
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| | - Colleen T. Webb
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Susan A. Shriner
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Teitelbaum CS, Casazza ML, McDuie F, De La Cruz SEW, Overton CT, Hall LA, Matchett EL, Ackerman JT, Sullivan JD, Ramey AM, Prosser DJ. Waterfowl recently infected with low pathogenic avian influenza exhibit reduced local movement and delayed migration. Ecosphere 2023. [DOI: 10.1002/ecs2.4432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Affiliation(s)
- Claire S. Teitelbaum
- Akima Systems Engineering Herndon Virginia USA
- Contractor to U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA
| | - Michael L. Casazza
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Fiona McDuie
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
- San Jose State University Research Foundation Moss Landing Marine Laboratories Moss Landing California USA
| | - Susan E. W. De La Cruz
- U.S. Geological Survey Western Ecological Research Center San Francisco Bay Estuary Field Station Moffett Field California USA
| | - Cory T. Overton
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Laurie A. Hall
- U.S. Geological Survey Western Ecological Research Center San Francisco Bay Estuary Field Station Moffett Field California USA
| | - Elliott L. Matchett
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Joshua T. Ackerman
- U.S. Geological Survey Western Ecological Research Center, Dixon Field Station Dixon California USA
| | - Jeffery D. Sullivan
- U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA
| | - Andrew M. Ramey
- U.S. Geological Survey Alaska Science Center Anchorage Alaska USA
| | - Diann J. Prosser
- U.S. Geological Survey Eastern Ecological Science Center Laurel Maryland USA
| |
Collapse
|
3
|
Gass JD, Dusek RJ, Hall JS, Hallgrimsson GT, Halldórsson HP, Vignisson SR, Ragnarsdottir SB, Jónsson JE, Krauss S, Wong SS, Wan XF, Akter S, Sreevatsan S, Trovão NS, Nutter FB, Runstadler JA, Hill NJ. Global dissemination of influenza A virus is driven by wild bird migration through arctic and subarctic zones. Mol Ecol 2023; 32:198-213. [PMID: 36239465 PMCID: PMC9797457 DOI: 10.1111/mec.16738] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.
Collapse
Affiliation(s)
- Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | | | | | | | | | - Solvi Runar Vignisson
- University of Iceland’s Research Centre in Suðurnes
- Suðurnes Science and Learning Center
| | | | | | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | - Sook-San Wong
- Department of Infectious Diseases, St. Jude Children’s Research Hospital
| | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
- Bond Life Sciences Center, University of Missouri, Columbia
- Department of Electronic Engineering and Computer Science, University of Missouri, Columbia
| | - Sadia Akter
- Center for Influenza and Emerging Infectious Diseases (CIEID), University of Missouri, Columbia
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia
- Bond Life Sciences Center, University of Missouri, Columbia
- Department of Electronic Engineering and Computer Science, University of Missouri, Columbia
| | | | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
| | - Nichola J. Hill
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University
- Department of Biology, University of Massachusetts, Boston
| |
Collapse
|
4
|
Castro-Sanguinetti GR, Marques Simas PV, Apaza-Chiara AP, Callupe-Leyva JA, Rondon-Espinoza JA, Gavidia CM, More-Bayona JA, Gonzalez Veliz RI, Vakharia VN, Icochea ME. Genetic subtyping and phylogenetic analysis of HA and NA from avian influenza virus in wild birds from Peru reveals unique features among circulating strains in America. PLoS One 2022; 17:e0268957. [PMID: 35671300 PMCID: PMC9173603 DOI: 10.1371/journal.pone.0268957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
