1
|
Henyoh AMS, Laurent O, Mandin C, Clero E. Radon exposure and potential health effects other than lung cancer: a systematic review and meta-analysis. Front Public Health 2024; 12:1439355. [PMID: 39386959 PMCID: PMC11461271 DOI: 10.3389/fpubh.2024.1439355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
Context and objective To date, lung cancer is the only well-established health effect associated with radon exposure in humans. To summarize available evidence on other potential health effects of radon exposure, we performed a comprehensive qualitative and quantitative synthesis of the available literature on radon exposure and health effects other than lung cancer, in both occupational and general populations. Method Eligible studies published from January 1990 to March 2023, in English and French languages, were identified in PubMed, ScienceDirect, Scopus, ScieLo and HAL. In the meta-analysis, we estimated average weighted standardized incidence ratios (metaSIR), standardized mortality ratios (metaSMR), and risk ratio (metaRR) per 100 unit (Bq/m3 or Working level Month) increase in radon exposure concentration by combining estimates from the eligible studies using the random-effect inverse variance method. DerSimonian & Laird estimator was used to estimate the between-study variance. For each health outcome, analyses were performed separately for mine workers, children, and adults in the general population. Results A total of 129 studies were included in the systematic review and 40 distinct studies in the meta-analysis. For most of these health outcomes, the results of the meta-analyses showed no statistically significant association, and heterogeneity was only present among occupational studies, especially between those included in the metaSIR or metaSMR analyses. However, the estimated exposure-risk associations were positive and close to the statistical significance threshold for: lymphohematological cancer incidence in children (metaRR = 1.01; 95%CI: 1.00-1.03; p = 0.08); malignant melanoma mortality among adults in the general population (metaRR = 1.10; 95%CI: 0.99-1.21; p = 0.07); liver cancer mortality among mine workers (metaRR = 1.04; 95%CI: 1.00-1.10; p = 0.06); intestine and rectal cancer mortality combined among mine workers (metaRR = 1.02; 95%CI: 1.00-1.04; p = 0.06). Conclusion Although none of the exposure-risk associations estimated in the meta-analyses reached statistical significance, the hypothesis that radon may have other health effects apart from lung cancer could not be ruled-out and call for additional research. Larger and well-designed studies are needed to further investigate this question. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474542, ID: CRD42023474542.
Collapse
Affiliation(s)
- Afi Mawulawoe Sylvie Henyoh
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LEPID, Fontenay-aux-Roses, France
| | | | | | - Enora Clero
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LEPID, Fontenay-aux-Roses, France
| |
Collapse
|
2
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Zhang Q, Luo Y, Qian B, Cao X, Xu C, Guo K, Wan R, Jiang Y, Wang T, Mei Z, Liu J, Lv C. A systematic pan-cancer analysis identifies LDHA as a novel predictor for immunological, prognostic, and immunotherapy resistance. Aging (Albany NY) 2024; 16:8000-8018. [PMID: 38709280 PMCID: PMC11132014 DOI: 10.18632/aging.205800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Lactate dehydrogenase A (LDHA), a critical enzyme involved in glycolysis, is broadly involved multiple biological functions in human cancers. It is reported that LDHA can impact tumor immune surveillance and induce the transformation of tumor-associated macrophages, highlighting its unnoticed function of LDHA in immune system. However, in human cancers, the role of LDHA in prognosis and immunotherapy hasn't been investigated. In this study, we analyzed the expression pattern and prognostic value of LDHA in pan-cancer and explored its association between tumor microenvironment (TME), immune infiltration subtype, stemness scores, tumor mutation burden (TMB), and immunotherapy resistance. We found that LDHA expression is tumor heterogeneous and that its high expression is associated with poor prognosis in multiple human cancers. In addition, LDHA expression was positively correlated with the presence of mononuclear/macrophage cells, and also promoted the infiltration of a range of immune cells. Genomic alteration of LDHA was common in different types of cancer, while with prognostic value in pan-cancers. Pan-cancer analysis revealed that the significant correlations existed between LDHA expression and tumor microenvironment (including stromal cells and immune cells) as well as stemness scores (DNAss and RNAss) across cancer types. Drug sensitivity analysis also revealed that LDHA was able to predict response to chemotherapy and immunotherapy. Furthermore, it was confirmed that knockdown of LDHA reduced proliferation and migration ability of lung cancer cells. Taken together, LDHA could serve as a prognostic biomarker and a potential immunotherapy marker.
