1
|
Islam MA, Kim S, Islam MS, Islam O, Park S, Taili I, Jeong DH, Na KJ. Isolation and identification of aerobic and anaerobic bacteria from the feces of wild Korean water deer ( Hydropotes inermis argyropus). J Vet Sci 2024; 25:e78. [PMID: 39608772 PMCID: PMC11611485 DOI: 10.4142/jvs.24236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024] Open
Abstract
IMPORTANCE Understanding the microbial diversity within the gastrointestinal tract of wild Korean water deer (KWD; Hydropotes inermis argyropus) is essential for gaining insights into their health and ecological interactions. OBJECTIVE This study aims to isolate and identify aerobic and anaerobic bacterial species in the feces of wild KWD. METHODS Fecal samples were collected from 55 wild KWD of varying age and sex. Aerobic bacteria were cultured at 37°C for 24-48 h under standard conditions, whereas anaerobic bacteria were cultured at 37°C for 48-72 h in an anaerobic environment. Bacterial identification was conducted using DNA extraction and polymerase chain reaction amplification targeting the 16S rRNA gene. RESULTS The predominant aerobic bacteria identified belonged to the Firmicutes (58.18%) and Proteobacteria (41.82%) phyla, with Escherichia coli (31.82%) and Bacillus cereus (31.82%) being the most common species. Among anaerobic bacteria, most belonged to the Firmicutes (71.03%), Proteobacteria (27.10%), and Fusobacteriota (1.87%) phyla, with Paraclostridium bifermentans (28.97%) and E. coli (22.43%) being the most prevalent species. Other frequently identified anaerobic species were Fusobacterium varium, Lactococcus garvieae, Terrisporobacter glycolicus, Enterococcus faecalis, and Clostridium sporogenes. CONCLUSIONS AND RELEVANCE Our findings indicate a diverse microbial community in the feces of water deer, offering valuable insights into their gut microbiota and its potential implications for health and ecology.
Collapse
MESH Headings
- Animals
- Deer/microbiology
- Feces/microbiology
- Republic of Korea
- Bacteria, Aerobic/isolation & purification
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/genetics
- Bacteria, Anaerobic/isolation & purification
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- Male
- Female
Collapse
Affiliation(s)
- Md Ashraful Islam
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- Department of Livestock Services (DLS), Ministry of Fisheries and Livestock, Dhaka 1215, Bangladesh
| | - Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Md Sodrul Islam
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Obaidul Islam
- Laboratory of Veterinary Epidemiology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Seunghyeon Park
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Itainara Taili
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Dong-Hyuk Jeong
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
- The Wildlife Center of Chungbuk, Cheongju 28116, Korea.
| |
Collapse
|
2
|
Lipowska MM, Sadowska ET, Kohl KD, Koteja P. Experimental Evolution of a Mammalian Holobiont? Genetic and Maternal Effects on the Cecal Microbiome in Bank Voles Selectively Bred for Herbivorous Capability. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:274-291. [PMID: 39680902 DOI: 10.1086/732781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
AbstractMammalian herbivory represents a complex adaptation requiring evolutionary changes across all levels of biological organization, from molecules to morphology to behavior. Explaining the evolution of such complex traits represents a major challenge in biology, as it is simultaneously muddled and enlightened by a growing awareness of the crucial role of symbiotic associations in shaping organismal adaptations. The concept of hologenomic evolution includes the partnered unit of the holobiont, the host with its microbiome, as a selection unit that may undergo adaptation. Here, we test some of the assumptions underlying the concept of hologenomic evolution using a unique experimental evolution model: lines of the bank vole (Myodes [=Clethrionomys] glareolus) selected for increased ability to cope with a low-quality herbivorous diet and unselected control lines. Results from a complex nature-nurture design, in which we combined cross-fostering between the selected and control lines with dietary treatment, showed that the herbivorous voles harbored a cecal microbiome with altered membership and structure and changed abundances of several phyla and genera regardless of the origin of their foster mothers. Although the differences were small, they were statistically significant and partially robust to changes in diet and housing conditions. Microbial characteristics also correlated with selection-related traits at the level of individual variation. Thus, the results support the hypothesis that selection on a host performance trait leads to genetic changes in the host that promote the maintenance of a beneficial microbiome. Such a result is consistent with some of the assumptions underlying the concept of hologenomic evolution.
Collapse
|
3
|
Kraus JB, Huang ZP, Li YP, Cui LW, Wang SJ, Li JF, Liu F, Wang Y, Strier KB, Xiao W. Variation in monthly and seasonal elevation use impacts behavioral and dietary flexibility in Rhinopithecus bieti. Am J Primatol 2024; 86:e23627. [PMID: 38613565 DOI: 10.1002/ajp.23627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Black-and-white snub-nosed monkeys (Rhinopithecus bieti) rely on behavioral and dietary flexibility to survive in temperate latitudes at high-elevation habitats characterized by climate and resource seasonality. However, little is known about how elevation influences their behavioral and dietary flexibility at monthly or seasonal scales. We studied an isolated R. bieti population at Mt. Lasha in the Yunling Provincial Nature Reserve, Yunnan, China, between May 2008 and August 2016 to assess the impacts of elevation on feeding behavior and diet. Across our sample, R. bieti occupied elevations between 3031 and 3637 m above mean sea level (amsl), with a 315.1 m amsl range across months and a 247.3 m amsl range across seasons. Contrary to expectations, individuals spent less time feeding when ranging across higher elevations. Lichen consumption correlated with elevation use across months and seasons, with individuals spending more time feeding on this important resource at higher elevations. Leaf consumption only correlated with elevation use during the spring. Our results suggest that R. bieti do not maximize their food intake at higher elevations and that monthly and seasonal changes in lichen and leaf consumption largely explain variation in elevation use. These findings shed light on the responses of R. bieti to environmental change and offer insight into strategies for conserving their habitats in the face of anthropogenic disturbance.
Collapse
Affiliation(s)
- Jacob B Kraus
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forest University, Kunming, Yunnan, China
| | - Yan-Pang Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Liang-Wei Cui
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forest University, Kunming, Yunnan, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Shuang-Jin Wang
- Party School of YuXi committee of C.P.C, Yuxi, Yunnan, China
| | - Jin-Fa Li
- Administration Bureau of Nuozhadu Provincial Nature Reserve, Pu'er, Yunnan, China
| | - Feng Liu
- Xizang Autonomous Region Research Institute of Forestry Inventory and Planning, Lhasa, China
| | - Yun Wang
- Forestry Bureau of Qianxinan Buyei and Miao Autonomous Prefecture, Guizhou, China
| | - Karen B Strier
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| |
Collapse
|
4
|
Abraham JO, Lin B, Miller AE, Henry LP, Demmel MY, Warungu R, Mwangi M, Lobura PM, Pallares LF, Ayroles JF, Pringle RM, Rubenstein DI. Determinants of microbiome composition: Insights from free-ranging hybrid zebras (Equus quagga × grevyi). Mol Ecol 2024; 33:e17370. [PMID: 38682799 DOI: 10.1111/mec.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The composition of mammalian gut microbiomes is highly conserved within species, yet the mechanisms by which microbiome composition is transmitted and maintained within lineages of wild animals remain unclear. Mutually compatible hypotheses exist, including that microbiome fidelity results from inherited dietary habits, shared environmental exposure, morphophysiological filtering and/or maternal effects. Interspecific hybrids are a promising system in which to interrogate the determinants of microbiome composition because hybrids can decouple traits and processes that are otherwise co-inherited in their parent species. We used a population of free-living hybrid zebras (Equus quagga × grevyi) in Kenya to evaluate the roles of these four mechanisms in regulating microbiome composition. We analysed faecal DNA for both the trnL-P6 and the 16S rRNA V4 region to characterize the diets and microbiomes of the hybrid zebra and of their parent species, plains zebra (E. quagga) and Grevy's zebra (E. grevyi). We found that both diet and microbiome composition clustered by species, and that hybrid diets and microbiomes were largely nested within those of the maternal species, plains zebra. Hybrid microbiomes were less variable than those of either parent species where they co-occurred. Diet and microbiome composition were strongly correlated, although the strength of this correlation varied between species. These patterns are most consistent with the maternal-effects hypothesis, somewhat consistent with the diet hypothesis, and largely inconsistent with the environmental-sourcing and morphophysiological-filtering hypotheses. Maternal transmittance likely operates in conjunction with inherited feeding habits to conserve microbiome composition within species.
Collapse
Affiliation(s)
- Joel O Abraham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Bing Lin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Lucas P Henry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Department of Biology, New York University, New York City, New York, USA
| | - Margaret Y Demmel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Section of Ecology, Behavior and Evolution, University of California San Diego, San Diego, California, USA
| | | | | | | | - Luisa F Pallares
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Friedrich Miescher Laboratory, Max Planck Society, Tübingen, Germany
| | - Julien F Ayroles
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Mpala Research Conservancy, Laikipia County, Kenya
| |
Collapse
|
5
|
Zheng P, Gao W, Cong S, Leng L, Wang T, Shi L. High-Energy Supplemental Feeding Shifts Gut Microbiota Composition and Function in Red Deer ( Cervus elaphus). Animals (Basel) 2024; 14:1428. [PMID: 38791646 PMCID: PMC11117297 DOI: 10.3390/ani14101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Winter supplemental feeding (SF) is commonly used to improve the survival of captive wildlife. To investigate the impact of winter supplementation on the gut microbiota of wildlife, we assessed changes in the gut microbiota of red deer (Cervus elaphus) during the supplementary and non-supplementary feeding (NSF) groups using 16S rRNA sequencing technology. We found no significant differences in the diversity of the gut microbiota between SF and NSF except for the Simpson's index. However, the relative abundance of Bacteroidetes, Lentisphaerae, and Proteobacteria in the gut microbiota was significantly higher during SF. Further, genera such as Intestinimonas, Rikenella, Lawsonibacter, Muribaculum, and Papillibacter were more abundant during SF. Beta diversity analysis showed significant differences between SF and NSF. The microbes detected during SF were primarily associated with lipid metabolism, whereas those detected during NSF were linked to fiber catabolism. High-energy feed affects the gut microbial composition and function in red deer. During SF, the gut microbes in red deer were enriched in microorganisms associated with butyrate and lipid metabolism, such as R. microfusus, M. intestinale, and Papillibacter cinnamivorans. These gut microbes may be involved in ameliorating obesity associated with high-energy diets. In summary, SF is a reasonable and effective management strategy.
Collapse
Affiliation(s)
- Peng Zheng
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Weizhen Gao
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Shaobo Cong
- Xinjiang Tianshan Wildlife Park, Urumqi 830039, China;
| | - Lin Leng
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Tao Wang
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| | - Lei Shi
- College of Animal Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (P.Z.); (W.G.)