Avian influenza virus (AIV) represents a major concern with productive implications in poultry systems but it is also a zoonotic agent that possesses an intrinsic pandemic risk. AIV is an enveloped, negative-sense and single-stranded RNA virus with a segmented genome. The eight genomic segments, comprising the whole genome, encode for eleven proteins. Within these proteins, Hemagglutinin (HA) and Neuraminidase (NA) are the most relevant for studies of evolution and pathogenesis considering their role in viral replication, and have also been used for classification purposes. Migratory birds are the main hosts and play a pivotal role in viral evolution and dissemination due to their migratory routes that comprise large regions worldwide. Altogether, viral and reservoir factors contribute to the emergence of avian influenza viruses with novel features and pathogenic potentials. The study aimed to conduct surveillance of AIVs in wild birds from Peru. A multi-site screening of feces of migratory birds was performed to isolate viruses and to characterize the whole genome sequences, especially the genes coding for HA and NA proteins. Four-hundred-twenty-one (421) fecal samples, collected between March 2019 and March 2020 in Lima, were obtained from 21 species of wild birds. From these, we isolated five AIV from whimbrel, kelp gull, Franklin’s gulls and Mallard, which were of low pathogenicity, including four subtypes as H6N8, H13N6, H6N2 and H2N6. Genetic analysis of HA and NA genes revealed novel features in these viruses and phylogenetic analysis exhibited a close relationship with those identified in North America (US and Canada). Furthermore, H2N6 isolate presented a NA sequence with higher genetic relationship to Chilean isolates. These results highlight that the geographical factor is of major relevance in the evolution of AIV, suggesting that AIV circulating in Peru might represent a new site for the emergence of reassortant AIVs.
Collapse
Affiliation(s)
- Gina R. Castro-Sanguinetti
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Paulo Vitor Marques Simas
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Ana Paola Apaza-Chiara
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Jose Alonso Callupe-Leyva
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Alexander Rondon-Espinoza
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Cesar M. Gavidia
- Laboratory of Epidemiology and Veterinary Economy, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Juan Anderson More-Bayona
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- Laboratory of Microbiology and Parasitology, Virology Section, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Rosa Isabel Gonzalez Veliz
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
| | - Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Maria Eliana Icochea
- Laboratory of Avian Pathology, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Lima, Peru
- * E-mail:
| |
Collapse
|
5
|
Gorsich EE, Webb CT, Merton AA, Hoeting JA, Miller RS, Farnsworth ML, Swafford SR, DeLiberto TJ, Pedersen K, Franklin AB, McLean RG, Wilson KR, Doherty PF. Continental-scale dynamics of avian influenza in U.S. waterfowl are driven by demography, migration, and temperature. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e2245. [PMID: 33098602 PMCID: PMC7988533 DOI: 10.1002/eap.2245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/20/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Emerging diseases of wildlife origin are increasingly spilling over into humans and domestic animals. Surveillance and risk assessments for transmission between these populations are informed by a mechanistic understanding of the pathogens in wildlife reservoirs. For avian influenza viruses (AIV), much observational and experimental work in wildlife has been conducted at local scales, yet fully understanding their spread and distribution requires assessing the mechanisms acting at both local, (e.g., intrinsic epidemic dynamics), and continental scales, (e.g., long-distance migration). Here, we combined a large, continental-scale data set on low pathogenic, Type A AIV in the United States with a novel network-based application of bird banding/recovery data to investigate the migration-based drivers of AIV and their relative importance compared to well-characterized local drivers (e.g., demography, environmental persistence). We compared among regression models reflecting hypothesized ecological processes and evaluated their ability to predict AIV in space and time using within and out-of-sample validation. We found that predictors of AIV were associated with multiple mechanisms at local and continental scales. Hypotheses characterizing local epidemic dynamics were strongly supported, with age, the age-specific aggregation of migratory birds in an area and temperature being the best predictors of infection. Hypotheses defining larger, network-based features of the migration processes, such as clustering or between-cluster mixing explained less variation but were also supported. Therefore, our results support a role for local processes in driving the continental distribution of AIV.