Collapse
Affiliation(s)
- Qiqi Zhang
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
| | - Yuanning Luo
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Bingshuo Qian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
- School of Pharmacy, Henan University, Kaifeng, P.R. China
| | - Xiuhua Cao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Caijun Xu
- Southwest Medical University, Luzhou, P.R. China
| | - Kan Guo
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
| | - Runlan Wan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Yaling Jiang
- Southwest Medical University, Luzhou, P.R. China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
| | - Jinbiao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P.R. China
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| |
Collapse
|
4
|
Horvit AM, Molony DA. A systematic review and meta-analysis of mortality and kidney function in uranium-exposed individuals. ENVIRONMENTAL RESEARCH 2024; 248:118224. [PMID: 38242418 DOI: 10.1016/j.envres.2024.118224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/17/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Humans are exposed to uranium (U) in a variety of applications. Both animal and observational human studies support an associated U nephrotoxicity. Few statistical syntheses of the human data have been performed and these analyses are limited in the types of exposures considered. OBJECTIVES This study aims to evaluate the state of current evidence and to expand on existing meta-analyses by systematically evaluating kidney-associated causes of mortality in multiple U-exposed populations. This study also aims to evaluate the effect of U exposure on kidney function and biomarkers of kidney injury. METHODS The published and grey literature were systematically reviewed for studies that reported Standardized Mortality Ratios (SMR) for kidney cancer, chronic nephritis/nephrosis, all-cause mortality, diabetes, all circulatory/heart disease, and/or ischemic heart disease in U-exposed humans. Studies that reported kidney biomarker measures for U-exposed versus control subjects were identified separately. RESULTS 36 studies were included. The studies were parsed into subgroups based on setting of exposure. Analysis of kidney cancer and chronic nephritis/nephrosis mortality demonstrated an SMR of 0.93 (95CI: 0.82-1.05) and 0.82 (95CI: 0.70-0.96), respectively. The other clinical outcomes evaluated also demonstrated mortality deficits in exposed relative to unexposed individuals. Subgroup analyses demonstrated similar mortality deficits. Conversely, biomarker analyses suggested better kidney function in the controls, but none of these differences reached significance. DISCUSSION Given that most of the included mortality studies were conducted in occupational populations, the mortality deficits observed in our analyses were likely due to the healthy-worker effect. Additionally, our analyses of kidney biomarkers were severely limited by low precision due to a low number of available studies and small study-size. Future work needs to evaluate the progression of chronic and to end-stage kidney disease in community-based populations to better assess the full impact of prolonged chronic U exposure on kidney outcomes.
Collapse
Affiliation(s)
- Andrew M Horvit
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Donald A Molony
- Department of Internal Medicine, Division of Renal Diseases and Hypertension, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
5
|
Kreuzer M, Sommer M, Deffner V, Bertke S, Demers PA, Kelly-Reif K, Laurier D, Rage E, Richardson DB, Samet JM, Schubauer-Berigan MK, Tomasek L, Wiggins C, Zablotska LB, Fenske N. Lifetime excess absolute risk for lung cancer due to exposure to radon: results of the pooled uranium miners cohort study PUMA. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:7-16. [PMID: 38172372 PMCID: PMC10920468 DOI: 10.1007/s00411-023-01049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
The Pooled Uranium Miners Analysis (PUMA) study is the largest uranium miners cohort with 119,709 miners, 4.3 million person-years at risk and 7754 lung cancer deaths. Excess relative rate (ERR) estimates for lung cancer mortality per unit of cumulative exposure to radon progeny in working level months (WLM) based on the PUMA study have been reported. The ERR/WLM was modified by attained age, time since exposure or age at exposure, and exposure rate. This pattern was found for the full PUMA cohort and the 1960 + sub-cohort, i.e., miners hired in 1960 or later with chronic low radon exposures and exposure rates. The aim of the present paper is to calculate the lifetime excess absolute risk (LEAR) of lung cancer mortality per WLM using the PUMA risk models, as well as risk models derived in previously published smaller uranium miner studies, some of which are included in PUMA. The same methods were applied for all risk models, i.e., relative risk projection up to <95 years of age, an exposure scenario of 2 WLM per year from age 18-64 years, and baseline mortality rates representing a mixed Euro-American-Asian population. Depending upon the choice of model, the estimated LEAR per WLM are 5.38 × 10-4 or 5.57 × 10-4 in the full PUMA cohort and 7.50 × 10-4 or 7.66 × 10-4 in the PUMA 1960 + sub-cohort, respectively. The LEAR per WLM estimates derived from risk models reported for previously published uranium miners studies range from 2.5 × 10-4 to 9.2 × 10-4. PUMA strengthens knowledge on the radon-related lung cancer LEAR, a useful way to translate models for policy purposes.
Collapse
Affiliation(s)
- M Kreuzer
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany.
| | - M Sommer
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany
| | - V Deffner
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany
| | - S Bertke
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - P A Demers
- Occupational Cancer Research Centre, Toronto, Canada
| | - K Kelly-Reif
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - D Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - E Rage
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | | | - J M Samet
- Colorado School of Public Health, Aurora, CO, USA
| | | | - L Tomasek
- National Radiation Protection Institute, Prague, Czech Republic
| | - C Wiggins
- University of New Mexico, Albuquerque, NM, USA
- New Mexico Tumor Registry, Albuquerque, NM, USA
| | | | - N Fenske
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany
| |
Collapse
|
6
|
Lee H, Hanson HA, Logan J, Maguire D, Kapadia A, Dewji S, Agasthya G. Evaluating county-level lung cancer incidence from environmental radiation exposure, PM 2.5, and other exposures with regression and machine learning models. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:82. [PMID: 38367080 PMCID: PMC10874317 DOI: 10.1007/s10653-023-01820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024]
Abstract
Characterizing the interplay between exposures shaping the human exposome is vital for uncovering the etiology of complex diseases. For example, cancer risk is modified by a range of multifactorial external environmental exposures. Environmental, socioeconomic, and lifestyle factors all shape lung cancer risk. However, epidemiological studies of radon aimed at identifying populations at high risk for lung cancer often fail to consider multiple exposures simultaneously. For example, moderating factors, such as PM2.5, may affect the transport of radon progeny to lung tissue. This ecological analysis leveraged a population-level dataset from the National Cancer Institute's Surveillance, Epidemiology, and End-Results data (2013-17) to simultaneously investigate the effect of multiple sources of low-dose radiation (gross [Formula: see text] activity and indoor radon) and PM2.5 on lung cancer incidence rates in the USA. County-level factors (environmental, sociodemographic, lifestyle) were controlled for, and Poisson regression and random forest models were used to assess the association between radon exposure and lung and bronchus cancer incidence rates. Tree-based machine learning (ML) method perform better than traditional regression: Poisson regression: 6.29/7.13 (mean absolute percentage error, MAPE), 12.70/12.77 (root mean square error, RMSE); Poisson random forest regression: 1.22/1.16 (MAPE), 8.01/8.15 (RMSE). The effect of PM2.5 increased with the concentration of environmental radon, thereby confirming findings from previous studies that investigated the possible synergistic effect of radon and PM2.5 on health outcomes. In summary, the results demonstrated (1) a need to consider multiple environmental exposures when assessing radon exposure's association with lung cancer risk, thereby highlighting (1) the importance of an exposomics framework and (2) that employing ML models may capture the complex interplay between environmental exposures and health, as in the case of indoor radon exposure and lung cancer incidence.