- Key Laboratory of Ecological Adaptation and Evolution of Extreme Environment Biology in Xinjiang, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China; (L.L.); (T.W.)
| |
Collapse
|
6
|
Sun X, Sitters J, Ruytinx J, Wassen MJ, Olde Venterink H. Microbial community composition in the dung of five sympatric European herbivore species. Ecol Evol 2024; 14:e11071. [PMID: 38481755 PMCID: PMC10933625 DOI: 10.1002/ece3.11071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 06/21/2024] Open
Abstract
The dung microbiome is a complex system that is highly influenced by species and diet. This study characterized the dung bacterial and fungal communities of five herbivore species inhabiting the National Park Zuid-Kennemerland, the Netherlands. The five selected herbivore species were rabbit (Oryctolagus cuniculus L.), cow (Bos taurus L.), horse (Equus ferus caballus L.), fallow deer (Dama dama L.), and European bison (Bison bonasus L.). We explored the effects of distinct digestive physiology (ruminants vs. non-ruminants) and diverse dietary preferences on the microbial community composition of herbivore dung. Firmicutes and Bacteroidetes were dominant bacterial phyla in the dung of all five herbivore species, and Ascomycota was the predominant fungal phylum. Verrucomicrobiota and Mucoromycota were more present in horse dung and Proteobacteria were more abundant in rabbit dung than the three ruminant dung types. There were few significant differences in the microbial community structure among the three ruminant dung types. The alpha and beta diversity of dung microbial communities significantly differed between ruminants and non-ruminants, especially in bacterial communities. Based on MetaCyc pathways, we found that the primary functions of bacteria in herbivore dung were focused on biosynthesis, various super pathways, and degradation, with a few differences between ruminant and non-ruminant dung. FUNGuild analysis showed that horse dung had more saprotrophic fungi, while the fungi in fallow deer dung had more symbiotrophic properties, with the fungal functions of bison, cow, and rabbit dung somewhere in between. There was also a correlation between microbial community and nutrient composition of the substrate in herbivore dung. Understanding the dung microbial community composition of these herbivore species can enrich the database of mammalian gut microbiomes for studying the mechanisms of microbial community variation while preparing for exploring a new perspective to study the impact of herbivores on ecosystems through dung deposition.
Collapse
Affiliation(s)
- Xingzhao Sun
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
| | - Judith Sitters
- Research Group WILDVrije Universiteit BrusselBrusselsBelgium
- B‐WARE Research CentreNijmegenThe Netherlands
| | - Joske Ruytinx
- Research Groups Microbiology and Plant GeneticsVrije Universiteit BrusselBrusselsBelgium
| | - Martin J. Wassen
- Environmental Sciences, Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
7
|
Soh M, Tay YC, Lee CS, Low A, Orban L, Jaafar Z, Seedorf H. The intestinal digesta microbiota of tropical marine fish is largely uncultured and distinct from surrounding water microbiota. NPJ Biofilms Microbiomes 2024; 10:11. [PMID: 38374184 PMCID: PMC10876542 DOI: 10.1038/s41522-024-00484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Studying the gut microbes of marine fishes is an important part of conservation as many fish species are increasingly threatened by extinction. The gut microbiota of only a small fraction of the more than 32,000 known fish species has been investigated. In this study we analysed the intestinal digesta microbiota composition of more than 50 different wild fish species from tropical waters. Our results show that the fish harbour intestinal digesta microbiota that are distinct from that of the surrounding water and that location, domestication status, and host intrinsic factors are strongly associated with the microbiota composition. Furthermore, we show that the vast majority (~97%) of the fish-associated microorganisms do not have any cultured representative. Considering the impact of the microbiota on host health and physiology, these findings underpin the call to also preserve the microbiota of host species, especially those that may be exposed to habitat destruction.
Collapse
Affiliation(s)
- Melissa Soh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Ywee Chieh Tay
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Co Sin Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Adrian Low
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, MD6-Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Laszlo Orban
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, 8360, Hungary
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
8
|
Guo Y, Yin G, Hui F, Guo X, Shi B, Zhao Y, Yan S. Effects of dietary energy level on antioxidant capability, immune function and rectal microbiota in late gestation donkeys. Front Microbiol 2024; 15:1308171. [PMID: 38414765 PMCID: PMC10896733 DOI: 10.3389/fmicb.2024.1308171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction This study investigated the effects of dietary energy level on the antioxidant capability, immune function, and rectal microbiota in donkey jennets during the last 60 days of gestation. Methods Fifteen pregnant DeZhou donkeys with age of 6.0 ± 0.1 years, body weight of 292 ± 33 kg, parity of 2.7 ± 0.1 parities and similar expected date of confinement (74 ± 4 days) were randomly allocated to three groups and feed three diets: high energy (10.92 MJ/kg, H), medium energy (10.49 MJ/kg, M), and low energy (9.94 MJ/kg, L). Results and Discussion The serum activity of catalase (CAT), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) in group M was significantly higher, whereas the concentrations of malondialdehyde (MDA), interleukin 1 (IL-1), IL-2, and IL-6 were lower than those recorded for groups H and L (p ≤ 0.05). The dietary energy level significantly affected rectal microbial community structure in the jennet donkeys 35 days and 7 days before the parturition (p ≤ 0.05). The abundances of norank_f_norank_o_Coriobacteriales genus was significantly higher (p ≤ 0.05) in group H, and the abundances of norank_f_norank_o_Mollicutes_RF39 and the Candidatus_Saccharimonas were higher in group L (p ≤ 0.05). The abundance of Fibrobacter in group M was significantly increased (p ≤ 0.05). The abundance of norank_f_norank_o_Coriobacteriales was positively correlated with average daily gain (ADG) and tumor necrosis factor-α (TNF-α) concentrations (p ≤ 0.05). The abundance of norank_f_norank_o_Mollicutes_RF39 was positively correlated with IL-2 and IL-6 concentrations. The abundance of Candidatus_Saccharimonas was positively correlated with CAT, T-SOD and GSH-Px activities (p ≤ 0.05). The abundance of Fibrobacter was positively correlated with CAT and T-SOD activities (p ≤ 0.05), but negatively correlated with IL-2 concentration (p ≤ 0.05). In conclusion, an appropriate dietary with an energy content of 10.49 MJ/kg for jennet donkeys during late gestation increased the prenatal antioxidant capacity, reduced inflammatory cytokines, and promoted fetal growth, and these changes were related to diet-induced changes in rectal microbiota compositions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sumei Yan
- Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
9
|
Wang S, Su M, Hu X, Wang X, Han Q, Yu Q, Heděnec P, Li H. Gut diazotrophs in lagomorphs are associated with season but not altitude and host phylogeny. FEMS Microbiol Lett 2024; 371:fnad135. [PMID: 38124623 DOI: 10.1093/femsle/fnad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Invertebrates such as termites feeding on nutrient-poor substrate receive essential nitrogen by biological nitrogen fixation of gut diazotrophs. However, the diversity and composition of gut diazotrophs of vertebrates such as Plateau pikas living in nutrient-poor Qinghai-Tibet Plateau remain unknown. To fill this knowledge gap, we studied gut diazotrophs of Plateau pikas (Ochotona curzoniae) and its related species, Daurian pikas (Ochotona daurica), Hares (Lepus europaeus) and Rabbits (Oryctolagus cuniculus) by high-throughput amplicon sequencing methods. We analyzed whether the gut diazotrophs of Plateau pikas are affected by season, altitude, and species, and explored the relationship between gut diazotrophs and whole gut microbiomes. Our study showed that Firmicutes, Spirochaetes, and Euryarchaeota were the dominant gut diazotrophs of Plateau pikas. The beta diversity of gut diazotrophs of Plateau pikas was significantly different from the other three lagomorphs, but the alpha diversity did not show a significant difference among the four lagomorphs. The gut diazotrophs of Plateau pikas were the most similarly to that of Rabbits, followed by Daurian pikas and Hares, which was inconsistent with gut microbiomes or animal phylogeny. The dominant gut diazotrophs of the four lagomorphs may reflect their living environment and dietary habits. Season significantly affected the alpha diversity and abundance of dominant gut diazotrophs. Altitude had no significant effect on the gut diazotrophs of Plateau pikas. In addition, the congruence between gut microbiomes and gut diazotrophs was low. Our results proved that the gut of Plateau pikas was rich in gut diazotrophs, which is of great significance for the study of ecology and evolution of lagomorphs.
Collapse
Affiliation(s)
- Sijie Wang
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Ming Su
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, 143 Xiangzhang East Road, Changsha, Hunan Province 410014, China
| | - Xueqian Hu
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou, Gansu Province 730020, China
| | - Petr Heděnec
- Institute for Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
| | - Huan Li
- School of Public Health, Lanzhou University, 199 Donggang West Road, Lanzhou, Gansu Province 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, 768 Jiayuguan West Road, Lanzhou, Gansu Province 730020, China
| |
Collapse
|
10
|
Klure DM, Dearing MD. Seasonal restructuring facilitates compositional convergence of gut microbiota in free-ranging rodents. FEMS Microbiol Ecol 2023; 99:fiad127. [PMID: 37838471 PMCID: PMC10622585 DOI: 10.1093/femsec/fiad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Gut microbes provide essential services to their host and shifts in their composition can impact host fitness. However, despite advances in our understanding of how microbes are assembled in the gut, we understand little about the stability of these communities within individuals, nor what factors influence its composition over the life of an animal. For this reason, we conducted a longitudinal survey of the gut microbial communities of individual free-ranging woodrats (Neotoma spp.) across a hybrid zone in the Mojave Desert, USA, using amplicon sequencing approaches to characterize gut microbial profiles and diet. We found that gut microbial communities were individualized and experienced compositional restructuring as a result of seasonal transitions and changes in diet. Turnover of gut microbiota was highest amongst bacterial subspecies and was much lower at the rank of Family, suggesting there may be selection for conservation of core microbial functions in the woodrat gut. Lastly, we identified an abundant core gut bacterial community that may aid woodrats in metabolizing a diet of plants and their specialized metabolites. These results demonstrate that the gut microbial communities of woodrats are highly dynamic and experience seasonal restructuring which may facilitate adaptive plasticity in response to changes in diet.
