1
|
Lim TV, Cardinal RN, Ziauddeen H, Regenthal R, Sahakian BJ, Robbins TW, Ersche KD. Atomoxetine Reduces Decisional Impulsivity in Human Cocaine Addiction. Biol Psychiatry 2024:S0006-3223(24)01708-6. [PMID: 39481776 DOI: 10.1016/j.biopsych.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Impulsivity is a well-known determinant of maladaptive behavior in cocaine use disorder (CUD), but there are currently no effective strategies for managing excessive impulsivity. Growing evidence from preclinical and clinical studies suggests that atomoxetine, a selective noradrenaline reuptake inhibitor, is effective in improving impulse control in both healthy individuals and individuals with neuropsychiatric conditions. METHODS We investigated the effects of atomoxetine on decisional impulsivity in patients with CUD. In a randomized, double-blind, placebo-controlled, crossover study, 28 patients diagnosed with moderate-to-severe CUD and 28 matched healthy control participants completed the Cambridge Gambling Task in 2 separate sessions, where they received either placebo or a single dose of 40 mg atomoxetine at each session. Computational modeling was used to break down decision making into 3 separable components: value, probability, and decisional impulsivity. RESULTS Our analyses revealed that patients with CUD were impaired in all components of decision making. Atomoxetine selectively reduced decisional impulsivity in patients with CUD by reducing their risk-seeking tendencies while enhancing their ability to tolerate delays. By contrast, atomoxetine did not affect impulsivity in control participants, but increased their sensitivity to prospective losses. CONCLUSIONS Taken together, our findings support the hypothesis of noradrenergic dysfunction in patients with CUD and provide novel translational evidence for the efficacy of atomoxetine in remediating decisional impulsivity in CUD.
Collapse
Affiliation(s)
- Tsen Vei Lim
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Liaison Psychiatry Service, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Hisham Ziauddeen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Mental Health Service, Fiona Stanley and Fremantle Hospital Group, Perth, Western Australia
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, University of Heidelberg, Central Institute of Mental Health, Mannheim, Germany.
| |
Collapse
|
2
|
Nestor LJ, Vei Lim T, Robbins TW, Ersche KD. Reduced brain connectivity underlying value-based choices and outcomes in stimulant use disorder. Neuroimage Clin 2024; 44:103676. [PMID: 39357470 PMCID: PMC11474215 DOI: 10.1016/j.nicl.2024.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Patients with stimulant use disorder (SUD) show impairments when making value-based choices that are associated with disruptions in neural processing across brain networks. Making optimal choices requires learning from outcomes to update knowledge and further optimise ongoing behaviour. The optimal functioning of neural systems that underpin the ability to make favourable choices is an essential component for life functioning, and successful recovery in patients with SUD. Therefore, we sought to investigate the neural processes that underpin value-based choices in SUD patients. We hypothesise that patients with SUD have reduced functional connectivity while making financial choices during a probabilistic reinforcement learning task. METHODS We investigated connectivity associated with loss and reward value-based choices and their outcomes in patients with SUD and healthy control participants during a pharmacological magnetic resonance imaging study. Participants received a single dose of a dopamine receptor agonist, pramipexole, and a dopamine receptor antagonist, amisulpride, in a randomised, double-blind, placebo-controlled, balanced, crossover design. Functional task-related connectivity was analysed taking a whole brain connectomics approach to identify networks that are differentially modulated by dopaminergic receptor functioning. RESULTS SUD patients showed widespread reductions in connectivity during both reward and loss value-based choices and outcomes, which were negatively correlated with the duration of stimulant drug use. Disturbances to functional brain connectivity in SUD patients during task performance were not modulated acutely by either amisulpride or pramipexole. CONCLUSIONS Reductions in brain connectivity, particularly when making value-based choices and processing outcomes, may underlie learning impairments in SUD patients. Given that acute dopaminergic modulation did not improve brain connectivity impairments in SUD patients, it is likely that alternative treatments are needed.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Tsen Vei Lim
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