Collapse
Affiliation(s)
- Heechan Lee
- Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA, 30332, USA
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Heidi A Hanson
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Jeremy Logan
- Data Engineering Group, Data and AI Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Dakotah Maguire
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Anuj Kapadia
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| | - Shaheen Dewji
- Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State Street, Atlanta, GA, 30332, USA
| | - Greeshma Agasthya
- Advanced Computing for Health Sciences Section, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37830, USA
| |
Collapse
|
7
|
Yan Z, Zhang Y, Du L, Liu L, Zhou H, Song W. U(VI) exposure induces apoptosis and pyroptosis in RAW264.7 cells. CHEMOSPHERE 2023; 342:140154. [PMID: 37714482 DOI: 10.1016/j.chemosphere.2023.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
U(VI) pollution has already led to serious harm to the environment and human health with the increase of human activities. The viability of RAW264.7 cells was assessed under various U(VI) concentration stress for 24 and 48 h. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and superoxide dismutase (SOD) activities of RAW264.7 cells under U(VI) stress were measured. The results showed that U(VI) decreased cell activity, induced intracellular ROS production, abnormal MMP, and increased SOD activity. The flow cytometry with Annexin-V/PI double labeling demonstrated that the rate of late apoptosis increased with the increase of U(VI) concentration, resulting in decreased Bcl-2 expression and increased Bax expression. The morphology of RAW264.7 cells dramatically changed after 48 h U(VI) exposure, including the evident bubble phenomenon. Besides, U(VI) also increased the proportion of LDH releases and increased GSDMD, and Ras, p38, JNK, and ERK1/2 protein expression, which indicated that the MAPK pathway was also involved. Therefore, U(VI) ultimately led to apoptosis and pyroptosis in RAW264.7 cells. This study offered convincing proof of U(VI) immunotoxicity and established the theoretical framework for further fundamental studies on U(VI) toxicity.
Collapse
Affiliation(s)
- Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Liang Du
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, PR China.
| |
Collapse
|
8
|
Kreuzer M, Deffner V, Sommer M, Fenske N. Updated risk models for lung cancer due to radon exposure in the German Wismut cohort of uranium miners, 1946-2018. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:415-425. [PMID: 37695330 PMCID: PMC10628028 DOI: 10.1007/s00411-023-01043-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
UNSCEAR recently recommended that future research on the lung cancer risk at low radon exposures or exposure rates should focus on more contemporary uranium miners. For this purpose, risk models in the German Wismut cohort of uranium miners were updated extending the follow-up period by 5 years to 1946-2018. The full cohort (n = 58,972) and specifically the 1960 + sub-cohort of miners first hired in 1960 or later (n = 26,764) were analyzed. The 1960 + sub-cohort is characterized by low protracted radon exposure of high quality of measurements. Internal Poisson regression was used to estimate the excess relative risk (ERR) for lung cancer per cumulative radon exposure in Working Level Months (WLM). Applying the BEIR VI exposure-age-concentration model, the ERR/100 WLM was 2.50 (95% confidence interval (CI) 0.81; 4.18) and 6.92 (95% CI < 0; 16.59) among miners with attained age < 55 years, time since exposure 5-14 years, and annual exposure rates < 0.5 WL in the full (n = 4329 lung cancer deaths) and in the 1960 + sub-cohort (n = 663 lung cancer deaths), respectively. Both ERR/WLM decreased with older attained ages, increasing time since exposure, and higher exposure rates. Findings of the 1960 + sub-cohort are in line with those from large pooled studies, and ERR/WLM are about two times higher than in the full Wismut cohort. Notably, 20-30 years after closure of the Wismut mines in 1990, the estimated fraction of lung cancer deaths attributable to occupational radon exposure is still 26% in the full Wismut cohort and 19% in the 1960 + sub-cohort, respectively. This demonstrates the need for radiation protection against radon.