Collapse
Affiliation(s)
- Dylan M Klure
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT, 84112, United States
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 S 1400 E rm 201, Salt Lake City, UT, 84112, United States
| |
Collapse
|
11
|
Pisaniello A, Handley KM, White WL, Angert ER, Boey JS, Clements KD. Host individual and gut location are more important in gut microbiota community composition than temporal variation in the marine herbivorous fish Kyphosus sydneyanus. BMC Microbiol 2023; 23:275. [PMID: 37773099 PMCID: PMC10540440 DOI: 10.1186/s12866-023-03025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Gut microbiota play a key role in the nutrition of many marine herbivorous fishes through hindgut fermentation of seaweed. Gut microbiota composition in the herbivorous fish Kyphosus sydneyanus (family Kyphosidae) varies between individuals and gut sections, raising two questions: (i) is community composition stable over time, especially given seasonal shifts in storage metabolites of dietary brown algae, and (ii) what processes influence community assembly in the hindgut? RESULTS We examined variation in community composition in gut lumen and mucosa samples from three hindgut sections of K. sydneyanus collected at various time points in 2020 and 2021 from reefs near Great Barrier Island, New Zealand. 16S rRNA gene analysis was used to characterize microbial community composition, diversity and estimated density. Differences in community composition between gut sections remained relatively stable over time, with little evidence of temporal variation. Clostridia dominated the proximal hindgut sections and Bacteroidia the most distal section. Differences were detected in microbial composition between lumen and mucosa, especially at genus level. CONCLUSIONS High variation in community composition and estimated bacterial density among individual fish combined with low variation in community composition temporally suggests that initial community assembly involved environmental selection and random sampling/neutral effects. Community stability following colonisation could also be influenced by historical contingency, where early colonizing members of the community may have a selective advantage. The impact of temporal changes in the algae may be limited by the dynamics of substrate depletion along the gut following feeding, i.e. the depletion of storage metabolites in the proximal hindgut. Estimated bacterial density, showed that Bacteroidota has the highest density (copies/mL) in distal-most lumen section V, where SCFA concentrations are highest. Bacteroidota genera Alistipes and Rikenella may play important roles in the breakdown of seaweed into useful compounds for the fish host.
Collapse
Affiliation(s)
- Alessandro Pisaniello
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - W Lindsey White
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland, New Zealand
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Jian Sheng Boey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
12
|
Guo R, Zhang W, Shen W, Zhang G, Xie T, Li L, Jinmei J, Liu Y, Kong F, Guo B, Li B, Sun Y, Liu S. Analysis of gut microbiota in chinese donkey in different regions using metagenomic sequencing. BMC Genomics 2023; 24:524. [PMID: 37670231 PMCID: PMC10478257 DOI: 10.1186/s12864-023-09575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gut microbiota plays a significant role in host survival, health, and diseases; however, compared to other livestock, research on the gut microbiome of donkeys is limited. RESULTS In this study, a total of 30 donkey samples of rectal contents from six regions, including Shigatse, Changdu, Yunnan, Xinjiang, Qinghai, and Dezhou, were collected for metagenomic sequencing. The results of the species annotation revealed that the dominant phyla were Firmicutes and Bacteroidetes, and the dominant genera were Bacteroides, unclassified_o_Clostridiales (short for Clostridiales) and unclassified_f_Lachnospiraceae (short for Lachnospiraceae). The dominant phyla, genera and key discriminators were Bacteroidetes, Clostridiales and Bacteroidetes in Tibet donkeys (Shigatse); Firmicutes, Clostridiales and Clostridiales in Tibet donkeys (Changdu); Firmicutes, Fibrobacter and Tenericutes in Qinghai donkeys; Firmicutes, Clostridiales and Negativicutes in Yunnan donkeys; Firmicutes, Fibrobacter and Fibrobacteres in Xinjiang donkeys; Firmicutes, Clostridiales and Firmicutes in Dezhou donkeys. In the functional annotation, it was mainly enriched in the glycolysis and gluconeogenesis of carbohydrate metabolism, and the abundance was the highest in Dezhou donkeys. These results combined with altitude correlation analysis demonstrated that donkeys in the Dezhou region exhibited strong glucose-conversion ability, those in the Shigatse region exhibited strong glucose metabolism and utilization ability, those in the Changdu region exhibited a strong microbial metabolic function, and those in the Xinjiang region exhibited the strongest ability to decompose cellulose and hemicellulose. CONCLUSION According to published literature, this is the first study to construct a dataset with multi-regional donkey breeds. Our study revealed the differences in the composition and function of gut microbes in donkeys from different geographic regions and environmental settings and is valuable for donkey gut microbiome research.
Collapse
Affiliation(s)
- Rong Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Shen
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guoliang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China
| | - Taifeng Xie
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiacuo Jinmei
- Tibet Autonomous Region Animal husbandry Station, Tibet, China
| | - Yiduan Liu
- Yunnan Provincial Animal Husbandry Station, Yunnan, China
| | - Fanyong Kong
- Honghe state animal husbandry technology extension station, Honghe, Yunnan, China
| | - Baozhu Guo
- Zhangjiakou City animal husbandry technology extension station, Zhangjiakou, Hebei, China
| | - Benke Li
- Binzhou City Agricultural Technology Extension Center, Binzhou, Shandong, China
| | - Yujiang Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China.
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China.
- Vocational College of Dongying, Dongying, Shandong, China.
| | - Shuqin Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China.
- Gene Bank of Equine Genetic Resources, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, Dutton CL, Gaylard A, Goheen JR, Holdo RM, Hutchinson MC, Kimuyu DM, Long RA, Subalusky AL, Veldhuis MP. Impacts of large herbivores on terrestrial ecosystems. Curr Biol 2023; 33:R584-R610. [PMID: 37279691 DOI: 10.1016/j.cub.2023.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.
Collapse
Affiliation(s)
- Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Joel O Abraham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
| | - Tyler C Coverdale
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Jacob R Goheen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82072, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amanda L Subalusky
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michiel P Veldhuis
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
14
|
Prewer E, Vilaça ST, Bird S, Kutz S, Leclerc L, Kyle CJ. Metabarcoding of fecal pellets in wild muskox populations reveals negative relationships between microbiome and diet alpha diversity. Ecol Evol 2023; 13:e10192. [PMID: 37325724 PMCID: PMC10261903 DOI: 10.1002/ece3.10192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Microbiome diversity and diet composition concomitantly influence species health, fitness, immunity, and digestion. In environments where diet varies spatially and temporally, microbiome plasticity may promote rapid host adaptation to available resources. For northern ungulates in particular, metabarcoding of noninvasively collected fecal pellets presents unprecedented insights into their diverse ecological requirements and niches by clarifying the interrelationships of microbiomes, key to deriving nutrients, in context of altered forage availability in changing climates. Muskoxen (Ovibos moschatus) are Arctic-adapted species that experience fluctuating qualities and quantities of vegetation. Geography and seasonality have been noted to influence microbiome composition and diversity in muskoxen, yet it is unclear how their microbiomes intersect with diet. Following observations from other species, we hypothesized increasing diet diversity would result in higher microbiome diversity in muskoxen. We assessed diet composition in muskoxen using three common plant metabarcoding markers and explored correlations with microbiome data. Patterns of dietary diversity and composition were not fully concordant among the markers used, yet all reflected the primary consumption of willows and sedges. Individuals with similar diets had more similar microbiomes, yet in contrast to most literature, yielded negative relationships between microbiome and diet alpha diversity. This negative correlation may reflect the unique capacities of muskoxen to survive solely on high-fiber Arctic forage and provide insight into their resiliency to exploit changing dietary resources in a rapidly warming Arctic altering vegetation diversity.
Collapse
Affiliation(s)
- Erin Prewer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Sibelle T. Vilaça
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Samantha Bird
- Forensic Science DepartmentTrent UniversityPeterboroughOntarioCanada
| | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Christopher J. Kyle
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
- Forensic Science DepartmentTrent UniversityPeterboroughOntarioCanada
- Natural Resources DNA Profiling and Forensic CentrePeterboroughOntarioCanada
| |
Collapse
|
15
|
Greene LK, McKenney EA, Gasper W, Wrampelmeier C, Hayer S, Ehmke EE, Clayton JB. Gut Site and Gut Morphology Predict Microbiome Structure and Function in Ecologically Diverse Lemurs. MICROBIAL ECOLOGY 2023; 85:1608-1619. [PMID: 35562600 DOI: 10.1007/s00248-022-02034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/05/2022] [Indexed: 05/10/2023]
Abstract
Most studies of wildlife gut microbiotas understandably rely on feces to approximate consortia along the gastrointestinal tract. We therefore compared microbiome structure and predicted metagenomic function in stomach, small intestinal, cecal, and colonic samples from 52 lemurs harvested during routine necropsies. The lemurs represent seven genera (Cheirogaleus, Daubentonia, Varecia, Hapalemur, Eulemur, Lemur, Propithecus) characterized by diverse feeding ecologies and gut morphologies. In particular, the hosts variably depend on fibrous foodstuffs and show correlative morphological complexity in their large intestines. Across host lineages, microbiome diversity, variability, membership, and function differed between the upper and lower gut, reflecting regional tradeoffs in available nutrients. These patterns related minimally to total gut length but were modulated by fermentation capacity (i.e., the ratio of small to large intestinal length). Irrespective of feeding strategy, host genera with limited fermentation capacity harbored more homogenized microbiome diversity along the gut, whereas those with expanded fermentation capacity harbored cecal and colonic microbiomes with greater diversity and abundant fermentative Ruminococcaceae taxa. While highlighting the value of curated sample repositories for retrospective comparisons, our results confirm that the need to survive on fibrous foods, either routinely or in hypervariable environments, can shape the morphological and microbial features of the lower gut.
Collapse
Affiliation(s)
- Lydia K Greene
- The Duke Lemur Center, Duke University, Durham, NC, 27705, USA.
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Erin A McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - William Gasper
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Claudia Wrampelmeier
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Shivdeep Hayer
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Erin E Ehmke
- The Duke Lemur Center, Duke University, Durham, NC, 27705, USA
| | - Jonathan B Clayton
- Primate Microbiome Project, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
16
|
De Cuyper A, Strubbe D, Clauss M, Lens L, Zedrosser A, Steyaert S, Verbist L, Janssens GPJ. Nutrient intake and its possible drivers in free-ranging European brown bears ( Ursus arctos arctos). Ecol Evol 2023; 13:e10156. [PMID: 37261316 PMCID: PMC10227639 DOI: 10.1002/ece3.10156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
The dietary nutrient profile has metabolic significance and possibly contributes to species' foraging behavior. The brown bear (Ursus arctos) was used as a model species for which dietary ingredient and nutrient concentrations as well as nutrient ratios were determined annually, seasonally and per reproductive class. Brown bears had a vertebrate- and ant-dominated diet in spring and early summer and a berry-dominated diet in fall, which translated into protein-rich and carbohydrate-rich diets, respectively. Fiber concentrations appeared constant over time and averaged at 25% of dry matter intake. Dietary ingredient proportions differed between reproductive classes; however, these differences did not translate into a difference in dietary nutrient concentrations, suggesting that bears manage to maintain similar nutrient profiles with selection of different ingredients. In terms of nutrient ratios, the dietary protein to non-protein ratio, considered optimal at around 0.2 (on metabolizable energy basis), averaged around 0.2 in this study in fall and around 0.8 in spring and summer. We introduced the minimal non-fat to fat ratio necessary for efficient maintenance metabolism. This ratio varied across seasons but never fell beneath the theoretically estimated minimum to ensure metabolic efficiency. This population thus managed to ingest diets that never exerted a lack of glucogenic substrate, suggesting that metabolic efficiency may either be a driver of active diet selection or that natural resources available to bears did not constitute a constraint in this respect. Given the considerable proportion of fiber in the diet of brown bears, the relevance of this nutrient and its role in foraging behavior might be underestimated.