Collapse
Affiliation(s)
- Erin E. Gorsich
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUnited Kingdom
- The Zeeman Institute: Systems Biology and Infectious Disease Epidemiology Research (SBIDER)University of WarwickCoventryCV4 7ALUnited Kingdom
- Department of BiologyColorado State UniversityFort CollinsColorado80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80521USA
| | - Colleen T. Webb
- Department of BiologyColorado State UniversityFort CollinsColorado80521USA
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColorado80521USA
| | - Andrew A. Merton
- Department of StatisticsColorado State UniversityFort CollinsColorado80521USA
| | - Jennifer A. Hoeting
- Department of StatisticsColorado State UniversityFort CollinsColorado80521USA
| | - Ryan S. Miller
- Centers for Epidemiology and Animal HealthUSDA APHIS Veterinary ServicesFort CollinsColorado80526USA
| | - Matthew L. Farnsworth
- Centers for Epidemiology and Animal HealthUSDA APHIS Veterinary ServicesFort CollinsColorado80526USA
| | - Seth R. Swafford
- National Wildlife Disease ProgramUSDA APHIS Wildlife ServicesFort CollinsColorado80521USA
- National Wildlife Refuge SystemUS Fish and Wildlife ServiceYazoo CityMississippi39194USA
| | - Thomas J. DeLiberto
- National Wildlife Disease ProgramUSDA APHIS Wildlife ServicesFort CollinsColorado80521USA
| | - Kerri Pedersen
- National Wildlife Disease ProgramUSDA APHIS Wildlife ServicesFort CollinsColorado80521USA
- USDA APHIS Wildlife ServicesRaleighNorth Carolina27606USA
| | - Alan B. Franklin
- National Wildlife Research CenterUSDA APHIS Wildlife ServicesFort CollinsColorado80521USA
| | - Robert G. McLean
- National Wildlife Research CenterUSDA APHIS Wildlife ServicesFort CollinsColorado80521USA
| | - Kenneth R. Wilson
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado80521USA
| | - Paul F. Doherty
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsColorado80521USA
| |
Collapse
|
6
|
Niu X, Hou YJ, Jung K, Kong F, Saif LJ, Wang Q. Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses 2021; 13:122. [PMID: 33477379 PMCID: PMC7829776 DOI: 10.3390/v13010122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Lee K, Yu D, Martínez-López B, Yoon H, Kang SI, Hong SK, Lee I, Kang Y, Jeong W, Lee E. Fine-scale tracking of wild waterfowl and their impact on highly pathogenic avian influenza outbreaks in the Republic of Korea, 2014-2015. Sci Rep 2020; 10:18631. [PMID: 33122803 PMCID: PMC7596240 DOI: 10.1038/s41598-020-75698-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Wild migratory waterfowl are considered one of the most important reservoirs and long-distance carriers of highly pathogenic avian influenza (HPAI). Our study aimed to explore the spatial and temporal characteristics of wild migratory waterfowl’s wintering habitat in the Republic of Korea (ROK) and to evaluate the impact of these habitats on the risk of HPAI outbreaks in commercial poultry farms. The habitat use of 344 wild migratory waterfowl over four migration cycles was estimated based on tracking records. The association of habitat use with HPAI H5N8 outbreaks in poultry farms was evaluated using a multilevel logistic regression model. We found that a poultry farm within a wild waterfowl habitat had a 3–8 times higher risk of HPAI outbreak than poultry farms located outside of the habitat. The range of wild waterfowl habitats increased during autumn migration, and was associated with the epidemic peak of HPAI outbreaks on domestic poultry farms in the ROK. Our findings provide a better understanding of the dynamics of HPAI infection in the wildlife–domestic poultry interface and may help to establish early detection, and cost-effective preventive measures.