Collapse
Affiliation(s)
- M Kreuzer
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| | - V Deffner
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - M Sommer
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Fenske
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
9
|
Lopes J, Baudin C, Feuardent J, Roy H, Caër-Lorho S, Leuraud K, Bernier MO. Cohort profile: ORICAMs, a French cohort of medical workers exposed to low-dose ionizing radiation. PLoS One 2023; 18:e0286910. [PMID: 37289793 PMCID: PMC10249798 DOI: 10.1371/journal.pone.0286910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Medical personnel represent the largest group of workers occupationally exposed to ionizing radiation. Although the health risks associated with occupational exposure to low doses of ionizing radiation in the medical field have been investigated in several national cohorts, no study has been conducted in France to date. The ORICAMs (Occupational Radiation Induced Cancer in Medical staff) cohort is a nationwide French longitudinal cohort of medical workers exposed to ionizing radiation aiming to investigate the risk of radiation-associated cancer and non-cancer mortality. The ORICAMs cohort was set up in 2011 and includes all medical personnel monitored for ionizing radiation exposure with at least one dosimetric record in the SISERI database (the national registry for monitoring ionizing radiation exposure in workers) over the period 2002-2012. Causes of death were abstracted from death certificates and coded according to ICD-10. The follow-up ended on 31/12/2013. Standardized mortality ratios (SMRs) were calculated by cause of death to compare the mortality in the cohort to that in the French population, by gender, age group and calendar period. Among the 164,015 workers included in the cohort (60% women) a total of 1,358 deaths (892 in male and 466 in female) were reported. The observed number of all-cause deaths was significantly lower than expected based on national rates in both male (SMR = 0.35; 95% CI: 0.33, 0.38; ndeaths = 892) and female (SMR = 0.41; 95% CI: 0.38, 0.45; ndeaths = 466). This analysis leads to the conclusion that mortality in French workers exposed to medical radiation is significantly lower than the national reference rates. However, these results based on a comparative analysis with national rates may be impacted by the healthy worker effect towards low SMRs, and do not enable to establish a potential relationship between occupational exposure and mortality risk, even if we may suspect an impact of high SES of these professionals on the observed decreased mortality. Thus, further dose-response analyses based on individual ionizing radiation exposure and job's type will be conducted to characterize correlation between risk of cancer mortality and occupational exposure.
Collapse
Affiliation(s)
- Julie Lopes
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Clémence Baudin
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Juliette Feuardent
- Office for the Analysis and Monitoring of Occupational Exposure (BASEP), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Hervé Roy
- Office for the Analysis and Monitoring of Occupational Exposure (BASEP), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Sylvaine Caër-Lorho
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Marie-Odile Bernier
- Laboratory of Epidemiology (LEPID), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
10
|
Kurkela O, Nevalainen J, Pätsi SM, Kojo K, Holmgren O, Auvinen A. Lung cancer incidence attributable to residential radon exposure in Finland. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:35-49. [PMID: 36344858 PMCID: PMC9950193 DOI: 10.1007/s00411-022-01004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to estimate (1) the number of avoidable lung cancer cases attributable to residential radon in Finland in 2017, separately by age, sex, dwelling type and smoking status, (2) the impact of residential radon alone and the joint effect of residential radon and smoking on the number of lung cancers and (3) the potential decrease in the number of radon-attributable lung cancers if radon concentrations exceeding specified action levels (100, 200 and 300 Bq m-3) would have been mitigated to those levels. Population-based surveys of radon concentrations and smoking patterns were used. Observed radon levels were contrasted with 25 Bq m-3 representing a realistic minimum level of exposure. Lung cancer risk estimates for radon and smoking were derived from literature. Lastly, the uncertainty due to the estimation of exposure and risk was quantified using a computationally derived uncertainty interval. At least 3% and at most 8% of all lung cancers were estimated as being attributable to residential radon. For small cell carcinoma, the proportion of cases attributable to radon was 8-13%. Among smokers, the majority of the radon-related cases were attributable to the joint effect of radon and smoking. Reduction of radon exposure to 100 Bq m-3 action level would eliminate approximately 30% of radon-attributable cases. Estimates were low compared with the literature, given the (relatively high) radon levels in Finland. This was mainly due to the lower radon levels and higher smoking prevalence in flats than in houses and a more realistic point of comparison, factors which have been ignored in previous studies. The results can guide actions in radon protection and in prevention of lung cancers.
Collapse
Affiliation(s)
- Olli Kurkela
- STUK-Radiation and Nuclear Safety Authority, Environmental Surveillance, Helsinki, Finland.
- Faculty of Social Sciences, Tampere University, Unit of Health Sciences, P.O. Box 100, 33014, Tampere, Finland.
- Laurea University of Applied Sciences, Ratatie 22, 01300, Vantaa, Finland.