Collapse
Affiliation(s)
- Annelies De Cuyper
- Department of Veterinary and Biosciences, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
| | - Diederik Strubbe
- Terrestrial Ecology Unit, Department of Biology, Faculty of SciencesGhent UniversityGhentBelgium
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Luc Lens
- Terrestrial Ecology Unit, Department of Biology, Faculty of SciencesGhent UniversityGhentBelgium
| | - Andreas Zedrosser
- Department of Natural Sciences and Environmental Health, Faculty of Technology, Natural Sciences and Maritime SciencesUniversity of South‐Eastern NorwayBøNorway
- Institute for Wildlife Biology and Game ManagementUniversity for Natural Resources and Life SciencesViennaAustria
| | - Sam Steyaert
- Faculty of Biosciences and AquacultureNord UniversitySteinkjerNorway
| | - Leen Verbist
- Onderzoekskern Salto, Odisee Hogeschool, Campus Sint‐NiklaasSint‐NiklaasBelgium
| | - Geert P. J. Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
| |
Collapse
|
17
|
Zhang C, Lian Z, Xu B, Shen Q, Bao M, Huang Z, Jiang H, Li W. Gut Microbiome Variation Along A Lifestyle Gradient Reveals Threats Faced by Asian Elephants. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023:S1672-0229(23)00069-4. [PMID: 37088195 PMCID: PMC10372918 DOI: 10.1016/j.gpb.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
The gut microbiome is closely related to host nutrition and health. However, the relationships between gut microorganisms and host lifestyle are not well characterized. In the absence of confounding geographic variation, we defined clear patterns of variation in the gut microbiomes of Asian elephants (AEs) in the Wild Elephant Valley, Xishuangbanna, China, along a lifestyle gradient (fully captive, semicaptive, semiwild, and purely wild). A phylogenetic analysis using the 16S rRNA gene sequences highlighted that the microbial diversity decreased as the degree of captivity increased. Furthermore, the results showed that the bacterial taxon WCHB1-41_c was significantly affected by lifestyle gradient variations. Quantitative real-time PCR revealed a paucity of genes related to butyrate production in the microbiome of AEs with a pure wild lifestyle, which may be due to the increased environmental unfavorable factors. Overall, these results demonstrate the distinct gut microbiome characteristics among AEs with a gradient of lifestyles and provide a basis for designing strategies to improve the well-being or conservation of this important animal species.
Collapse
Affiliation(s)
- Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Zhenghan Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Qingzhong Shen
- Xishuangbanna National Nature Reserve Management and Protection Bureau, Jinghong 666100, China
| | - Mingwei Bao
- Asian Elephant Provenance Breeding and Rescue Center in Xishuangbanna, Jinghong 666100, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming 650500, China.
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Wenjun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Arumugam R, Ravichandran P, Yeap SK, Sharma RSK, Zulkifly SB, Yawah D, Annavi G. Application of High-Throughput Sequencing (HTS) to Enhance the Well-Being of an Endangered Species (Malayan Tapir): Characterization of Gut Microbiome Using MG-RAST. Methods Mol Biol 2023; 2649:175-194. [PMID: 37258862 DOI: 10.1007/978-1-0716-3072-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Tapirus indicus, also known as Malayan tapir, has been listed as a rapidly declining animal species in the past decades, along with being declared and categorized as an endangered species by the International Union for Conservation of Nature (IUCN) 2016. This tapir species is geographically distributed across several countries in Southeast Asia such as Peninsular Malaysia, Indonesia (Sumatra), South Thailand, and Myanmar. Amongst these countries, the Peninsula Malaysia forest is recorded to contain the highest number of Malayan tapir population. Unfortunately, in the past decades, the population of Malayan tapirs has declined swiftly due to serious deforestation, habitat fragmentation, and heavy vehicle accidents during road crossings at forest routes. Concerned by this predicament, the Department of Wildlife and National Parks (DWNP) Peninsular Malaysia collaborated with a few local universities to conduct various studies aimed at increasing the population number of tapirs in Malaysia. Several studies were conducted with the aim of enhancing the well-being of tapirs in captivity. Veterinarians face problems when it comes to selecting healthy and suitable tapirs for breeding programs at conservation centers. Conventional molecular methods using high-throughput sequencing provides a solution in determining the health condition of Malayan tapirs using the Next-Generation Sequencing (NGS) technology. Unaware by most, gut microbiome plays an important role in determining the health condition of an organism by various aspects: (1) digestion control; (2) benefiting the immune system; and (3) playing a role as a "second brain." Commensal gut bacterial communities (microbiomes) are predicted to influence organism health and disease. Imbalance of unhealthy and healthy microbes in the gut may contribute to weight gain, high blood sugar, high cholesterol, and other disorders. In infancy, neonatal gut microbiomes are colonized with maternal and environmental flora, and mature toward a stable composition in two to three years. Interactions between the microorganism communities and the host allow for the establishment of microbiological roles. Identifying the core microbiome(s) are essential in the prediction of diseases and changes in environmental behavior of microorganisms. The dataset of 16S rRNA amplicon sequencing of Malayan tapir was deposited in the MG-RAST portal. Parameters such as quality control, taxonomic prediction (unknown and predicted), diversity (rarefaction), and diversity (alpha) were analyzed using sequencing approaches (Amplicon sequencing). Comparisons of parameters, according to the type of sequencing, showed significant differences, except for the prediction variable. In the Amplicon sequencing datasets, the parameters Rarefaction and Unknown had the highest correlation, while Alpha and Predicted had the lowest. Firmicutes, Bacteroidetes, Proteobacteria, Bacilli, and Bacteroidia were the most representative genera in Malayan tapir amplicon sequences, which indicated that most of the tapirs were healthy. However, continuous assessment to maintain the well-being of tapir for long term is still required. This chapter focuses on the introduction of 16S rRNA amplicon metagenomics in analyzing Malayan tapir gut microbiome dataset.
Collapse
Affiliation(s)
- Ramitha Arumugam
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
- Dataplx Consultancy, Puchong, Selangor, Malaysia
| | - Prithivan Ravichandran
- Perdana University Graduate School (PUGSOM), Perdana University, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | | | - Shahrizim Bin Zulkifly
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Donny Yawah
- Department of Wildlife and National Parks (DWNP), Wildlife Genetic Resource Banking Laboratory, Ex-Situ Conservation Division, Peninsular Malaysia, Ministry of Natural Resources and Environment Malaysia (NRE), Kuala Lumpur, Malaysia
| | - Geetha Annavi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Nielsen DP, Harrison JG, Byer NW, Faske TM, Parchman TL, Simison WB, Matocq MD. The gut microbiome reflects ancestry despite dietary shifts across a hybrid zone. Ecol Lett 2023; 26:63-75. [PMID: 36331164 DOI: 10.1111/ele.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/06/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The microbiome is critical to an organism's phenotype, and its composition is shaped by, and a driver of, eco-evolutionary interactions. We investigated how host ancestry, habitat and diet shape gut microbial composition in a mammalian hybrid zone between Neotoma lepida and N. bryanti that occurs across an ecotone between distinct vegetation communities. We found that habitat is the primary determinant of diet, while host genotype is the primary determinant of the gut microbiome-a finding further supported by intermediate microbiome composition in first-generation hybrids. Despite these distinct primary drivers, microbial richness was correlated with diet richness, and individuals that maintained higher dietary richness had greater gut microbial community stability. Both relationships were stronger in the relative dietary generalist of the two parental species. Our findings show that host ancestry interacts with dietary habits to shape the microbiome, ultimately resulting in the phenotypic plasticity that host-microbial interactions allow.
Collapse
Affiliation(s)
- Danny P Nielsen
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA.,Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA
| | | | - Nathan W Byer
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA
| | - Trevor M Faske
- Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Thomas L Parchman
- Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA.,Department of Biology, University of Nevada, Reno, Nevada, USA
| | - W Brian Simison
- Center for Comparative Genomics, California Academy of Sciences, San Francisco, California, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA.,Program in Ecology, Evolution and Conservation Biology, Reno, Nevada, USA
| |
Collapse
|
20
|
Response of Intestinal Microbiota to the Variation in Diets in Grass Carp (Ctenopharyngodon idella). Metabolites 2022; 12:metabo12111115. [PMID: 36422256 PMCID: PMC9698803 DOI: 10.3390/metabo12111115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The intestinal microbiota is important for the nutrient metabolism of fish and is significantly influenced by the host’s diet. The effect of ryegrass and commercial diets on the intestinal microbiota of grass carp was compared in this study. In comparison to ryegrass, artificial feed significantly reduced the microbial diversity in the intestine, which was measured by a decrease in the observed OTUs, ACE, Shannon, and the InvSimpson index. Although grass carp fed with ryegrass and artificial feed shared a dominant phyla Firmicutes and Proteobacteria, the microbial composition was clearly distinguishable between the two groups. In grass carp fed with ryegrass, Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria predominated, whereas Bacilli was significantly higher in the artificial feed group due to an increase in Weissella and an unassigned Bacillales bacteria, as well as a significant increase in a potential pathogen: Aeromonas australiensis. Grass carp fed with ryegrass exhibited a more complex ecological network performed by the intestinal bacterial community, which was dominated by cooperative interactions; this was also observed in grass carp fed with artificial feed. Despite this, the increase in A. australiensis increased the competitive interaction within this ecological network, which contributed to the vulnerable perturbation of the intestinal microbiota. The alteration of the microbial composition through diet can further affect microbial function. The intestinal microbial function in grass carp fed with ryegrass was rich in amino acids and exhibited an increased energy metabolism in order to compensate for a low-nutrient diet intake, while the artificial feed elevated the microbial lipid metabolism through the promotion of its synthesis in the primary and secondary bile acids, together with a notable enhancement of fatty acid biosynthesis. These results indicated that diet can affect the homeostasis of the intestinal microbiota by altering the microbial composition and the interspecific interactions, whilst microbial function can respond to a variation in diet.
Collapse
|
21
|
Li J, Fang P, Yi X, Kumar V, Peng M. Probiotics Bacillus cereus and B. subtilis reshape the intestinal microbiota of Pengze crucian carp (Carassius auratus var. Pengze) fed with high plant protein diets. Front Nutr 2022; 9:1027641. [PMID: 36337612 PMCID: PMC9627213 DOI: 10.3389/fnut.2022.1027641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
The intestinal dysfunction induced by high plant protein diets is frequently observed in farmed fish, and probiotics of Bacillus genus were documented to benefit the intestinal health through the modulation of intestinal microbiota without clearness in its underlying mechanism yet. Fusobacteria, Proteobacteria, and Firmicutes were observed to be the dominate phyla, but their proportion differentiated in the intestinal bacterial community of Pengze crucian carp (Carassius auratus var. Pengze) fed different diets in this study. Dietary supplementation of B. cereus and B. subtilis could reshape the intestinal bacterial community altered by high plant protein diets through a notable reduction in opportunistic pathogen Aeromonas together with an increase in Romboutsia and/or Clostridium_sensu_stricto from Firmicutes. Due to the alteration in the composition of bacterial community, Pengze crucian carp exhibited characteristic ecological networks dominated by cooperative interactions. Nevertheless, the increase in Aeromonas intensified the competition within bacterial communities and reduced the number of specialists within ecological network, contributing to the microbial dysbiosis induced by high plant protein diets. Two probiotics diets promoted the cooperation within the intestinal bacterial community and increased the number of specialists preferred to module hubs, and then further improved the homeostasis of the intestinal microbiota. Microbial dysbiosis lead to microbial dysfunction, and microbial lipopolysaccharide biosynthesis was observed to be elevated in high plant protein diets due to the increase in Aeromonas, gram-negative microbe. Probiotics B. cereus and B. subtilis restored the microbial function by elevating their amino acid and carbohydrate metabolism together with the promotion in the synthesis of primary and secondary bile acids. These results suggested that dietary supplementation of probiotics B. cereus and B. subtilis could restore the homeostasis and functions of intestinal microbiota in Pengze crucian carp fed high plant protein diets.