McNally GP, Jean-Richard-Dit-Bressel P. A Cognitive Pathway to Persistent, Maladaptive Choice. Eur Addict Res 2024; 30:233-242. [PMID: 38865985 DOI: 10.1159/000538103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Correctly recognising that alcohol or other substances are causing problems is a necessary condition for those problems to spur beneficial behaviour change. Yet such recognition is neither immediate nor straightforward. Recognition that one's alcohol or drug use is causing negative consequences often occurs gradually. Contemporary addiction neuroscience has yet to make progress in understanding and addressing these recognition barriers, despite evidence that a lack of problem recognition is a primary impediment to seeking treatment. SUMMARY Based on our recent empirical work, this article shows how recognition barriers can emerge from dual constraints on how we learn about the negative consequences of our actions. One constraint is imposed by the characteristics of negative consequences themselves. A second constraint is imposed by the characteristics of human cognition and information processing. In some people, the joint action of these constraints causes a lack of correct awareness of the consequences of their behaviour and reduced willingness to update that knowledge and behaviour when confronted with counterevidence. KEY MESSAGES This "cognitive pathway" can drive persistent, maladaptive choice.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, UNSW, Sydney, New South Wales, Australia
| | | |
Collapse
|
4
|
Nishio M, Kondo M, Yoshida E, Matsuzaki M. Medial prefrontal cortex suppresses reward-seeking behavior with risk of punishment by reducing sensitivity to reward. Front Neurosci 2024; 18:1412509. [PMID: 38903603 PMCID: PMC11188571 DOI: 10.3389/fnins.2024.1412509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Reward-seeking behavior is frequently associated with risk of punishment. There are two types of punishment: positive punishment, which is defined as addition of an aversive stimulus, and negative punishment, involves the omission of a rewarding outcome. Although the medial prefrontal cortex (mPFC) is important in avoiding punishment, whether it is important for avoiding both positive and negative punishment and how it contributes to such avoidance are not clear. In this study, we trained male mice to perform decision-making tasks under the risks of positive (air-puff stimulus) and negative (reward omission) punishment, and modeled their behavior with reinforcement learning. Following the training, we pharmacologically inhibited the mPFC. We found that pharmacological inactivation of mPFC enhanced the reward-seeking choice under the risk of positive, but not negative, punishment. In reinforcement learning models, this behavioral change was well-explained as an increase in sensitivity to reward, rather than a decrease in the strength of aversion to punishment. Our results suggest that mPFC suppresses reward-seeking behavior by reducing sensitivity to reward under the risk of positive punishment.
Collapse
Affiliation(s)
- Monami Nishio
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eriko Yoshida
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
- Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
5
|
Ghaderi S, Amani Rad J, Hemami M, Khosrowabadi R. Dysfunctional feedback processing in male methamphetamine abusers: Evidence from neurophysiological and computational approaches. Neuropsychologia 2024; 197:108847. [PMID: 38460774 DOI: 10.1016/j.neuropsychologia.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/24/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Methamphetamine use disorder (MUD) as a major public health risk is associated with dysfunctional neural feedback processing. Although dysfunctional feedback processing in people who are substance dependent has been explored in several behavioral, computational, and electrocortical studies, this mechanism in MUDs requires to be well understood. Furthermore, the current understanding of latent components of their behavior such as learning speed and exploration-exploitation dilemma is still limited. In addition, the association between the latent cognitive components and the related neural mechanisms also needs to be explored. Therefore, in this study, the underlying neurocognitive mechanisms of feedback processing of such impairment, and age/gender-matched healthy controls are evaluated within a probabilistic learning task with rewards and punishments. Mathematical modeling results based on the Q-learning paradigm suggested that MUDs show less sensitivity in distinguishing optimal options. Additionally, it may be worth noting that MUDs exhibited a slight decrease in their ability to learn from negative feedback compared to healthy controls. Also through the lens of underlying neural mechanisms, MUDs showed lower theta power at the medial-frontal areas while responding to negative feedback. However, other EEG measures of reinforcement learning including feedback-related negativity, parietal-P300, and activity flow from the medial frontal to lateral prefrontal regions, remained intact in MUDs. On the other hand, the elimination of the linkage between value sensitivity and medial-frontal theta activity in MUDs was observed. The observed dysfunction could be due to the adverse effects of methamphetamine on the cortico-striatal dopamine circuit, which is reflected in the anterior cingulate cortex activity as the most likely region responsible for efficient behavior adjustment. These findings could help us to pave the way toward tailored therapeutic approaches.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Jamal Amani Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Hemami