Collapse
Affiliation(s)
- Kyuyoung Lee
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Daesung Yu
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea.
| | - Beatriz Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hachung Yoon
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Sung-Il Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Seong-Keun Hong
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Ilseob Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Yongmyung Kang
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Wooseg Jeong
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| | - Eunesub Lee
- Veterinary Epidemiology Division, Animal and Plant Quarantine Agency (QIA), Gimcheon, Republic of Korea
| |
Collapse
|
8
|
Uribe Soto M, Gómez Ramírez AP, Ramírez Nieto GC. INFLUENZA REQUIERE UN MANEJO BAJO LA PERSPECTIVA DE “ONE HEALTH” EN COLOMBIA. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n3.79364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
La influenza es una infección viral de importancia y distribución mundial, cuyo agente causal es el Alfainfluenzavirus o influenza virus tipo A (IAV). El cual se caracteriza por poseer un genoma de tipo ssRNA segmentado, lo cual le confiere una alta variabilidad y capacidad recombinante. Esto, sumado al amplio rango de huéspedes susceptibles y la posibilidad de transmisión entre especies, se constituye en un reto tanto para la salud humana como animal. El IAV es capaz de infectar una amplia variedad de huéspedes, incluyendo múltiples especies de aves y mamíferos, tanto domésticos como salvajes y al humano, así como a reptiles y anfibios, entre otros. Dentro de los Alphainfluenzavirus se reconocen 16 subtipos de Hemaglutinina (HA) y 9 de Neuraminidasa (NA), siendo su principal reservorio las aves silvestres acuáticas. Adicionalmente se han reconocido dos nuevos subtipos en murciélagos (H17-18 y N10-11), los cuales se han denominado Influenza-like virus. Teniendo en cuenta lo anterior y conocedores de la riqueza en biodiversidad que posee Colombia, país en el que está demostrada la circulación del virus en cerdos y en humanos y hay resultados preliminares de la presencia de Orthomyxovirus en murciélagos, es imperativo estudiar y conocer los IAV circulantes en el medio, establecer factores de riesgo y analizar el efecto que ha tenido y seguirán teniendo condiciones asociadas al cambio climático, los factores sociodemográficos y el papel de diferentes especies en la ecología de este agente viral. Todo lo anterior bajo el contexto de “una salud” en la infección por IAV.
Collapse
|
9
|
Cibulski S, Weber MN, de Sales Lima FE, Lima DAD, Fernandes Dos Santos H, Teixeira TF, Varela APM, Tochetto C, Mayer FQ, Roehe PM. Viral metagenomics in Brazilian Pekin ducks identifies two gyrovirus, including a new species, and the potentially pathogenic duck circovirus. Virology 2020; 548:101-108. [PMID: 32838930 DOI: 10.1016/j.virol.2020.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Viral metagenomics coupled to high-throughput sequencing has provided a powerful tool for large-scale detection of known and unknown viruses associated to distinct hosts and environments. Using this approach, known and novel viruses have been characterized from sylvatic and commercial avian hosts, increasing our understanding of the viral diversity in these species. In the present work we applied an exploratory viral metagenomics on organs (spleen, liver and bursa of Fabricious) of Pekin ducks from Southern Brazil. The virome contained sequences related to a known duck pathogen (duck circovirus) and a number of other circular ssDNA viruses. Additionally, we detected avian gyrovirus 9 (to date detected only in human feces) and one new avian gyrovirus species, to which is proposed the name avian gyrovirus 13 (GyV13). This study is expected to contribute to the knowledge of the viral diversity in Pekin ducks.
Collapse
Affiliation(s)
- Samuel Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil.
| | - Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Francisco Esmaile de Sales Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helton Fernandes Dos Santos
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Medicina Veterinária Preventiva, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Muterle Varela
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Tochetto
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Laboratório de Biologia Molecular, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Departamento de Microbiologia Imunologia e Parasitologia, Laboratório de Virologia, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull 2019; 132:81-95. [PMID: 31848585 PMCID: PMC6992886 DOI: 10.1093/bmb/ldz036] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.