Collapse
Affiliation(s)
- Jiamin Li
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Peng Fang
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwen Yi
- Shenzhen Aohua Group Co., Ltd., Shenzhen, China
| | - Vikas Kumar
- Department of Animal, Veterinary and Food Sciences, Aquaculture Research Institute, University of Idaho, Moscow, ID, United States
| | - Mo Peng
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Mo Peng
| |
Collapse
|
22
|
Doolin ML, Weinstein SB, Dearing MD. PINWORMS ARE ASSOCIATED WITH TAXONOMIC BUT NOT FUNCTIONAL DIFFERENCES IN THE GUT MICROBIOME OF WHITE-THROATED WOODRATS (NEOTOMA ALBIGULA). J Parasitol 2022; 108:408-418. [PMID: 36066907 DOI: 10.1645/22-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vertebrates rely on their gut microbiome for digestion, and changes to gut microbial communities can impact host health. Past work, primarily in model organisms, has revealed that endoparasites disrupt the gut microbiome. Here, using wild-caught white-throated woodrats (Neotoma albigula), we tested whether naturally acquired parasite infections are associated with different microbiome structure and function. We surveyed wild N. albigula in eastern Utah for gastrointestinal parasites in the spring and fall of 2019, using traditional fecal float methods and testing a PCR-based approach to detect infection. We tested whether the host gut microbiome structure and function differed based on infection with the most prevalent parasite, the pinworm Lamotheoxyuris ackerti. In spring, infected and uninfected animals had significantly different microbiomes, but these differences were not detected in the fall. However, for both sampling periods, infection was associated with differences in particular microbial taxa determined by differential abundance analysis. As N. albigula rely on their microbiomes to digest both fiber and the plant defensive compound oxalate, we compared microbiome function by measuring dry matter digestibility and oxalate intake in infected and uninfected animals. Although we expected infected animals to have reduced fiber degradation and oxalate intake, we found no difference in microbiome function using these assays. This work suggests that parasite effects on the microbiome may be difficult to detect in complex natural systems, and more studies in wild organisms are warranted.
Collapse
Affiliation(s)
- Margaret L Doolin
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112
| | - Sara B Weinstein
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112
| |
Collapse
|
23
|
Stevenson SJR, Lee KC, Handley KM, Angert ER, White WL, Clements KD. Substrate degradation pathways, conserved functions and community composition of the hindgut microbiota in the herbivorous marine fish Kyphosus sydneyanus. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111283. [PMID: 35907589 DOI: 10.1016/j.cbpa.2022.111283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023]
Abstract
Symbiotic gut microbiota in the herbivorous marine fish Kyphosus sydneyanus play an important role in digestion by converting refractory algal carbohydrate into short-chain fatty acids. Here we characterised community composition using both 16S rRNA gene amplicon sequencing and shotgun-metagenome sequencing. Sequencing was carried out on lumen and mucosa samples (radial sections) from three axial sections taken from the hindgut of wild-caught fish. Both lumen and mucosa communities displayed distinct distributions along the hindgut, likely an effect of the differing selection pressures within these hindgut locations, as well as considerable variation among individual fish. In contrast, metagenomic sequences displayed a high level of functional similarity between individual fish and gut sections in the relative abundance of genes (based on sequencing depth) that encoded enzymes involved in algal-derived substrate degradation. These results suggest that the host gut environment selects for functional capacity in symbionts rather than taxonomic identity. Functional annotation of the enzymes encoded by the gut microbiota was carried out to infer the metabolic pathways used by the gut microbiota for the degradation of important dietary substrates: mannitol, alginate, laminarin, fucoidan and galactan (e.g. agar and carrageenan). This work provides the first evidence of the genomic potential of K. sydneyanus hindgut microbiota to convert highly refractory algal carbohydrates into metabolically useful short-chain fatty acids.
Collapse
Affiliation(s)
- Sam J R Stevenson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Kevin C Lee
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Kim M Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Esther R Angert
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - W Lindsey White
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
24
|
Mallott EK, Skovmand LH, Garber PA, Amato KR. The fecal metabolome of black howler monkeys (Alouatta pigra) varies in response to seasonal dietary changes. Mol Ecol 2022; 31:4146-4161. [PMID: 35665560 PMCID: PMC9543302 DOI: 10.1111/mec.16559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Mammals rely on the metabolic functions of their gut microbiota to meet their energetic needs and digest potentially toxic components in their diet. The gut microbiome plastically responds to shifts in host diet and may buffer variation in energy and nutrient availability. However, it is unclear how seasonal differences in the gut microbiome influence microbial metabolism and nutrients available to hosts. In this study, we examine seasonal variation in the gut metabolome of black howler monkeys (Alouatta pigra) to determine whether those variations are associated with differences in gut microbiome composition and nutrient intake, and if plasticity in the gut microbiome buffers shortfalls in energy or nutrient intake. We integrated data on the metabolome of 81 faecal samples from 16 individuals collected across three distinct seasons with gut microbiome, nutrient intake and plant metabolite consumption data from the same period. Faecal metabolite profiles differed significantly between seasons and were strongly associated with changes in plant metabolite consumption. However, microbial community composition and faecal metabolite composition were not strongly associated. Additionally, the connectivity and stability of faecal metabolome networks varied seasonally, with network connectivity being highest during the dry, fruit‐dominated season when black howler monkey diets were calorically and nutritionally constrained. Network stability was highest during the dry, leaf‐dominated season when most nutrients were being consumed at intermediate rates. Our results suggest that the gut microbiome buffers seasonal variation in dietary intake, and that the buffering effect is most limited when host diet becomes calorically or nutritionally restricted.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN, USA
| | | | - Paul A Garber
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan, China
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
25
|
Zhang Z, Gao X, Dong W, Huang B, Wang Y, Zhu M, Wang C. Plant cell wall breakdown by hindgut microorganisms: can we get scientific insights from rumen microorganisms? J Equine Vet Sci 2022; 115:104027. [PMID: 35661771 DOI: 10.1016/j.jevs.2022.104027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023]
Abstract
Equines and ruminants have evolved as grazing herbivores with specialized gastrointestinal tracts capable of utilizing a wide range of fibrous feeds. In China, agricultural by-products, including corn straw, wheat straw, peanut vine, wheat husk, rice husk, and grass hay, have been extensively included in both equine and ruminant diets. These plant materials, which are composed predominantly of cellulose, hemicellulose, noncellulosic polysaccharides, and lignin, are largely undegradable by equines and ruminants themselves. Their breakdown is accomplished by communities of resident microorganisms that live in symbiotic or mutualistic associations with the host. Information relating to microbial composition in the hindgut and rumen has become increasingly available. Rumen fermentation is unique in that plant cell wall breakdown relies on the cooperation between microorganisms that produce fibrolytic enzymes and that ruminant animals provide an anaerobic fermentation chamber. Similar to the rumen, the equine hindgut is also an immensely enlarged fermentative chamber that includes an extremely abundant and highly complex community of microorganisms. However, few studies have characterized the microbial functions and their utilization process of lignocellulosic feeds within the equine hindgut. The process of understanding and describing plant cell wall degradation mechanisms in the equine hindgut ecosystem is important for providing information for proper feeding practices to be implemented. In the present study, we gather existing information on the rumen and equine ecosystem and provide scientific insights for understanding the process of plant cell wall breakdown within the hindgut.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xu Gao
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Wanting Dong
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China.
| |
Collapse
|
26
|
Eisenhofer R, D’Agnese E, Taggart D, Carver S, Penrose B. Microbial biogeography of the wombat gastrointestinal tract. PeerJ 2022; 10:e12982. [PMID: 35228910 PMCID: PMC8881912 DOI: 10.7717/peerj.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Most herbivorous mammals have symbiotic microbes living in their gastrointestinal tracts that help with harvesting energy from recalcitrant plant fibre. The bulk of research into these microorganisms has focused on samples collected from faeces, representing the distal region of the gastrointestinal (GI) tract. However, the GI tract in herbivorous mammals is typically long and complex, containing different regions with distinct physico-chemical properties that can structure resident microbial communities. Little work has been done to document GI microbial communities of herbivorous animals at these sites. In this study, we use 16S rRNA gene sequencing to characterize the microbial biogeography along the GI tract in two species of wombats. Specifically, we survey the microbes along four major gut regions (stomach, small intestine, proximal colon, distal colon) in a single bare-nosed wombat (Vombatus ursinus) and a single southern hairy-nosed wombat (Lasiorhinus latifrons). Our preliminary results show that GI microbial communities of wombats are structured by GI region. For both wombat individuals, we observed a trend of increasing microbial diversity from stomach to distal colon. The microbial composition in the first proximal colon region was more similar between wombat species than the corresponding distal colon region in the same species. We found several microbial genera that were differentially abundant between the first proximal colon (putative site for primary plant fermentation) and distal colon regions (which resemble faecal samples). Surprisingly, only 10.6% (98) and 18.8% (206) of amplicon sequence variants (ASVs) were shared between the first proximal colon region and the distal colon region for the bare-nosed and southern hairy-nosed wombat, respectively. These results suggest that microbial communities in the first proximal colon region-the putative site of primary plant fermentation in wombats-are distinct from the distal colon, and that faecal samples may have limitations in capturing the diversity of these communities. While faeces are still a valuable and effective means of characterising the distal colon microbiota, future work seeking to better understand how GI microbiota impact the energy economy of wombats (and potentially other hindgut-fermenting mammals) may need to take gut biogeography into account.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
| | - Erin D’Agnese
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia,School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - David Taggart
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, South Australia, Australia,FAUNA Research Alliance, Institute for Land, Water and Society, Kahibah, New South Wales, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Beth Penrose
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
27
|
Captivity Shifts Gut Microbiota Communities in White-Lipped Deer (Cervus albirostris). Animals (Basel) 2022; 12:ani12040431. [PMID: 35203139 PMCID: PMC8868073 DOI: 10.3390/ani12040431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Captivity is a common conservation method for endangered animals. However, a growing number of recent studies have shown that some animals in captivity might be in sub-health condition. The gut microbiota has been described as a complex, interactive internal system that has effects on diseases of the host with many interactions, and the occurrence of certain diseases is accompanied by changes and disorder of gut microbiota. We used16S rRNA sequencing technology and a mathematical model to find differences in gut microbiota composition and assembly processes. The results show that captivity might be unfavorable for white-lipped deer by shifting the gut microbiota composition and assembly process. Abstract White-lipped deer (Cervus albirostris) is a nationally protected wild animal species in China, as well as a unique and endangered species, according to the International Union for Conservation of Nature (IUCN) Red List. Captivity may alleviate the pressure from poaching and contribute to the repopulation and conservation of the population in the wild. The gut microbiota is described as a complex, interactive internal system that has effects on diseases of the host, with many interactions. However, the influence of captivity on the composition and assembly process of gut microbiota in white-lipped deer is unclear. This study applied high-throughput 16S rRNA sequencing technology to determine differences in the gut microbiota between captive (CW) and wild (WW) white-lipped deer. We used the null model, neutral community model, and niche width to identify whether captivity affects the composition and assembly process of gut microbiota. The results show that WW has a higher number of Firmicutes and a lower number of Bacteroidetes compared with CW at the phylum level, and it has more opportunistic pathogens and specific decomposition bacteria at the genus level. Principal coordinate analysis also indicated significant differences in the composition and function of gut microbiota in CW and WW. Moreover, the results reveal that captivity shifts the ecological assembly process of gut microbiota by raising the contribution of deterministic processes. In conclusion, our results demonstrate that captivity might potentially have an unfavorable effect on white-lipped deer by continually exerting selective pressure.