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
6
|
Zühlsdorff K, Verdejo-Román J, Clark L, Albein-Urios N, Soriano-Mas C, Cardinal RN, Robbins TW, Dalley JW, Verdejo-García A, Kanen JW. Computational modelling of reinforcement learning and functional neuroimaging of probabilistic reversal for dissociating compulsive behaviours in gambling and cocaine use disorders. BJPsych Open 2023; 10:e8. [PMID: 38073280 PMCID: PMC10755559 DOI: 10.1192/bjo.2023.611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Individuals with cocaine use disorder or gambling disorder demonstrate impairments in cognitive flexibility: the ability to adapt to changes in the environment. Flexibility is commonly assessed in a laboratory setting using probabilistic reversal learning, which involves reinforcement learning, the process by which feedback from the environment is used to adjust behavior. AIMS It is poorly understood whether impairments in flexibility differ between individuals with cocaine use and gambling disorders, and how this is instantiated by the brain. We applied computational modelling methods to gain a deeper mechanistic explanation of the latent processes underlying cognitive flexibility across two disorders of compulsivity. METHOD We present a re-analysis of probabilistic reversal data from individuals with either gambling disorder (n = 18) or cocaine use disorder (n = 20) and control participants (n = 18), using a hierarchical Bayesian approach. Furthermore, we relate behavioural findings to their underlying neural substrates through an analysis of task-based functional magnetic resonanceimaging (fMRI) data. RESULTS We observed lower 'stimulus stickiness' in gambling disorder, and report differences in tracking expected values in individuals with gambling disorder compared to controls, with greater activity during reward expected value tracking in the cingulate gyrus and amygdala. In cocaine use disorder, we observed lower responses to positive punishment prediction errors and greater activity following negative punishment prediction errors in the superior frontal gyrus compared to controls. CONCLUSIONS Using a computational approach, we show that individuals with gambling disorder and cocaine use disorder differed in their perseverative tendencies and in how they tracked value neurally, which has implications for psychiatric classification.
Collapse
Affiliation(s)
- Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; and the Alan Turing Institute, London, UK
| | - Juan Verdejo-Román
- Department of Personality, Assessment and Psychological Treatment, Universidad de Granada, Spain; and Mind, Brain and Behavior Research Center, Universidad de Granada, Spain
| | - Luke Clark
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | | | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge Biomedical Research Institute-IDIBELL, Spain; Department of Social Psychology and Quantitative Psychology, University of Barcelona, Spain; and CIBERSAM, Carlos III Health Institute, Madrid, Spain
| | - Rudolf N. Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; Department of Psychiatry, University of Cambridge, UK; and Liaison Psychology, Cambridgeshire and Peterborough NHS Foundation Trust, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, UK; and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; and Department of Psychiatry, University of Cambridge, UK
| | - Antonio Verdejo-García
- School of Psychological Sciences, Monash University, Australia; and Turner Institute for Brain and Mental Health, Monash University, Australia
| | - Jonathan W. Kanen
- Department of Psychology, University of Cambridge, UK; and Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
| |
Collapse
|
7
|
Pinto SR, Uchida N. Tonic dopamine and biases in value learning linked through a biologically inspired reinforcement learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566580. [PMID: 38014087 PMCID: PMC10680794 DOI: 10.1101/2023.11.10.566580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A hallmark of various psychiatric disorders is biased future predictions. Here we examined the mechanisms for biased value learning using reinforcement learning models incorporating recent findings on synaptic plasticity and opponent circuit mechanisms in the basal ganglia. We show that variations in tonic dopamine can alter the balance between learning from positive and negative reward prediction errors, leading to biased value predictions. This bias arises from the sigmoidal shapes of the dose-occupancy curves and distinct affinities of D1- and D2-type dopamine receptors: changes in tonic dopamine differentially alters the slope of the dose-occupancy curves of these receptors, thus sensitivities, at baseline dopamine concentrations. We show that this mechanism can explain biased value learning in both mice and humans and may also contribute to symptoms observed in psychiatric disorders. Our model provides a foundation for understanding the basal ganglia circuit and underscores the significance of tonic dopamine in modulating learning processes.