Collapse
Affiliation(s)
- Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- SingHealth Duke-NUS Global Health Institute, 31 Third Hospital Ave, Singapore 168753
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
11
|
Cummings CO, Hill NJ, Puryear WB, Rogers B, Mukherjee J, Leibler JH, Rosenbaum MH, Runstadler JA. Evidence of Influenza A in Wild Norway Rats ( Rattus norvegicus) in Boston, Massachusetts. Front Ecol Evol 2019; 7:36. [PMID: 34660611 PMCID: PMC8519512 DOI: 10.3389/fevo.2019.00036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Influenza A virus (IAV) is known to circulate among human and animal reservoirs, yet there are few studies that address the potential for urban rodents to carry and shed IAV. Rodents are often used as influenza models in the lab, but the few field studies that have looked for evidence of IAV in rodents have done so primarily in rural areas following outbreaks of IAV in poultry. This study sought to assess the prevalence of IAV recovered from wild Norway rats in a dense urban location (Boston). To do this, we sampled the oronasal cavity, paws, and lungs of Norway rats trapped by the City of Boston's Inspectional Services from December 2016 to September 2018. All samples were screened by real-time, reverse transcriptase PCR targeting the conserved IAV matrix segment. A total of 163 rats were trapped, 18 of which (11.04%) were RT-PCR positive for IAV in either oronasal swabs (9), paw swabs (9), both (2), or lung homogenates (2). A generalized linear model indicated that month and geographic location were correlated with IAV-positive PCR status of rats. A seasonal trend in IAV-PCR status was observed with the highest prevalence occurring in the winter months (December-January) followed by a decline over the course of the year, reaching its lowest prevalence in September. Sex and weight of rats were not significantly associated with IAV-PCR status, suggesting that rodent demography is not a primary driver of infection. This pilot study provides evidence of the need to further investigate the role that wild rats may play as reservoirs or mechanical vectors for IAV circulation in urban environments across seasons.
Collapse
Affiliation(s)
- Charles O. Cummings
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Nichola J. Hill
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Benjamin Rogers
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Jean Mukherjee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Marieke H. Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| |
Collapse
|
12
|
Satterfield DA, Marra PP, Sillett TS, Altizer S. Responses of migratory species and their pathogens to supplemental feeding. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531149 DOI: 10.1098/rstb.2017.0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Migratory animals undergo seasonal and often spectacular movements and perform crucial ecosystem services. In response to anthropogenic changes, including food subsidies, some migratory animals are now migrating shorter distances or halting migration altogether and forming resident populations. Recent studies suggest that shifts in migratory behaviour can alter the risk of infection for wildlife. Although migration is commonly assumed to enhance pathogen spread, for many species, migration has the opposite effect of lowering infection risk, if animals escape from habitats where pathogen stages have accumulated or if strenuous journeys cull infected hosts. Here, we summarize responses of migratory species to supplemental feeding and review modelling and empirical work that provides support for mechanisms through which resource-induced changes in migration can alter pathogen transmission. In particular, we focus on the well-studied example of monarch butterflies and their protozoan parasites in North America. We also identify areas for future research, including combining new technologies for tracking animal movements with pathogen surveillance and exploring potential evolutionary responses of hosts and pathogens to changing movement patterns. Given that many migratory animals harbour pathogens of conservation concern and zoonotic potential, studies that document ongoing shifts in migratory behaviour and infection risk are vitally needed.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- Dara A Satterfield
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Peter P Marra
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| |
Collapse
|
13
|
Beard R, Wentz E, Scotch M. A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks. Int J Health Geogr 2018; 17:38. [PMID: 30376842 PMCID: PMC6208014 DOI: 10.1186/s12942-018-0157-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Zoonotic diseases account for a substantial portion of infectious disease outbreaks and burden on public health programs to maintain surveillance and preventative measures. Taking advantage of new modeling approaches and data sources have become necessary in an interconnected global community. To facilitate data collection, analysis, and decision-making, the number of spatial decision support systems reported in the last 10 years has increased. This systematic review aims to describe characteristics of spatial decision support systems developed to assist public health officials in the management of zoonotic disease outbreaks. METHODS A systematic search of the Google Scholar database was undertaken for published articles written between 2008 and 2018, with no language restriction. A manual search of titles and abstracts using Boolean logic and keyword search terms was undertaken using predefined inclusion and exclusion criteria. Data extraction included items such as spatial database management, visualizations, and report generation. RESULTS For this review we screened 34 full text articles. Design and reporting quality were assessed, resulting in a final set of 12 articles which were evaluated on proposed interventions and identifying characteristics were described. Multisource data integration, and user centered design were inconsistently applied, though indicated diverse utilization of modeling techniques. CONCLUSIONS The characteristics, data sources, development and modeling techniques implemented in the design of recent SDSS that target zoonotic disease outbreak were described. There are still many challenges to address during the design process to effectively utilize the value of emerging data sources and modeling methods. In the future, development should adhere to comparable standards for functionality and system development such as user input for system requirements, and flexible interfaces to visualize data that exist on different scales. PROSPERO registration number: CRD42018110466.