| | - Jaakko Nevalainen
- Faculty of Social Sciences, Tampere University, Unit of Health Sciences, P.O. Box 100, 33014, Tampere, Finland
| | - Salla-Maaria Pätsi
- STUK-Radiation and Nuclear Safety Authority, Environmental Surveillance, Helsinki, Finland
- Faculty of Social Sciences, Tampere University, Unit of Health Sciences, P.O. Box 100, 33014, Tampere, Finland
| | - Katja Kojo
- STUK-Radiation and Nuclear Safety Authority, Environmental Surveillance, Helsinki, Finland
| | - Olli Holmgren
- STUK-Radiation and Nuclear Safety Authority, Environmental Surveillance, Helsinki, Finland
| | - Anssi Auvinen
- STUK-Radiation and Nuclear Safety Authority, Environmental Surveillance, Helsinki, Finland
- Faculty of Social Sciences, Tampere University, Unit of Health Sciences, P.O. Box 100, 33014, Tampere, Finland
| |
Collapse
|
11
|
Brobbey A, Rydz E, Fenton S, Demers PA, Ge CB, Peters CE. Characterizing occupational radon exposure greater than 100 Bq/m 3 in a highly exposed country. Sci Rep 2022; 12:21323. [PMID: 36494406 PMCID: PMC9734100 DOI: 10.1038/s41598-022-25547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Radon is an established lung carcinogen concentrating in indoor environments with importance for many workers worldwide. However, a systematic assessment of radon levels faced by all workers, not just those with direct uranium or radon exposure, has not previously been completed. The objective of this study was to estimate the prevalence of workers exposed to radon, and the level of exposure (> 100-200 Bq/m3, 200-400 Bq/m3, 400-800 Bq/m3, and > 800 Bq/m3) in a highly exposed country (Canada). Exposures among underground workers were assessed using the CAREX Canada approach. Radon concentrations in indoor workplaces, obtained from two Canadian surveys, were modelled using lognormal distributions. Distributions were then applied to the susceptible indoor worker population to yield the number of exposed workers, by occupation, industry, province, and sex. In total, an estimated 603,000 out of Canada's 18,268,120 workers are exposed to radon in Canada. An estimated52% of exposed workers are women, even though they comprise only 48% of the labour force. The majority (68%) are exposed at a level of > 100-200 Bq/m3. Workers are primarily exposed in educational services, professional, scientific and technical services, and health care and social assistance, but workers in mining, quarrying, and oil and gas extraction have the largest number of exposed workers at high levels (> 800 Bq/m3). Overall, a significant number of workers are exposed to radon, many of whom are not adequately protected by existing guidelines. Radon surveys across multiple industries and occupations are needed to better characterize occupational exposure. These results can be used to identify exposed workers, and to support lung cancer prevention programs within these groups.
Collapse
Affiliation(s)
- A Brobbey
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - E Rydz
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S Fenton
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - P A Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - C B Ge
- TNO, The Hague, The Netherlands
| | - C E Peters
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- BCCDC, Vancouver, BC, Canada.
- BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
12
|
Madas BG, Boei J, Fenske N, Hofmann W, Mezquita L. Effects of spatial variation in dose delivery: what can we learn from radon-related lung cancer studies? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:561-577. [PMID: 36208308 PMCID: PMC9630403 DOI: 10.1007/s00411-022-00998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
Exposure to radon progeny results in heterogeneous dose distributions in many different spatial scales. The aim of this review is to provide an overview on the state of the art in epidemiology, clinical observations, cell biology, dosimetry, and modelling related to radon exposure and its association with lung cancer, along with priorities for future research. Particular attention is paid on the effects of spatial variation in dose delivery within the organs, a factor not considered in radiation protection. It is concluded that a multidisciplinary approach is required to improve risk assessment and mechanistic understanding of carcinogenesis related to radon exposure. To achieve these goals, important steps would be to clarify whether radon can cause other diseases than lung cancer, and to investigate radon-related health risks in children or persons at young ages. Also, a better understanding of the combined effects of radon and smoking is needed, which can be achieved by integrating epidemiological, clinical, pathological, and molecular oncology data to obtain a radon-associated signature. While in vitro models derived from primary human bronchial epithelial cells can help to identify new and corroborate existing biomarkers, they also allow to study the effects of heterogeneous dose distributions including the effects of locally high doses. These novel approaches can provide valuable input and validation data for mathematical models for risk assessment. These models can be applied to quantitatively translate the knowledge obtained from radon exposure to other exposures resulting in heterogeneous dose distributions within an organ to support radiation protection in general.
Collapse
Affiliation(s)
- Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
| | - Jan Boei
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Werner Hofmann
- Biological Physics, Department of Chemistry and Physics of Materials, University of Salzburg, Salzburg, Austria
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomic and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| |
Collapse
|
13
|
Kelly-Reif K, Bertke S, Daniels RD, Richardson DB, Schubauer-Berigan MK. Nonmalignant respiratory disease mortality in male Colorado Plateau uranium miners, 1960-2016. Am J Ind Med 2022; 65:773-782. [PMID: 35941829 PMCID: PMC10031748 DOI: 10.1002/ajim.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND To evaluate trends of nonmalignant respiratory disease (NMRD) mortality among US underground uranium miners on the Colorado Plateau, and to estimate the exposure-response association between cumulative radon progeny exposure and NMRD subtype mortality. METHODS Standardized mortality ratios (SMRs) and excess relative rates per 100 working level months (excess relative rate [ERR]/100 WLM) were estimated in a cohort of 4021 male underground uranium miners who were followed from 1960 through 2016. RESULTS We observed elevated SMRs for all NMRD subtypes. Silicosis had the largest SMR (n = 52, SMR = 41.4; 95% confidence interval [CI]: 30.9, 54.3), followed by other pneumoconiosis (n = 49, SMR = 39.6; 95% CI: 29.6, 52.3) and idiopathic pulmonary fibrosis (IPF) (n = 64, SMR = 4.77; 95% CI 3.67, 6.09). SMRs for silicosis increased with duration of employment; SMRs for IPF increased with duration of employment and calendar period. There was a positive association between cumulative radon exposure and silicosis with evidence of modification by smoking (ERR/100 WLM≥10 pack-years = 0.78; 95% CI: 0.05, 24.6 and ERR/100 WLM<10 pack-years = 0.01; 95% CI: -0.03, 0.52), as well as a small positive association between radon and IPF (ERR/100 WLM = 0.06, 95% CI: 0.00, 0.24); these associations were driven by workers with prior employment in hard rock mining. CONCLUSIONS Uranium mining workers had excess NMRD mortality compared with the general population; this excess persisted throughout follow-up. Exposure-response analyses indicated a positive association between radon exposure and IPF and silicosis, but these analyses have limitations due to outcome misclassification and missing information on occupational co-exposures such as silica dust.
