1
|
Genchi VA, Cignarelli A, Sansone A, Yannas D, Dalla Valentina L, Renda Livraghi D, Spaggiari G, Santi D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024; 14:626. [PMID: 39590862 PMCID: PMC11596383 DOI: 10.3390/metabo14110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Purpose: Over the past 40-50 years, demographic shifts and the obesity epidemic have coincided with significant changes in lifestyle habits, including a rise in excessive alcohol consumption. This increase in alcohol intake is a major public health concern due to its far-reaching effects on human health, particularly on metabolic processes and male reproductive function. This narrative review focuses on the role of alcohol consumption in altering metabolism and impairing testicular function, emphasizing the potential damage associated with both acute and chronic alcohol intake. Conclusion: Chronic alcohol consumption has been shown to disrupt liver function, impair lipid metabolism, and dysregulate blood glucose levels, contributing to the development of obesity, metabolic syndrome, and related systemic diseases. In terms of male reproductive health, alcohol can significantly affect testicular function by lowering testosterone levels, reducing sperm quality, and impairing overall fertility. The extent of these effects varies, depending on the frequency, duration, and intensity of alcohol use, with chronic and abusive consumption posing greater risks. The complexity of alcohol's impact is further compounded by individual variability and the interaction with other lifestyle factors such as diet, stress, and physical activity. Despite growing concern, research on alcohol's effects remains inconclusive, with significant discrepancies across studies regarding the definition and reporting of alcohol consumption. These inconsistencies highlight the need for more rigorous, methodologically sound research to better understand how alcohol consumption influences metabolic and reproductive health. Ultimately, a clearer understanding is essential for developing targeted public health interventions, particularly in light of rising alcohol use, demographic changes, and the ongoing obesity crisis.
Collapse
Affiliation(s)
- Valentina Annamaria Genchi
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Angelo Cignarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitri Yannas
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Leonardo Dalla Valentina
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Renda Livraghi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
2
|
Wang T, Tyler RE, Ilaka O, Cooper D, Farokhnia M, Leggio L. The crosstalk between fibroblast growth factor 21 (FGF21) system and substance use. iScience 2024; 27:110389. [PMID: 39055947 PMCID: PMC11269927 DOI: 10.1016/j.isci.2024.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Existing literature indicates that communication between the central nervous system and the peripheral nervous system is disrupted by substance use disorders (SUDs), including alcohol use disorder (AUD). Fibroblast growth factor 21 (FGF21), a liver-brain axis hormone governing energy homeostasis, has been shown to modulate alcohol intake/preference and other substances. To further elucidate the relationship between FGF21, alcohol use, and other substance use, we conducted a scoping review to explore the association between FGF21 and SUDs. Increases in FGF21 reduce alcohol consumption while suppressing FGF21 increases alcohol consumption, demonstrating an inverse relationship. Alcohol elevates FGF21 levels primarily via the liver, subsequently promoting neuronal signals to curb alcohol intake. FGF21 activation engages molecular pathways that defend against alcohol-induced fat accumulation, oxidative stress, and inflammation. Considering the bidirectional association between FGF21 and alcohol, further studies on the FGF21 system as a potential pharmacotherapy for AUD and alcohol-associated liver disease are warranted.
Collapse
Affiliation(s)
- Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Frank H. Netter MD School of Medicine at Quinnipiac University, North Haven, CT, USA
| | - Ryan E. Tyler
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Oyenike Ilaka
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Albany Medical College, Albany, NY, USA
| | - Diane Cooper
- National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Özkan-Kotiloğlu S, Kaya-Akyüzlü D, Güven E, Doğan Ö, Ağtaş-Ertan E, Özgür-İlhan İ. A case control study investigating the methylation levels of GHRL and GHSR genes in alcohol use disorder. Mol Biol Rep 2024; 51:663. [PMID: 38771494 DOI: 10.1007/s11033-024-09585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a relapsing disease described as excessive use of alcohol. Evidence of the role of DNA methylation in addiction is accumulating. Ghrelin is an important peptide known as appetite hormone and its role in addictive behavior has been identified. Here we aimed to determine the methylation levels of two crucial genes (GHRL and GHSR) in ghrelin signaling and further investigate the association between methylation ratios and plasma ghrelin levels. METHODS Individuals diagnosed with (n = 71) and without (n = 82) AUD were recruited in this study. DNA methylation levels were measured through methylation-sensitive high-resolution melting (MS-HRM). Acylated ghrelin levels were detected by ELISA. The GHRL rs696217 polymorphism was analyzed by the standard PCR-RFLP method. RESULTS GHRL was significantly hypermethylated (P < 0.0022) in AUD between 25 and 50% methylation than in control subjects but no significant changes of GHSR methylation were observed. Moreover, GHRL showed significant positive correlation of methylation ratio between 25 and 50% with age. A significant positive correlation between GHSR methylation and ghrelin levels in the AUD group was determined (P = 0.037). The level of GHRL methylation and the ghrelin levels showed a significant association in the control subjects (P = 0.042). CONCLUSION GHSR and GHRL methylation levels did not change significantly between control and AUD groups. However, GHRL and GHSR methylations seemed to have associations with plasma ghrelin levels in two groups. This is the first study investigating the DNA methylation of GHRL and GHSR genes in AUD.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Türkiye.