Collapse
Affiliation(s)
- Rachel Beard
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Elizabeth Wentz
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ USA
| | - Matthew Scotch
- College of Health Solutions, Arizona State University, Phoenix, AZ USA
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ USA
| |
Collapse
|
14
|
Bailey ES, Choi JY, Fieldhouse JK, Borkenhagen LK, Zemke J, Zhang D, Gray GC. The continual threat of influenza virus infections at the human-animal interface: What is new from a one health perspective? EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:192-198. [PMID: 30210800 PMCID: PMC6128238 DOI: 10.1093/emph/eoy013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
This year, in 2018, we mark 100 years since the 1918 influenza pandemic. In the last 100 years, we have expanded our knowledge of public health and increased our ability to detect and prevent influenza; however, we still face challenges resulting from these continually evolving viruses. Today, it is clear that influenza viruses have multiple animal reservoirs (domestic and wild), making infection prevention in humans especially difficult to achieve. With this report, we summarize new knowledge regarding influenza A, B, C and D viruses and their control. We also introduce how a multi-disciplinary One Health approach is necessary to mitigate these threats.
Collapse
Affiliation(s)
- Emily S Bailey
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Jessica Y Choi
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Jane K Fieldhouse
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Laura K Borkenhagen
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Zemke
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Dingmei Zhang
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gregory C Gray
- Duke Global Health Institute, Duke University, Durham, NC, USA.,Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Global Health Research Center, Duke-Kunshan University, Kunshan, China.,Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
15
|
A rapid and transient innate immune response to avian influenza infection in mallards. Mol Immunol 2018; 95:64-72. [PMID: 29407578 DOI: 10.1016/j.molimm.2018.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 01/24/2018] [Indexed: 12/28/2022]
Abstract
The vertebrate innate immune system provides hosts with a rapid, non-specific response to a wide range of invading pathogens. However, the speed and duration of innate responses will be influenced by the co-evolutionary dynamics of specific host-pathogen combinations. Here, we show that low pathogenic avian influenza virus (LPAI) subtype H1N1 elicits a strong but extremely transient innate immune response in its main wildlife reservoir, the mallard (Anas platyrhynchos). Using a series of experimental and methodological improvements over previous studies, we followed the expression of retinoic acid inducible gene 1 (RIG-I) and myxovirus resistance gene (Mx) in mallards semi-naturally infected with low pathogenic H1N1. One day post infection, both RIG-I and Mx were significantly upregulated in all investigated tissues. By two days post infection, the expression of both genes had generally returned to basal levels, and remained so for the remainder of the experiment. This is despite the fact that birds continued to actively shed viral particles throughout the study period. We additionally show that the spleen plays a particularly active role in the innate immune response to LPAI. Waterfowl and avian influenza viruses have a long co-evolutionary history, suggesting that the mallard innate immune response has evolved to provide a minimum effective response to LPAIs such that the viral infection is brought under control while minimising the damaging effects of a sustained immune response.