Collapse
Affiliation(s)
- Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Stephen Bertke
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Robert D Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | | |
Collapse
|
14
|
Zablotska LB, Richardson DB, Golden A, Pasqual E, Smith B, Rage E, Demers PA, Do M, Fenske N, Deffner V, Kreuzer M, Samet J, Bertke S, Kelly-Reif K, Schubauer-Berigan MK, Tomasek L, Wiggins C, Laurier D, Apostoaei I, Thomas BA, Simon SL, Hoffman FO, Boice JD, Dauer LT, Howard SC, Cohen SS, Mumma MT, Ellis ED, Eckerman KF, Leggett RW, Pawel DJ. The epidemiology of lung cancer following radiation exposure. Int J Radiat Biol 2022; 99:569-580. [PMID: 35947399 PMCID: PMC9943789 DOI: 10.1080/09553002.2022.2110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Lydia B Zablotska
- Department of Epidemiology & Biostatistics, School of Medicine, University of California, San Francisco, CA, USA
| | - David B. Richardson
- Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences University of California, Irvine, Irvine, CA, USA
| | - Ashley Golden
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Elisa Pasqual
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | | | - Estelle. Rage
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | | | - Minh Do
- Occupational Cancer Research Centre, Toronto, Canada
| | - Nora Fenske
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany
| | - Veronika Deffner
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection (BfS), Munich (Neuherberg), Germany
| | | | - Stephen Bertke
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | | | - Charles Wiggins
- University of New Mexico, Albuquerque, NM, USA
- New Mexico Tumor Registry, Albuquerque, NM, USA
| | - Dominque Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | | | - Brian A. Thomas
- Oak Ridge Center for Risk Analysis, Inc., Oak Ridge, TN, USA
| | - Steven L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - F. Owen Hoffman
- Oak Ridge Center for Risk Analysis, Inc., Oak Ridge, TN, USA
| | - John D. Boice
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- National Council on Radiation Protection and Measurements (NCRP), Bethesda, MD, USA
| | | | - Sara C. Howard
- Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kelly-Reif K, Bertke SJ, Samet J, Sood A, Schubauer-Berigan MK. Health burdens of uranium miners will extend beyond the radiation exposure compensation act deadline. Occup Environ Med 2022; 79:oemed-2022-108311. [PMID: 35501126 PMCID: PMC9209689 DOI: 10.1136/oemed-2022-108311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Kaitlin Kelly-Reif
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Stephen J Bertke
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Jonathan Samet
- Epidemiology Department, Colorado School of Public Health, Aurora, Colorado, USA
| | - Akshay Sood
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Mary K Schubauer-Berigan
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
16
|
Richardson DB, Rage E, Demers PA, Do MT, Fenske N, Deffner V, Kreuzer M, Samet J, Bertke SJ, Kelly-Reif K, Schubauer-Berigan MK, Tomasek L, Zablotska LB, Wiggins C, Laurier D. Lung Cancer and Radon: Pooled Analysis of Uranium Miners Hired in 1960 or Later. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:57010. [PMID: 35604341 PMCID: PMC9126132 DOI: 10.1289/ehp10669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND Despite reductions in exposure for workers and the general public, radon remains a leading cause of lung cancer. Prior studies of underground miners depended heavily upon information on deaths among miners employed in the early years of mine operations when exposures were high and tended to be poorly estimated. OBJECTIVES To strengthen the basis for radiation protection, we report on the follow-up of workers employed in the later periods of mine operations for whom we have more accurate exposure information and for whom exposures tended to be accrued at intensities that are more comparable to contemporary settings. METHODS We conducted a pooled analysis of cohort studies of lung cancer mortality among 57,873 male uranium miners in Canada, Czech Republic, France, Germany, and the United States, who were first employed in 1960 or later (thereby excluding miners employed during the periods of highest exposure and focusing on miners who tend to have higher quality assessments of radon progeny exposures). We derived estimates of excess relative rate per 100 working level months (ERR/100 WLM) for mortality from lung cancer. RESULTS The analysis included 1.9 million person-years of observation and 1,217 deaths due to lung cancer. The relative rate of lung cancer increased in a linear fashion with cumulative exposure to radon progeny (ERR/100 WLM = 1.33 ; 95% CI: 0.89, 1.88). The association was modified by attained age, age at exposure, and annual exposure rate; for attained ages < 55 y , the ERR/100 WLM was 8.38 (95% CI: 3.30, 18.99) among miners who were exposed at ≥ 35 years of age and at annual exposure rates of < 0.5 working levels. This association decreased with older attained ages, younger ages at exposure, and higher exposure rates. DISCUSSION Estimates of association between radon progeny exposure and lung cancer mortality among relatively contemporary miners are coherent with estimates used to inform current protection guidelines. https://doi.org/10.1289/EHP10669.