| | | | - Emine Güven
- Department of Biomedical Engineering, Faculty of Engineering, Düzce University, Düzce, Türkiye
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, USA
| | - Özlem Doğan
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Ece Ağtaş-Ertan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - İnci Özgür-İlhan
- Department of Mental Health and Diseases, Faculty of Medicine, Ankara University, Ankara, Türkiye
| |
Collapse
|
4
|
Li X, Shi Z, Todaro DR, Pond T, Byanyima JI, Vesslee SA, Reddy R, Nanga RPR, Kass G, Ramchandani V, Kranzler HR, Vendruscolo JCM, Vendruscolo LF, Wiers CE. Ketone Supplementation Dampens Subjective and Objective Responses to Alcohol: Evidence From a Preclinical Rat Study and a Randomized, Cross-Over Trial in Healthy Volunteers. Int J Neuropsychopharmacol 2024; 27:pyae009. [PMID: 38315678 PMCID: PMC10901540 DOI: 10.1093/ijnp/pyae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Previous preclinical and human studies have shown that a high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. METHODS In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-β-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 minutes before an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 minutes after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 minutes later by an oral alcohol dose (0.8 g/kg). BAL was monitored for 240 minutes after alcohol exposure. RESULTS In humans, the intake of KS before alcohol significantly blunted breath alcohol concentration and BAL, reduced ratings of alcohol liking and wanting more, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. CONCLUSION KS altered physiological and subjective responses to alcohol in both humans and rats, and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating effects of alcohol.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dustin R Todaro
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Timothy Pond
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Juliana I Byanyima
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sianneh A Vesslee
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rishika Reddy
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ravi Prakash Reddy Nanga
- University of Pennsylvania Perelman School of Medicine, Department of Radiology, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Vijay Ramchandani
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Leandro F Vendruscolo
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Corinde E Wiers
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Pince CL, Whiting KE, Wang T, Lékó AH, Farinelli LA, Cooper D, Farokhnia M, Vendruscolo LF, Leggio L. Role of aldosterone and mineralocorticoid receptor (MR) in addiction: A scoping review. Neurosci Biobehav Rev 2023; 154:105427. [PMID: 37858908 PMCID: PMC10865927 DOI: 10.1016/j.neubiorev.2023.105427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Preclinical and human studies suggest a role of aldosterone and mineralocorticoid receptor (MR) in addiction. This scoping review aimed to summarize (1) the relationship between alcohol and other substance use disorders (ASUDs) and dysfunctions of the aldosterone and MR, and (2) how pharmacological manipulations of MR may affect ASUD-related outcomes. Our search in four databases (MEDLINE, Embase, Web of Science, and Cochrane Library) indicated that most studies focused on the relationship between aldosterone, MR, and alcohol (n = 30), with the rest focused on opioids (n = 5), nicotine (n = 9), and other addictive substances (n = 9). Despite some inconsistencies, the overall results suggest peripheral and central dysregulations of aldosterone and MR in several species and that these dysregulations depended on the pattern of drug exposure and genetic factors. We conclude that MR antagonism may be a promising target in ASUD, yet future studies are warranted.
Collapse
Affiliation(s)
- Claire L Pince
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Tammy Wang
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA; Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa A Farinelli
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Diane Cooper
- Office of Research Services, Division of Library Services, National Institutes of Health, Building 10, Bethesda, MD 20892, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Li X, Shi Z, Todaro D, Pond T, Byanyima J, Vesslee S, Reddy R, Reddy Nanga RP, Kass G, Ramchandani V, Kranzler HR, Vendruscolo JCM, Vendruscolo LF, Wiers CE. Ketone supplementation dampens subjective and objective responses to alcohol in rats and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.558269. [PMID: 37790364 PMCID: PMC10542198 DOI: 10.1101/2023.09.23.558269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Previous preclinical and human studies have shown that high-fat ketogenic diet and ketone supplements (KS) are efficacious in reducing alcohol craving, alcohol consumption, and signs of alcohol withdrawal. However, the effects of KS on alcohol sensitivity are unknown. In this single-blind, cross-over study, 10 healthy participants (3 females) were administered a single, oral dose of a KS (25 g of ketones from D-β-hydroxybutyric acid and R-1,3-butanediol) or placebo 30 min prior to an oral alcohol dose (0.25 g/kg for women; 0.31 g/kg for men). Assessments of breath alcohol concentration (BrAC) and blood alcohol levels (BAL) and responses on the Drug Effect Questionnaire were repeatedly obtained over 180 min after alcohol consumption. In a parallel preclinical study, 8 Wistar rats (4 females) received an oral gavage of KS (0.42 g ketones/kg), water, or the sweetener allulose (0.58 g/kg) followed 15 min later by an oral alcohol dose (0.8 g/kg). BAL were monitored for 240 min after alcohol exposure. In humans, the intake of KS prior to alcohol significantly blunted BrAC and BAL, reduced ratings of alcohol liking and wanting, and increased disliking for alcohol. In rats, KS reduced BAL more than either allulose or water. In conclusion, KS altered physiological and subjective responses to alcohol in both humans and rats and the effects were likely not mediated by the sweetener allulose present in the KS drink. Therefore, KS could potentially reduce the intoxicating and rewarding effects of alcohol and thus be a novel intervention for treating alcohol use disorder.