Collapse
|
16
|
van Dijk JGB, Verhagen JH, Wille M, Waldenström J. Host and virus ecology as determinants of influenza A virus transmission in wild birds. Curr Opin Virol 2018; 28:26-36. [DOI: 10.1016/j.coviro.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
17
|
Zhao L, Niu Y, Lu T, Yin H, Zhang Y, Xu L, Wang Y, Chen H. Metagenomic Analysis of the Jinding Duck Fecal Virome. Curr Microbiol 2018; 75:658-665. [PMID: 29368024 PMCID: PMC7080049 DOI: 10.1007/s00284-018-1430-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
Ducks play an important role in transmitting and maintaining mammalian viruses in nature, and are a reservoir host of many animal viruses. We analyzed the fecal virome of four strains (A, B, C, and D) of ducks living in isolation by using metagenomic analysis. The feces of the ducks tested contained 18 animal virus families. The percentage values of RNA virus reads, compared to the total animal virus reads in each of the four strains were 96.96% (A), 97.30% (B), 98.01 (C), and 67.49% (D), and were mainly from Orthomyxoviridae, Mimiviridae, Bunyaviridae, Picobirnaviridae, and Reoviridae. Meanwhile, the minority of DNA virus reads were related to Herpesviridae, Adenoviridae, Iridoviridae, and other, low abundance viral families. The percentage values of Orthomyxoviridae, Mimiviridae, Bunyaviridae, Picobirnaviridae, and Herpesviridae reads were not significantly different among strains A, B, and C; however, there were marked differences in the abundance of these reads in strain D. In summary, this study provides an unbiased examination of the viral diversity in the feces of four strains of ducks in specific-pathogen-free periods, and highlights the variation in the percentage of viral families present. These results can be used as a reference for detecting duck viral pathogens and predicting zoonotic potential.
Collapse
Affiliation(s)
- Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yinjie Niu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Taofeng Lu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Haichang Yin
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yuanyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Lijing Xu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Yiping Wang
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, The Chinese Academy of Agriculture Sciences, 678 Haping Road, Harbin, 150069, People's Republic of China.
| |
Collapse
|
18
|
Risely A, Klaassen M, Hoye BJ. Migratory animals feel the cost of getting sick: A meta-analysis across species. J Anim Ecol 2017; 87:301-314. [PMID: 28994103 DOI: 10.1111/1365-2656.12766] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/01/2017] [Indexed: 01/22/2023]
Abstract
Migratory animals are widely assumed to play an important role in the long-distance dispersal of parasites, and are frequently implicated in the global spread of zoonotic pathogens such as avian influenzas in birds and Ebola viruses in bats. However, infection imposes physiological and behavioural constraints on hosts that may act to curtail parasite dispersal via changes to migratory timing ("migratory separation") and survival ("migratory culling"). There remains little consensus regarding the frequency and extent to which migratory separation and migratory culling may operate, despite a growing recognition of the importance of these mechanisms in regulating transmission dynamics in migratory animals. We quantitatively reviewed 85 observations extracted from 41 studies to examine how both infection status and infection intensity are related to changes in body stores, refuelling rates, movement capacity, phenology and survival in migratory hosts across taxa. Overall, host infection status was weakly associated with reduced body stores, delayed migration and lower survival, and more strongly associated with reduced movement. Infection intensity was not associated with changes to host body stores, but was associated with moderate negative effects on movement, phenology and survival. In conclusion, we found evidence for negative effects of infection on host phenology and survival, but the effects were relatively small. This may have implications for the extent to which migratory separation and migratory culling act to limit parasite dispersal in migratory systems. We propose a number of recommendations for future research that will further advance our understanding of how migratory separation and migratory culling may shape host-parasite dynamics along migratory routes globally.