Collapse
Affiliation(s)
| | - Estelle Rage
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | | | - Minh T. Do
- Occupational Cancer Research Centre, Toronto, Canada
| | - Nora Fenske
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Veronika Deffner
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Munich (Neuherberg), Germany
| | | | - Stephen J. Bertke
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
| | - Mary K. Schubauer-Berigan
- National Institute for Occupational Safety and Health, Cincinnati, Ohio, USA
- International Agency for Research on Cancer, Lyon, France
| | | | | | - Charles Wiggins
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico Tumor Registry, Albuquerque, New Mexico, USA
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Wakeford R. Overview of epidemiological studies of nuclear workers: opportunities, expectations, and limitations . JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1075-1092. [PMID: 34161930 DOI: 10.1088/1361-6498/ac0df4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies of those exposed occupationally to ionising radiation offer an important opportunity to directly check the assumptions underlying the international system of radiological protection against low-level radiation exposures. Recent nuclear worker studies, notably the International Nuclear Workers Study (INWORKS) and studies of the Mayak workforce in Russia, provide powerful investigations of a wide range of cumulative photon doses received at a low dose-rate over protracted periods, and broadly confirm radiation-related excess risks of leukaemia and solid cancers at around the levels predicted by standard risk models derived mainly from the experience of the Japanese atomic-bomb survivors acutely exposed principally to gamma radiation. However, the slope of the dose-response for solid cancers expressed in terms of the excess relative risk per unit dose, ERR/Gy, differs between INWORKS and Mayak, such that when compared with the slope derived from the atomic-bomb survivors, INWORKS does not provide obvious support for the use in radiological protection of a dose and dose-rate effectiveness factor greater than one whereas the Mayak workforce apparently does. This difference could be a chance effect, but it could also point to potential problems with these worker studies. Of particular concern is the adequacy of recorded doses received in the early years of operations at older nuclear installations, such as the potential for 'missed' photon doses. A further issue is how baseline cancer rates may influence radiation-related excess risks. There is scope for a considerable increase in the statistical power of worker studies, with longer follow-up capturing more deaths and incident cases of cancer, and further workforces being included in collaborative studies, but the difficulties posed by dosimetry questions should not be ignored and need to be the subject of detailed scrutiny.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
18
|
Boice JD, Quinn B, Al-Nabulsi I, Ansari A, Blake PK, Blattnig SR, Caffrey EA, Cohen SS, Golden AP, Held KD, Jokisch DW, Leggett RW, Mumma MT, Samuels C, Till JE, Tolmachev SY, Yoder RC, Zhou JY, Dauer LT. A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. Int J Radiat Biol 2021; 98:795-821. [PMID: 34669549 PMCID: PMC10594603 DOI: 10.1080/09553002.2021.1988183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.
Collapse
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Quinn
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Armin Ansari
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Steve R. Blattnig
- National Aeronautics and Space Administration Langley Research Center, Hampton, VA, USA
| | - Emily A. Caffrey
- Radian Scientific, LLC, Huntsville, AL, and Risk Assessment Corporation, Neeses, SC, USA
| | - Sarah S. Cohen
- EpidStrategies, a division of ToxStrategies, Inc, Cary, NC, USA
| | | | - Kathryn D. Held
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Derek W. Jokisch
- Francis Marion University, Florence, SC, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Michael T. Mumma
- Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | | | | | | | | | - Joey Y. Zhou
- United States Department of Energy, Gaithersburg, MD, USA
| | | |
Collapse
|
19
|
Marsh JW, Tomášek L, Laurier D, Harrison JD. EFFECTIVE DOSE COEFFICIENTS FOR RADON AND PROGENY: A REVIEW OF ICRP AND UNSCEAR VALUES. RADIATION PROTECTION DOSIMETRY 2021; 195:1-20. [PMID: 34278430 DOI: 10.1093/rpd/ncab106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 05/27/2023]
Abstract
The International Commission on Radiological Protection (ICRP) publishes guidance on protection against radon exposure in homes and workplaces. ICRP Publication 137 recommends a dose coefficient of 3 mSv per mJ h m-3 (~10 mSv WLM-1) to be used in most circumstances of radon exposure, for workers in buildings and in underground mines. Recently, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reviewed radon epidemiology and dosimetry and concluded that its established dose coefficient of 1.6 mSv per mJ h m-3 (5.7 mSv WLM-1) should be retained for use in its comparisons of radiation exposures from different sources in a population. This paper explains and compares the reviews of the scientific evidence from UNSCEAR and ICRP. It is shown that the UNSCEAR and ICRP reviews are consistent and support the use of the ICRP reference dose coefficients for radiation protection purposes. It is concluded that the ICRP dose coefficient should be used to calculate doses to workers.
Collapse
Affiliation(s)
- James W Marsh
- Public Health England. Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon. OX11 0RQ, UK
| | | | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, 92262 Fontenay-aux-Roses Cedex, France
| | - John D Harrison
- Public Health England. Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon. OX11 0RQ, UK
- Oxford Brookes University, Faculty of Health and Life Sciences, Oxford OX3 0BP, UK
| |
Collapse
|
20
|
Harrison JD. Lung cancer risk and effective dose coefficients for radon: UNSCEAR review and ICRP conclusions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:433-441. [PMID: 33823504 DOI: 10.1088/1361-6498/abf547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has provided a detailed and authoritative update of its reviews of the epidemiology and dosimetry of radon and progeny. Lifetime risk of lung cancer calculated using data for several miner cohorts were 2.4-7.5 × 10-4per working level month (WLM) of radon-222 progeny exposure for a mixed male/female population and 3.0-9.6 × 10-4per WLM for a male population. Dosimetric models gave mean values of effective dose coefficients from radon-222 progeny of 12 mSv per WLM for mines, 16 mSv per WLM for indoor workplaces and 11 mSv per WLM for homes. The lifetime risk coefficient used by the International Commission on Radiological Protection (ICRP) is 5 × 10-4per WLM and it has recently recommended an effective dose coefficient for radon-222 and progeny of 3 mSv per mJ h m-3(about 10 mSv per WLM) for most circumstances of exposure. The ICRP risk and dose coefficients are supported by the UNSCEAR review and provide a clear and firm basis for current international advice and standards for protection from radon. Notwithstanding this evidence and the ICRP advice, UNSCEAR will continue to use a lower value of effective dose coefficient of 5.7 mSv per WLM for assessments of population exposures.