Collapse
|
7
|
Li Q, Wang O, Ji B, Zhao L, Zhao L. Alcohol, White Adipose Tissue, and Brown Adipose Tissue: Mechanistic Links to Lipogenesis and Lipolysis. Nutrients 2023; 15:2953. [PMID: 37447280 PMCID: PMC10346806 DOI: 10.3390/nu15132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
According to data from the World Health Organization, there were about 3 million deaths caused by alcohol consumption worldwide in 2016, of which about 50% were related to liver disease. Alcohol consumption interfering with the normal function of adipocytes has an important impact on the pathogenesis of alcoholic liver disease. There has been increasing recognition of the crucial role of adipose tissue in regulating systemic metabolism, far beyond that of an inert energy storage organ in recent years. The endocrine function of adipose tissue is widely recognized, and the significance of the proteins it produces and releases is still being investigated. Alcohol consumption may affect white adipose tissue (WAT) and brown adipose tissue (BAT), which interact with surrounding tissues such as the liver and intestines. This review briefly introduces the basic concept and classification of adipose tissue and summarizes the mechanism of alcohol affecting lipolysis and lipogenesis in WAT and BAT. The adipose tissue-liver axis is crucial in maintaining lipid homeostasis within the body. Therefore, this review also demonstrates the effects of alcohol consumption on the adipose tissue-liver axis to explore the role of alcohol consumption in the crosstalk between adipose tissue and the liver.
Collapse
Affiliation(s)
- Qing Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China;
| | - Lei Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Pierce MR, Hougland JL. A rising tide lifts all MBOATs: recent progress in structural and functional understanding of membrane bound O-acyltransferases. Front Physiol 2023; 14:1167873. [PMID: 37250116 PMCID: PMC10213974 DOI: 10.3389/fphys.2023.1167873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Acylation modifications play a central role in biological and physiological processes. Across a range of biomolecules from phospholipids to triglycerides to proteins, introduction of a hydrophobic acyl chain can dramatically alter the biological function and cellular localization of these substrates. Amongst the enzymes catalyzing these modifications, the membrane bound O-acyltransferase (MBOAT) family occupies an intriguing position as the combined substrate selectivities of the various family members span all three classes of these biomolecules. MBOAT-dependent substrates are linked to a wide range of health conditions including metabolic disease, cancer, and neurodegenerative disease. Like many integral membrane proteins, these enzymes have presented challenges to investigation due to their intractability to solubilization and purification. However, over the last several years new solubilization approaches coupled with computational modeling, crystallography, and cryoelectron microscopy have brought an explosion of structural information for multiple MBOAT family members. These studies enable comparison of MBOAT structure and function across members catalyzing modifications of all three substrate classes, revealing both conserved features amongst all MBOATs and distinct architectural features that correlate with different acylation substrates ranging from lipids to proteins. We discuss the methods that led to this renaissance of MBOAT structural investigations, our new understanding of MBOAT structure and implications for catalytic function, and the potential impact of these studies for development of new therapeutics targeting MBOAT-dependent physiological processes.