Collapse
Affiliation(s)
- Alice Risely
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia
| | - Bethany J Hoye
- Centre for Integrative Ecology, Deakin University, Geelong, Vic., Australia.,School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
19
|
Fritzsche McKay A, Hoye BJ. Are Migratory Animals Superspreaders of Infection? Integr Comp Biol 2017; 56:260-7. [PMID: 27462034 DOI: 10.1093/icb/icw054] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Migratory animals are simultaneously challenged by the physiological demands of long-distance movements and the need to avoid natural enemies including parasites and pathogens. The potential for animal migrations to disperse pathogens across large geographic areas has prompted a growing body of research investigating the interactions between migration and infection. However, the phenomenon of animal migration is yet to be incorporated into broader theories in disease ecology. Because migrations may expose animals to a greater number and diversity of pathogens, increase contact rates between hosts, and render them more susceptible to infection via changes to immune function, migration has the potential to generate both "superspreader species" and infection "hotspots". However, migration has also been shown to reduce transmission in some species, by facilitating parasite avoidance ("migratory escape") and weeding out infected individuals ("migratory culling"). This symposium was convened in an effort to characterize more broadly the role that animal migrations play in the dynamics of infectious disease, by integrating a range of approaches and scales across host taxa. We began with questions related to within-host processes, focusing on the consequences of nutritional constraints and strenuous movement for individual immune capability, and of parasite infection for movement capacity. We then scaled-up to between-host processes to identify what types, distances, or patterns of host movements are associated with the spread of infectious agents. Finally, we discussed landscape-scale relationships between migration and infectious disease, and how these may be altered as a result of anthropogenic changes to climate and land use. We are just beginning to scratch the surface of the interactions between infection and animal migrations; yet, with so many migrations now under threat, there is an urgent need to develop a holistic understanding of the potential for migrations to both increase and reduce infection risk.
Collapse
Affiliation(s)
| | - Bethany J Hoye
- †School of Life & Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
20
|
Hoye BJ, Munster VJ, Huig N, de Vries P, Oosterbeek K, Tijsen W, Klaassen M, Fouchier RAM, van Gils JA. Hampered performance of migratory swans: intra- and inter-seasonal effects of avian influenza virus. Integr Comp Biol 2016; 56:317-29. [PMID: 27252210 PMCID: PMC5007603 DOI: 10.1093/icb/icw038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The extent to which animal migrations shape parasite transmission networks is critically dependent on a migrant's ability to tolerate infection and migrate successfully. Yet, sub-lethal effects of parasites can be intensified through periods of increased physiological stress. Long-distance migrants may, therefore, be especially susceptible to negative effects of parasitic infection. Although a handful of studies have investigated the short-term, transmission-relevant behaviors of wild birds infected with low-pathogenic avian influenza viruses (LPAIV), the ecological consequences of LPAIV for the hosts themselves remain largely unknown. Here, we assessed the potential effects of naturally-acquired LPAIV infections in Bewick's swans, a long-distance migratory species that experiences relatively low incidence of LPAIV infection during early winter. We monitored both foraging and movement behavior in the winter of infection, as well as subsequent breeding behavior and inter-annual resighting probability over 3 years. Incorporating data on infection history we hypothesized that any effects would be most apparent in naïve individuals experiencing their first LPAIV infection. Indeed, significant effects of infection were only seen in birds that were infected but lacked antibodies indicative of prior infection. Swans that were infected but had survived a previous infection were indistinguishable from uninfected birds in each of the ecological performance metrics. Despite showing reduced foraging rates, individuals in the naïve-infected category had similar accumulated body stores to re-infected and uninfected individuals prior to departure on spring migration, possibly as a result of having higher scaled mass at the time of infection. And yet individuals in the naïve-infected category were unlikely to be resighted 1 year after infection, with 6 out of 7 individuals that never resighted again compared to 20 out of 63 uninfected individuals and 5 out of 12 individuals in the re-infected category. Collectively, our findings indicate that acute and superficially harmless infection with LPAIV may have indirect effects on individual performance and recruitment in migratory Bewick's swans. Our results also highlight the potential for infection history to play an important role in shaping ecological constraints throughout the annual cycle.
Collapse
Affiliation(s)
- Bethany J Hoye
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Vincent J Munster
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naomi Huig
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Peter de Vries
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kees Oosterbeek
- SOVON Texel, Dutch Center for Field Ornithology, Den Burg (Texel), The Netherlands
| | - Wim Tijsen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Geelong, Victoria, Australia Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Ron A M Fouchier
- Department of Virosciences, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg (Texel), The Netherlands
| |
Collapse
|