Collapse
|
28
|
Greene LK, Rambeloson E, Rasoanaivo HA, Foss ED, Yoder AD, Drea CM, Blanco MB. Gut Microbial Diversity and Ecological Specialization in Four Sympatric Lemur Species Under Lean Conditions. INT J PRIMATOL 2021. [DOI: 10.1007/s10764-021-00257-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Barraza A, Montes-Sánchez JJ, Caamal-Chan MG, Loera-Muro A. Characterization of microbial communities from rumen and large intestine of lactating creole goats grazing in arid plant communities. MICROBIOLOGY-SGM 2021; 167. [PMID: 34661515 DOI: 10.1099/mic.0.001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Arid plant communities provide variable diets that can affect digestive microbial communities of free-foraging ruminants. Thus, we used next-generation sequencing of 16S and 18S rDNA to characterize microbial communities in the rumen (regurgitated digesta) and large intestine (faeces) and diet composition of lactating creole goats from five flocks grazing in native plant communities in the Sonoran Desert in the rainy season. The bacterial communities in the rumen and large intestine of the five flocks had similar alpha diversity (Chao1, Shannon, and Simpson indices). However, bacterial community compositions were different: a bacterial community dominated by Proteobacteria in the rumen transitioned to a community dominated by Firmicutes in the large intestine. Bacterial communities of rumen were similar across flocks; similarly occurred with large-intestine communities. Archaea had a minimum presence in the goat digestive tract. We detected phylum Basidiomycota, Ascomycota, and Apicomplexa as the main fungi and protozoa. Analyses suggested different diet compositions; forbs and grasses composed the bulk of plants in the rumen and forbs and shrubs in faeces. Therefore, lactating goats consuming different diets in the Sonoran Desert in the rainy season share a similar core bacterial community in the rumen and another in the large intestine and present low archaeal communities.
Collapse
Affiliation(s)
- Aarón Barraza
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC. La Paz, BCS, 23096, Mexico
| | - Juan J Montes-Sánchez
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC. Guerrero Negro, BCS, 23940, Mexico
| | - M Goretty Caamal-Chan
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC. La Paz, BCS, 23096, Mexico
| | - Abraham Loera-Muro
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, SC. La Paz, BCS, 23096, Mexico
| |
Collapse
|
30
|
Alrubaye HS, Kohl KD. Abundance and Compositions of B-Vitamin-Producing Microbes in the Mammalian Gut Vary Based on Feeding Strategies. mSystems 2021; 6:e0031321. [PMID: 34463576 DOI: 10.1128/msystems.00313-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Mammals maintain close associations with gut microbes that provide numerous nutritional benefits, including vitamin synthesis. While most mammals obtain sufficient vitamins from their diets, deficiencies in various B vitamins (biotin, cobalamin, riboflavin, thiamine, etc.) are reported in captive animals. Biomedical and agricultural research has shown that gut microbes are capable of synthesizing B vitamins and assisting with host vitamin homeostasis. However, we have a poor understanding of distribution and abundance of B-vitamin synthesis across mammalian hosts. Here, we leveraged a publicly available metagenomic data set from 39 mammalian species and used MG-RAST to compare the abundance and composition of B-vitamin-synthesizing microbes across mammalian feeding strategies. We predicted that herbivores would have the highest abundance of genes associated with vitamin synthesis, as plant material is often low in B vitamins. However, this hypothesis was not supported. Instead, we found that relative abundances of genes associated with cobalamin and thiamine synthesis were significantly enriched in carnivorous mammals. The taxonomic community structure of microbes predicted to be involved in B-vitamin synthesis also varied significantly based on host feeding strategy. For example, the genus Acinetobacter primarily contributed to predicted biotin synthesis in carnivores but was not predicted to contribute to biotin synthesis in herbivores or omnivores. Given that B vitamins cannot be stored within the body, we hypothesize that microbial synthesis of B vitamins could be important for wild carnivores that regularly experience periods of fasting. Overall, these results shed light on the distribution and abundance of microbial B-vitamin synthesis across mammalian groups, with potential implications for captive animals. IMPORTANCE Microbial communities offer numerous physiological services to their hosts, but we still have a poor understanding of how these functions are structured across mammalian species. Specifically, our understanding of processes of vitamin synthesis across animals is severely limited. Here, we compared the abundance of genes associated with the synthesis of B vitamins and the taxonomic composition of the microbes containing these genes. We found that herbivores, omnivores, and carnivores harbor distinct communities of microbes that putatively conduct vitamin synthesis. Additionally, carnivores exhibited the highest abundance of genes associated with synthesis of specific B vitamins, cobalamin and thiamine. These data uncover the potential importance of microbes in the vitamin homeostasis of various mammals, especially carnivorous mammals. These findings have implications for understanding the microbial interactions that contribute to the nutritional requirements of animals held in captivity.
Collapse
Affiliation(s)
- Hisham S Alrubaye
- Department of Biological Sciences, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburghgrid.21925.3d, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Gut microbiota of frugo-folivorous sifakas across environments. Anim Microbiome 2021; 3:39. [PMID: 34006323 PMCID: PMC8132362 DOI: 10.1186/s42523-021-00093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. This imbalance is particularly striking for folivores that fundamentally rely on gut microbiota for digestion, yet rarely receive sufficient dietary fiber in captivity. We examine the critically endangered Coquerel’s sifaka (Propithecus coquereli), an anatomically specialized, rather than facultative, folivore that consumes a seasonal frugo-folivorous diet in the wild, but is provisioned predominantly with seasonal foliage and orchard vegetables in captivity. Using amplicon and metagenomic sequencing applied to fecal samples collected from two wild and one captive population (each comprising multiple groups), we clarify how dietary variation underlies the perturbational effect of captivity on the structure and function of this species’ gut microbiota. Results The gut microbiota of wild sifakas varied by study population, most notably in community evenness and in the abundance of diet-associated microbes from Prevotellaeceae and Lachnospiraceae. Nevertheless, the differences among wild subjects were minor compared to those evident between wild and captive sifakas: Unusually, the consortia of captive sifakas were the most diverse, but lacked representation of endemic Bacteroidetes and metagenomic capacity for essential amino-acid biosynthesis. Instead, they were enriched for complex fiber metabolizers from the Firmicutes phylum, for archaeal methanogens, and for several metabolic pathways putatively linked to plant fiber and secondary compound metabolism. Conclusions The relatively minor differences in gut microbial structure and function between wild sifaka populations likely reflect regional and/or temporal environmental variability, whereas the major differences observed in captive conspecifics, including the loss of endemic microbes, but gain in low-abundance taxa, likely reflect imbalanced or unstable consortia. Indeed, community perturbation may not necessarily entail decreased community diversity. Moreover, signatures of greater fiber degradation indicate that captive sifakas consume a more fibrous diet compared to their wild counterparts. These results do not mirror those typically reported for folivores and herbivores, suggesting that the direction and strength of captivity-induced ‘dysbiosis’ may not be universal across species with similar feeding strategies. We propose that tailored, species-specific dietary interventions in captivity, aimed at better approximating naturally foraged diets, could functionally ‘rewild’ gut microbiota and facilitate successful management of diverse species. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00093-5.
Collapse
|
32
|
Wolf JF, Kriss KD, MacAulay KM, Munro K, Patterson BR, Shafer ABA. Gut microbiome composition predicts summer core range size in two divergent ungulates. FEMS Microbiol Ecol 2021; 97:6174673. [PMID: 33729507 DOI: 10.1093/femsec/fiab048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/15/2021] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome of animals vary by age, diet, and habitat, and directly influences an individual's health. Similarly, variation in home ranges is linked to feeding strategies and fitness. Ungulates (hooved mammals) exhibit species-specific microbiomes and habitat use patterns. We combined gut microbiome and movement data to assess relationships between space use and the gut microbiome in a specialist and a generalist ungulate. We GPS radiocollared 24 mountain goats (Oreamnos americanus) and 34 white-tailed deer (Odocoileus virginianus), collected fecal samples, and conducted high-throughput sequencing of the 16S rRNA gene. We generated gut diversity metrics and key bacterial ratios. Our research question centred around the idea that larger Firmicutes to Bacteroidetes ratios confer body size or fat advantages that allow for larger home ranges, and relationships of disproportionate habitat use are stronger in the habitat specialist mountain goat. Firmicutes to Bacteroidetes ratios were positively correlated with core range area in both species. Mountain goats exhibited a negative relationship between gut diversity and proportional use of treed areas and escape terrain, and no relationships were detected in the habitat generalist white-tailed deer. This is the first study to relate range size to the gut microbiome in wild ungulates and is an important proof of concept that advances the information that can be gleaned from non-invasive sampling.