Collapse
Affiliation(s)
- J D Harrison
- Oxford Brookes University, Faculty of Health and Life Sciences, Oxford OX3 0BP, United Kingdom
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Didcot, Oxon OX11 0RQ, United Kingdom
| |
Collapse
|
21
|
Golden AP, Milder CM, Ellis ED, Anderson JL, Boice JD, Bertke SJ, Zablotska LB. Cohort profile: four early uranium processing facilities in the US and Canada. Int J Radiat Biol 2021; 97:833-847. [PMID: 33970767 PMCID: PMC10201456 DOI: 10.1080/09553002.2021.1917786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Pooling of individual-level data for workers involved in uranium refining and processing (excluding enrichment) may provide valuable insights into risks from occupational uranium and external ionizing radiation exposures. METHODS Data were pooled for workers from four uranium processing facilities (Fernald, Mallinckrodt and Middlesex from the U.S.; and Port Hope, Canada). Employment began as early as the 1930s and follow-up was as late as 2017. Workers were exposed to high concentrations of uranium, radium, and their decay products, as well as gamma radiation and ambient radon decay products. Exposure and outcome data were harmonized using similar definitions and dose reconstruction methods. Standardized mortality ratios (SMR) were estimated. RESULTS In total, 560 deaths from lung cancer, 503 non-malignant respiratory diseases, 67 renal diseases, 1,596 ischemic heart diseases, and 101 dementia and Alzheimer's disease (AD) were detected in the pooled cohort of over 12,400 workers (∼1,300 females). Mean cumulative doses were 45 millisievert for whole-body external ionizing radiation exposure and 172 milligray for lung dose from radon decay products. Only SMR for dementia and AD among males was statistically significant (SMR=1.29; 95% confidence interval: 1.04, 1.54). CONCLUSIONS This is the largest study to date to examine long-term health risks of uranium processing workers.
Collapse
Affiliation(s)
- Ashley P. Golden
- Oak Ridge Associated Universities, Health Studies Program, Oak Ridge, Tennessee
| | - Cato M. Milder
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Elizabeth D. Ellis
- Oak Ridge Associated Universities, Health Studies Program, Oak Ridge, Tennessee
| | - Jeri L. Anderson
- National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio
| | - John D. Boice
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
- National Council on Radiation Protection and Measurements (NCRP), Bethesda, Maryland
| | - Stephen J. Bertke
- National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16th Street, San Francisco, CA, U.S.A
| |
Collapse
|
22
|
Kreuzer M, Deffner V, Schnelzer M, Fenske N. Mortality in Underground Miners in a Former Uranium Ore Mine–Results of a Cohort Study Among Former Employees of Wismut AG in Saxony and Thuringia. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:41-48. [PMID: 33759743 PMCID: PMC8182779 DOI: 10.3238/arztebl.m2021.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND From 1946 to 1990, more than 400 000 people were employed by Wismut AG, a Soviet/Soviet-German corporation (German abbreviation: SAG/ SDAG), in the East German states of Saxony and Thuringia. In the early years in particular, employees were exposed to large amounts of radon and respirable crystalline silica. METHODS In a cohort of 35 204 former underground employees of Wismut AG, mortality was analyzed in comparison to the general male population of East Germany, and the pertaining standardized mortality ratios (SMRs) were calculated. RESULTS 18 510 persons in the study cohort died in the follow-up period 1960-2013. Mortality from lung cancer was 2.36 higher in the study cohort than in the general population (95% confidence interval, [2.28; 2.45]); the associated SMRs rose markedly with increasing radon exposure. Mortality from silicosis and other types of pneumoconiosis was elevated by a factor of 22.62 [21.20; 24.11], and the associated SMRs rose exponentially with increasing exposure to respirable crystalline silica. Mortality from both of these causes was still markedly elevated more than 20 years after Wismut AG had ceased its activities. Mortality from a wide range of other diseases was elevated as well, with the following SMRs: stomach cancer, 1.28 [1.17; 1.40]; liver cancer, 1.34 [1.15; 1.55]; all tumors other than lung cancer, 1.06 [1.02; 1.09]; infections, 1.18 [1.01; 1.38]; cerebrovascular diseases, 1.33 [1.26; 1.41]; and influenza/pneumonia, 1.13 [1.01; 1.27]. Mortality from a small number of other causes was found to be markedly lowered in the study cohort (mental illness, renal diseases, and nervous system diseases). The role of occupational risk factors, lifestyle differences and other reasons for the latter results is unclear. CONCLUSION Underground miners employed by Wismut AG displayed marked excess mortality due to silicosis/other pneumoconiosis and lung cancer. The contribution of individual occupational risk factors for these and other causes of death with increased SMR are being further investigated in analyses within the study cohort.
Collapse
Affiliation(s)
- Michaela Kreuzer
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Veronika Deffner
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Maria Schnelzer
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| | - Nora Fenske
- Department of Effects and Risks of Ionizing and Non-Ionizing Radiation, Federal Office for Radiation Protection, Neuherberg, Germany
| |
Collapse
|