Collapse
Affiliation(s)
- Mariah R. Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
| | - James L. Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY, United States
- Department of Biology, Syracuse University, Syracuse, NY, United States
- BioInspired Syracuse, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
9
|
Involvement of the ghrelin system in the maintenance and reinstatement of cocaine-motivated behaviors: a role of adrenergic action at peripheral β1 receptors. Neuropsychopharmacology 2022; 47:1449-1460. [PMID: 34923576 PMCID: PMC9206024 DOI: 10.1038/s41386-021-01249-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
Cocaine addiction is a significant medical and public concern. Despite decades of research effort, development of pharmacotherapy for cocaine use disorder remains largely unsuccessful. This may be partially due to insufficient understanding of the complex biological mechanisms involved in the pathophysiology of this disorder. In the present study, we show that: (1) elevation of ghrelin by cocaine plays a critical role in maintenance of cocaine self-administration and cocaine-seeking motivated by cocaine-conditioned stimuli; (2) acquisition of cocaine-taking behavior is associated with the acquisition of stimulatory effects of cocaine by cocaine-conditioned stimuli on ghrelin secretion, and with an upregulation of ghrelin receptor mRNA levels in the ventral tegmental area (VTA); (3) blockade of ghrelin signaling by pretreatment with JMV2959, a selective ghrelin receptor antagonist, dose-dependently inhibits reinstatement of cocaine-seeking triggered by either cocaine or yohimbine in behaviorally extinguished animals with a history of cocaine self-administration; (4) JMV2959 pretreatment also inhibits brain stimulation reward (BSR) and cocaine-potentiated BSR maintained by optogenetic stimulation of VTA dopamine neurons in DAT-Cre mice; (5) blockade of peripheral adrenergic β1 receptors by atenolol potently attenuates the elevation in circulating ghrelin induced by cocaine and inhibits cocaine self-administration and cocaine reinstatement triggered by cocaine. These findings demonstrate that the endogenous ghrelin system plays an important role in cocaine-related addictive behaviors and suggest that manipulating and targeting this system may be viable for mitigating cocaine use disorder.
Collapse
|
10
|
Perelló M, Cornejo MP, De Francesco PN, Fernandez G, Gautron L, Valdivia LS. The controversial role of the vagus nerve in mediating ghrelin´s actions: gut feelings and beyond. IBRO Neurosci Rep 2022; 12:228-239. [PMID: 35746965 PMCID: PMC9210457 DOI: 10.1016/j.ibneur.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/26/2022] Open
Abstract
Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.
Collapse
|
11
|
Kärkkäinen O, Farokhnia M, Klåvus A, Auriola S, Lehtonen M, Deschaine SL, Piacentino D, Abshire KM, Jackson SN, Leggio L. Effect of intravenous ghrelin administration, combined with alcohol, on circulating metabolome in heavy drinking individuals with alcohol use disorder. Alcohol Clin Exp Res 2021; 45:2207-2216. [PMID: 34590334 PMCID: PMC8642277 DOI: 10.1111/acer.14719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD). METHODS We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments. During each session, participants received a loading dose (3 µg/kg) followed by continuous infusion (16.9 ng/kg/min) of acyl ghrelin or placebo. The first experiment included an IV alcohol self-administration (IV-ASA) session and the second experiment included an IV alcohol clamp (IV-AC) session, both with the counterbalanced infusion of ghrelin or placebo. Serum metabolite profiles were analyzed from repeated blood samples collected during each session. RESULTS In both experiments, ghrelin infusion was associated with an altered serum metabolite profile, including significantly increased levels of cortisol (IV-ASA q-value = 0.0003 and IV-AC q < 0.0001), corticosterone (IV-ASA q = 0.0202 and IV-AC q < 0.0001), and glycochenodeoxycholic acid (IV-ASA q = 0.0375 and IV-AC q = 0.0013). In the IV-ASA experiment, ghrelin infusion increased levels of cortisone (q = 0.0352) and fatty acids 18:1 (q = 0.0406) and 18:3 (q = 0.0320). Moreover, in the IV-AC experiment, ghrelin infusion significantly increased levels of glycocholic acid (q < 0.0001) and phenylalanine (q = 0.0458). CONCLUSION IV ghrelin infusion, combined with IV alcohol administration, was associated with increases in the circulating metabolite levels of corticosteroids and glycine-conjugated bile acids, among other changes. Further research is needed to understand the role that metabolomic changes play in the complex interaction between ghrelin and alcohol.
Collapse
Affiliation(s)
- Olli Kärkkäinen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Daria Piacentino
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
| | - Kelly M. Abshire
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
| | - Shelley N. Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, Baltimore and Bethesda, Maryland, USA
- Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
12
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
13
|
Birková A, Hubková B, Čižmárová B, Bolerázska B. Current View on the Mechanisms of Alcohol-Mediated Toxicity. Int J Mol Sci 2021; 22:9686. [PMID: 34575850 PMCID: PMC8472195 DOI: 10.3390/ijms22189686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Alcohol is a psychoactive substance that is widely used and, unfortunately, often abused. In addition to acute effects such as intoxication, it may cause many chronic pathological conditions. Some of the effects are very well described and explained, but there are still gaps in the explanation of empirically co-founded dysfunction in many alcohol-related conditions. This work focuses on reviewing actual knowledge about the toxic effects of ethanol and its degradation products.
Collapse
Affiliation(s)
- Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Čižmárová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| | - Beáta Bolerázska
- 1st Department of Stomatology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, 04011 Kosice, Slovakia
| |
Collapse
|
14
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|