Collapse
Affiliation(s)
- Jesse F Wolf
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Krystal D Kriss
- Ministry of Forests, Lands and Natural Resource Operations, and Rural Development, 3726 Alfred Avenue, Smithers, British Columbia V0J 2N0, Canada
| | - Kara M MacAulay
- Ministry of Forests, Lands and Natural Resource Operations, and Rural Development, 3726 Alfred Avenue, Smithers, British Columbia V0J 2N0, Canada
| | - Keith Munro
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada.,Ontario Federation of Anglers and Hunters, 4601 Guthrie Drive, Peterborough, Ontario K9J 8L5, Canada
| | - Brent R Patterson
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada.,Ontario Ministry of Natural Resources and Forestry, Wildlife Research and Monitoring Section, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Aaron B A Shafer
- Department of Environmental and Life Sciences, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada.,Forensic Science Program, Trent University, 2140 East Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
33
|
Diet and gut microbiome enterotype are associated at the population level in African buffalo. Nat Commun 2021; 12:2267. [PMID: 33859184 PMCID: PMC8050287 DOI: 10.1038/s41467-021-22510-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Studies in humans and laboratory animals link stable gut microbiome “enterotypes” with long-term diet and host health. Understanding how this paradigm manifests in wild herbivores could provide a mechanistic explanation of the relationships between microbiome dynamics, changes in dietary resources, and outcomes for host health. We identify two putative enterotypes in the African buffalo gut microbiome. The enterotype prevalent under resource-abundant dietary regimes, regardless of environmental conditions, has high richness, low between- and within-host beta diversity, and enrichment of genus Ruminococcaceae-UCG-005. The second enterotype, prevalent under restricted dietary conditions, has reduced richness, elevated beta diversity, and enrichment of genus Solibacillus. Population-level gamma diversity is maintained during resource restriction by increased beta diversity between individuals, suggesting a mechanism for population-level microbiome resilience. We identify three pathogens associated with microbiome variation depending on host diet, indicating that nutritional background may impact microbiome-pathogen dynamics. Overall, this study reveals diet-driven enterotype plasticity, illustrates ecological processes that maintain microbiome diversity, and identifies potential associations between diet, enterotype, and disease. There are stable relationships between diet and microbiome in humans and lab animals. A study on African buffalo finds that diet influences microbiome variation and enterotype formation. Three pathogens may associate with microbiome depending on host diet, suggesting nutrition impacts relationships between gut microbiome and host health.
Collapse
|
34
|
Guevara EE, Webster TH, Lawler RR, Bradley BJ, Greene LK, Ranaivonasy J, Ratsirarson J, Harris RA, Liu Y, Murali S, Raveendran M, Hughes DST, Muzny DM, Yoder AD, Worley KC, Rogers J. Comparative genomic analysis of sifakas ( Propithecus) reveals selection for folivory and high heterozygosity despite endangered status. SCIENCE ADVANCES 2021; 7:7/17/eabd2274. [PMID: 33893095 PMCID: PMC8064638 DOI: 10.1126/sciadv.abd2274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/08/2021] [Indexed: 05/12/2023]
Abstract
Sifakas (genus Propithecus) are critically endangered, large-bodied diurnal lemurs that eat leaf-based diets and show corresponding anatomical and microbial adaptations to folivory. We report on the genome assembly of Coquerel's sifaka (P. coquereli) and the resequenced genomes of Verreaux's (P. verreauxi), the golden-crowned (P. tattersalli), and the diademed (P. diadema) sifakas. We find high heterozygosity in all sifakas compared with other primates and endangered mammals. Demographic reconstructions nevertheless suggest declines in effective population size beginning before human arrival on Madagascar. Comparative genomic analyses indicate pervasive accelerated evolution in the ancestral sifaka lineage affecting genes in several complementary pathways relevant to folivory, including nutrient absorption and xenobiotic and fatty acid metabolism. Sifakas show convergent evolution at the level of the pathway, gene family, gene, and amino acid substitution with other folivores. Although sifakas have relatively generalized diets, the physiological challenges of habitual folivory likely led to strong selection.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Timothy H Webster
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, VA 22807, USA
| | - Brenda J Bradley
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Lydia K Greene
- Duke Lemur Center, Duke University, Durham, NC 27705, USA
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Jeannin Ranaivonasy
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - Joelisoa Ratsirarson
- Département Agroécologie, Biodiversité et Changement Climatique, ESSA, University of Antananarivo, Antananarivo, Madagascar
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yue Liu
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shwetha Murali
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Donna M Muzny
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC 27708-0338, USA
| | - Kim C Worley
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| |
Collapse
|
35
|
Palumbo F, Squartini A, Barcaccia G, Macolino S, Pornaro C, Pindo M, Sturaro E, Ramanzin M. A multi-kingdom metabarcoding study on cattle grazing Alpine pastures discloses intra-seasonal shifts in plant selection and faecal microbiota. Sci Rep 2021; 11:889. [PMID: 33441587 PMCID: PMC7806629 DOI: 10.1038/s41598-020-79474-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Diet selection by grazing livestock may affect animal performance as well as the biodiversity of grazed areas. Recent DNA barcoding techniques allow to assess dietary plant composition in faecal samples, which may be additionally integrated by the description of gut microbiota. In this high throughput metabarcoding study, we investigated the diversity of plant, fungal and bacterial taxa in faecal samples of lactating cows of two breeds grazing an Alpine semi-natural grassland during summer. The estimated plant composition of the diet comprised 67 genera and 39 species, which varied remarkably during summer, suggesting a decline of the diet forage value with the advancing of the vegetative season. The fungal community included Neocallimastigomycota gut symbionts, but also Ascomycota and Basidiomycota plant parasite and coprophilous taxa, likely ingested during grazing. The proportion of ingested fungi was remarkably higher than in other studies, and varied during summer, although less than that observed for plants. Some variation related to breed was also detected. The gut bacterial taxa remained stable through the summer but displayed a breed-specific composition. The study provided insights in the reciprocal organisms' interactions affecting, and being affected by, the foraging behaviour: plants showed a high temporal variation, fungi a smaller one, while bacteria had practically none; conversely, the same kingdoms showed the opposite gradient of variation as respect to the animal host breed, as bacteria revealed to be the group mostly characterized by host-specificity.
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Andrea Squartini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy.
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Stefano Macolino
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Cristina Pornaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, S. Michele All'Adige, 38010, Trento, Italy
| | - Enrico Sturaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Maurizio Ramanzin
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
36
|
Shi Y, Miao ZY, Su JP, Wasser SK. Shift of Maternal Gut Microbiota of Tibetan Antelope (Pantholops hodgsonii) During the Periparturition Period. Curr Microbiol 2021; 78:727-738. [PMID: 33410953 DOI: 10.1007/s00284-020-02339-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
The maternal gut microbiota can influence and be affected by the substantial physiological changes taking place during the periparturition period. However, little information is known about the changes in the maternal gut microbiota and hormonal variations during this period in nonmodel organisms. Tibetan antelope (Pantholops hodgsonii) provide a unique system to address this issue because their summer migration cycle is synchronized with the periparturition period. Here, we used fecal microbiota as a proxy of gut microbiota. We characterized fecal microbial community of female migratory Tibetan antelope in the late pregnancy and postpartum periods using 16S rRNA gene sequencing and quantified fecal glucocorticoids (GCs) and triiodothyronine (T3) metabolite concentrations through enzyme immunoassays to identify the associations between maternal gut microbiota and physiological changes related with reproduction. We found that the fecal microbiota of Tibetan antelope was dominated by Firmicutes and Bacteroidetes. The microbial composition was significantly altered during the transition from late pregnancy to the postpartum period. Fecal T3 concentration was significantly higher in the postpartum period compared to late pregnancy, whereas GC metabolite concentration did not significantly differ between two reproductive states. We identified six genera (Anaerofustis, Bacteroides, Coprococcus_2, Ruminiclostridium_5, Ruminococcaceae_UCG-007, and Tyzzerella) that were significantly associated with reproductive states. We also found two genera (Christensenellaceae_R-7_group and Rikenellaceae_RC9_gut_group) significantly associated with GC metabolite concentration and two genera (Agathobacter and Papillibacter) significantly associated with T3 metabolite concentration, though these correlations were weak with coefficient values ranging from - 0.007 to 0.03. Our results indicate that many members of the gut microbiota are associated with the physiological changes in the transition from late pregnancy to the postpartum period, likely reflecting the metabolic and immune system dynamics during the periparturition period. This study highlights the importance of integrating microbiota, hormones and migration pattern to study the reproductive health of wildlife. By establishing a baseline of the physiological changes during the migration/periparturition period, we can have a better understanding of the impacts of increasing human activities on the Tibetan Plateau on the reproductive health of Tibetan antelope.
Collapse
Affiliation(s)
- Yue Shi
- Department of Biology, University of Washington, Box 351800, Seattle, WA, 98195, USA. .,College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 17101 Point Lena Loop Road, Juneau, AK, 99801, USA.
| | - Zi-Yan Miao
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China.,Museum of Natural Resources of Qinghai Province, Xining, 810008, Qinghai, China
| | - Jian-Ping Su
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810008, Qinghai, China
| | - Samuel K Wasser
- Department of Biology, University of Washington, Box 351800, Seattle, WA, 98195, USA
| |
Collapse
|
37
|
Hess M, Paul SS, Puniya AK, van der Giezen M, Shaw C, Edwards JE, Fliegerová K. Anaerobic Fungi: Past, Present, and Future. Front Microbiol 2020; 11:584893. [PMID: 33193229 PMCID: PMC7609409 DOI: 10.3389/fmicb.2020.584893] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/29/2020] [Indexed: 11/13/2022] Open
Abstract
Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.
Collapse
Affiliation(s)
- Matthias Hess
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shyam S. Paul
- Gut Microbiome Lab, ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Hyderabad, India
| | - Anil K. Puniya
- Anaerobic Microbiology Lab, ICAR-National Dairy Research Institute, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Mark van der Giezen
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Claire Shaw
- Systems Microbiology & Natural Product Discovery Laboratory, Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Joan E. Edwards
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Kateřina Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
38
|
Riera JL, Baldo L. Microbial co-occurrence networks of gut microbiota reveal community conservation and diet-associated shifts in cichlid fishes. Anim Microbiome 2020; 2:36. [PMID: 33499972 PMCID: PMC7807433 DOI: 10.1186/s42523-020-00054-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background The extent to which deterministic rather than stochastic processes guide gut bacteria co-existence and ultimately their assembling into a community remains largely unknown. Co-occurrence networks of bacterial associations offer a powerful approach to begin exploring gut microbial community structure, maintenance and dynamics, beyond compositional aspects alone. Here we used an iconic model system, the cichlid fishes, with their multiple lake assemblages and extraordinary ecological diversity, to investigate a) patterns of microbial associations that were robust to major phylogeographical variables, and b) changes in microbial network structure along dietary shifts. We tackled these objectives using the large gut microbiota sequencing dataset available (nine lakes from Africa and America), building geographical and diet-specific networks and performing comparative network analyses. Results Major findings indicated that lake and continental microbial networks were highly resembling in global topology and node taxonomic composition, despite the heterogeneity of the samples. A small fraction of the observed co-occurrences among operational taxonomic units (OTUs) was conserved across all lake assemblages. These were all positive associations and involved OTUs within the genera Cetobacterium and Turicibacter and several OTUs belonging to the families of Peptostreptococcaceae and Clostridiaceae (order Clostridiales). Mapping of diet contribution on the African Lake Tanganyika network (therefore excluding the geographic variable) revealed a clear community change from carnivores (C) to omnivores (O) to herbivores (H). Node abundances and effect size for pairwise comparisons between diets supported a strong contrasting pattern between C and H. Moreover, diet-associated nodes in H formed complex modules of positive interactions among taxonomically diverse bacteria (mostly Verrucomicrobia and Proteobacteria). Conclusions Conservation of microbial network topologies and specific bacterial associations across distinct lake assemblages point to a major host-associated effect and potential deterministic processes shaping the cichlid gut microbiota. While the origin and biological relevance of these common associations remain unclear, their persistence suggests an important functional role in the cichlid gut. Among the very diverse cichlids of L. Tanganyika, diet nonetheless represents a major driver of microbial community changes. By intersecting results from predictive network inferences and experimental trials, future studies will be directed to explore the strength of these associations, predict the outcome of community alterations driven by diet and ultimately help understanding the role of gut microbiota in cichlid trophic diversification.
Collapse
Affiliation(s)
- Joan Lluís Riera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Laura Baldo
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain. .,Institute for Research on Biodiversity (IRBio), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
39
|
Rice-shrimp culture: a better intestinal microbiota, immune enzymatic activities, and muscle relish of crayfish (Procambarus clarkii) in Sichuan Province. Appl Microbiol Biotechnol 2020; 104:9413-9420. [PMID: 32949278 DOI: 10.1007/s00253-020-10797-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Intestinal microbiota play an important role in the intestinal immunity and nutrient absorption, even muscle nutritional components, and the composition and function were affected by environment. In this study, the intestinal microbiota and immune enzyme, nutritional flavor of muscle of crayfish in rice field, and pond cultivation model were compared in summer and autumn. The results of Shannon diversity and Chao 1 index of intestinal microbiota based on 16S sequencing analysis showed that the diversity and abundance in autumn were higher than in summer. And the diversity and abundance of intestinal microbiota of different model in the same season were different. Four dominant phyla (relative abundance > 5% at least in one sample) of the intestinal microbiota were Bacteroidetes, Firmicutes, Proteobacteria, and Tenericutes. From summer to autumn, the intestinal immune enzyme activity of crayfish in both models showed a decreasing trend. In summer, the activity of catalase and alkaline phosphatase of crayfish cultured in the pond was significantly higher than that in rice field (P < 0.05). In autumn, the activity of catalase and lysozyme of crayfish cultured in rice field was significantly higher than that in pond (P < 0.05). The contents of umami and sweetish amino acids of muscle were higher in rice field than in pond, and the percentage of glutamic acid and alanine was significantly higher in rice field than in pond (P < 0.05). Thus, rice field model can make crayfish a more stable intestinal environment and a better intestinal immune enzyme activity and muscular flavor. Key points • The intestinal microbiota of crayfish in rice field had tended to stabilize from summer to autumn. • The crayfish had better nutrient absorption and stronger immune abilities in the rice field. • The crayfish cultured in rice field had higher overall umami concentration than in pond.
Collapse
|
40
|
Yang G, Yan Y, Zhang L, Ruan Z, Hu X, Zhang S, Li X. Porcine circovirus type 2 (PCV2) and Campylobacter infection induce diarrhea in piglets: Microbial dysbiosis and intestinal disorder. ACTA ACUST UNITED AC 2020; 6:362-371. [PMID: 33005770 PMCID: PMC7503086 DOI: 10.1016/j.aninu.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Diarrhea is considered to be associated with microbial dysbiosis caused by infection of pathogens but poorly understood. We herein characterized the colonic microbiota of diarrheal early-weaning piglets infected with porcine circovirus type 2 (PCV2) and Campylobacter. Campylobacter infection significantly decreased species richness and Shannon diversity index of colonic microbiota together with a significant increase in the proportion of Campylobacter and Enterobacteriaceae, whereas no significant difference on the above indexes was observed in piglets infected with PCV2 compared with healthy piglets. PCV2 and Campylobacter infection could disturb the homeostasis of colonic microbiota through deterioration of ecological network within microbial community, and specially Campylobacter performed as a module hub in ecological networks. The microbial dysbiosis caused metabolic dysfunction and led to a remarkable reduction in production of short chain fatty acids, following by a higher pH level in colon cavity. Campylobacter infection disturbed the function of colonic tract barrier observed in terms of significant lower relative expression of claudin-1, occluding, and zonula occludens protein-1 genes, and PCV2 infection induced intestinal inflammation together with a higher permeability of colon. Generally, these results suggested that PCV2 and Campylobacter infection could induce microbial dysbiosis and metabolic dysfunction, and cause intestinal disorder, all of which finally were associated to contribute to the diarrhea of early-weaning piglets.
Collapse
Affiliation(s)
- Gang Yang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yali Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shuo Zhang
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| | - Xiaozhen Li
- Yunnan Xinan Tianyou Animal Husbandry Technology Co., Ltd., Kunming, 650032, China
| |
Collapse
|
41
|
Greene LK, Williams CV, Junge RE, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe H, O'Connell TM, Drea CM. A role for gut microbiota in host niche differentiation. THE ISME JOURNAL 2020; 14:1675-1687. [PMID: 32238913 PMCID: PMC7305313 DOI: 10.1038/s41396-020-0640-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
If gut microbes influence host behavioral ecology in the short term, over evolutionary time, they could drive host niche differentiation. We explored this possibility by comparing the gut microbiota of Madagascar's folivorous lemurs from Indriidae and Lepilemuridae. Occurring sympatrically in the eastern rainforest, our four, target species have different dietary specializations, including frugo-folivory (sifakas), young-leaf folivory (indri and woolly lemurs), and mature-leaf folivory (sportive lemurs). We collected fecal samples, from 2013 to 2017, and used amplicon sequencing, metagenomic sequencing, and nuclear magnetic resonance spectroscopy, respectively, to integrate analyses of gut microbiome structure and function with analysis of the colonic metabolome. The lemurs harbored species-specific microbiomes, metagenomes, and metabolomes that were tuned to their dietary specializations: Frugo-folivores had greater microbial and metagenomic diversity, and harbored generalist taxa. Mature-leaf folivores had greater individual microbiome variation, and taxa and metabolites putatively involved in cellulolysis. The consortia even differed between related, young-leaf specialists, with indri prioritizing metabolism of fiber and plant secondary compounds, and woolly lemurs prioritizing amino-acid cycling. Specialized gut microbiota and associated gastrointestinal morphologies enable folivores to variably tolerate resource fluctuation and support nutrient extraction from challenging resources (e.g., by metabolizing plant secondary compounds or recalcitrant fibers), perhaps ultimately facilitating host species' diversity and specialized feeding ecologies.
Collapse
Affiliation(s)
- Lydia K Greene
- University Program in Ecology, Duke University, Durham, NC, 27708, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA.
- Primate Microbiome Project, Minneapolis, MN, USA.
| | - Cathy V Williams
- Duke Lemur Center, Durham, NC, 27705, USA
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
| | - Randall E Junge
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Columbus Zoo and Aquarium, 9990 Riverside Drive, Columbus, OH, 43065, USA
| | - Karine L Mahefarisoa
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Vet Care Clinic Madagascar, IVC II Ambatomitsangana, 101, Antananarivo, Madagascar
| | - Tsiky Rajaonarivelo
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Vetclinic, Ampandrianomby, Antananarivo, Madagascar
| | | | - Thomas M O'Connell
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
42
|
Microbial diversity within the digestive tract contents of Dezhou donkeys. PLoS One 2019; 14:e0226186. [PMID: 31834903 PMCID: PMC6910686 DOI: 10.1371/journal.pone.0226186] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal microbiota has significant impact on the nutrition and health of monogastric herbivores animals including donkey. However, so far the microbiota in different gastrointestinal compartments of healthy donkey has not been described. Therefore, we investigated the abundance and function of microbiota at different sites of the gastrointestinal tract (GIT) (foregut: stomach, duodenum, jejunum and ileum; hindgut: cecum, ventral colon, dorsal colon, and rectum) of healthy adult donkeys mainly based on 16S rRNA gene sequencing and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis. Collectively, our results showed that donkey has a rich, diverse and multi-functional microbiota along the GIT. In general, the richness and diversity of the microbiota are much higher in the hindgut relative to that in the foregut; at phylum level, the Firmicutes is dominant in the foregut while both Firmicutes and Bacteroides are abundant in the hindgut; at the genus level, Lactobacillus was dominant in the foregut while Streptococcus was more dominant in the hindgut. Our further PICRUSt analysis showed that varying microbiota along the GIT is functionally compatible with the corresponding physiological function of different GIT sites. For example, the microbes in the foregut are more active at carbohydrate metabolism, and in the hindgut are more active at amino acid metabolism. This work at the first time characterized the donkey digestive system from the aspects of microbial composition and function, provided an important basic data about donkey healthy gastrointestinal microbiota, which may be utilized to evaluate donkey health and also offer clues to further investigate donkey digestive system, nutrition, even to develop the microbial supplements.
Collapse
|
43
|
Abstract
Diet and gut microbiome composition are important for health and nutrition in mammals, but how they covary in response to environmental change remains poorly understood—both because diet composition is rarely quantified precisely, and because studies of diet−microbiome linkages in captive animals may not accurately reflect the dynamics of natural communities. By analyzing diet−microbiome linkages in an assemblage of large mammalian herbivores in Kenya, we found that seasonal changes in diet and microbiome composition were strongly correlated within some populations, whereas other populations exhibited little temporal turnover in either diet or microbiome. Identifying mechanisms that generate species-specific variation in the sensitivity of the diet−microbiome nexus to environmental changes could help to explain differential population performance and food-web structure within ecological communities. A major challenge in biology is to understand how phylogeny, diet, and environment shape the mammalian gut microbiome. Yet most studies of nonhuman microbiomes have relied on relatively coarse dietary categorizations and have focused either on individual wild populations or on captive animals that are sheltered from environmental pressures, which may obscure the effects of dietary and environmental variation on microbiome composition in diverse natural communities. We analyzed plant and bacterial DNA in fecal samples from an assemblage of 33 sympatric large-herbivore species (27 native, 6 domesticated) in a semiarid East African savanna, which enabled high-resolution assessment of seasonal variation in both diet and microbiome composition. Phylogenetic relatedness strongly predicted microbiome composition (r = 0.91) and was weakly but significantly correlated with diet composition (r = 0.20). Dietary diversity did not significantly predict microbiome diversity across species or within any species except kudu; however, diet composition was significantly correlated with microbiome composition both across and within most species. We found a spectrum of seasonal sensitivity at the diet−microbiome nexus: Seasonal changes in diet composition explained 25% of seasonal variation in microbiome composition across species. Species’ positions on (and deviations from) this spectrum were not obviously driven by phylogeny, body size, digestive strategy, or diet composition; however, domesticated species tended to exhibit greater diet−microbiome turnover than wildlife. Our results reveal marked differences in the influence of environment on the degree of diet−microbiome covariation in free-ranging African megafauna, and this variation is not well explained by canonical predictors of nutritional ecology.
Collapse
|