Collapse
Affiliation(s)
- Sandra Romero Pinto
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Program in Speech and Hearing Bioscience and Technology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Naoshige Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Dong X, Zhornitsky S, Wang W, Le TM, Chen Y, Chaudhary S, Li CSR, Zhang S. Resting-State Functional Connectivity of the Dorsal and Ventral Striatum, Impulsivity, and Severity of Use in Recently Abstinent Cocaine-Dependent Individuals. Int J Neuropsychopharmacol 2023; 26:627-638. [PMID: 37579016 PMCID: PMC10519818 DOI: 10.1093/ijnp/pyac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Previous studies have focused on both ventral striatum (VS) and dorsal striatum (DS) in characterizing dopaminergic deficits in addiction. Animal studies suggest VS and DS dysfunction each in association with impulsive and compulsive cocaine use during early and later stages of addiction. However, few human studies have aimed to distinguish the roles of VS and DS dysfunction in cocaine misuse. METHODS We examined VS and DS resting-state functional connectivity (rsFC) of 122 recently abstinent cocaine-dependent individuals (CDs) and 122 healthy controls (HCs) in 2 separate cohorts. We followed published routines in imaging data analyses and evaluated the results at a corrected threshold with age, sex, years of drinking, and smoking accounted for. RESULTS CDs relative to HCs showed higher VS rsFC with the left inferior frontal cortex (IFC), lower VS rsFC with the hippocampus, and higher DS rsFC with the left orbitofrontal cortex. Region-of-interest analyses confirmed the findings in the 2 cohorts examined separately. In CDs, VS-left IFC and VS-hippocampus connectivity was positively and negatively correlated with average monthly cocaine use in the prior year, respectively. In the second cohort where participants were assessed with the Barratt Impulsivity Scale (BIS-11), VS-left IFC and VS-hippocampus connectivity was also positively and negatively correlated with BIS-11 scores in CDs. In contrast, DS-orbitofrontal cortex connectivity did not relate significantly to cocaine use metrics or BIS-11 scores. CONCLUSION These findings associate VS rsFC with impulsivity and the severity of recent cocaine use. How DS connectivity partakes in cocaine misuse remains to be investigated.
Collapse
Affiliation(s)
- Xue Dong
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychology, Youth Mental Health Education Center, Shaanxi University of Science & Technology, Xian, Shaanxi, China
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Groman SM, Thompson SL, Lee D, Taylor JR. Reinforcement learning detuned in addiction: integrative and translational approaches. Trends Neurosci 2022; 45:96-105. [PMID: 34920884 PMCID: PMC8770604 DOI: 10.1016/j.tins.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Suboptimal decision-making strategies have been proposed to contribute to the pathophysiology of addiction. Decision-making, however, arises from a collection of computational components that can independently influence behavior. Disruptions in these different components can lead to decision-making deficits that appear similar behaviorally, but differ at the computational, and likely the neurobiological, level. Here, we discuss recent studies that have used computational approaches to investigate the decision-making processes underlying addiction. Studies in animal models have found that value updating following positive, but not negative, outcomes is predictive of drug use, whereas value updating following negative, but not positive, outcomes is disrupted following drug self-administration. We contextualize these findings with studies on the circuit and biological mechanisms of decision-making to develop a framework for revealing the biobehavioral mechanisms of addiction.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Neuroscience, University of Minnesota,Department of Psychiatry, Yale University,Correspondence to be directed to: Stephanie Groman, 321 Church Street SE, 4-125 Jackson Hall Minneapolis MN 55455,
| | | | - Daeyeol Lee
- The Zanvyl Krieger Mind/Brain Institute, The Solomon H Snyder Department of Neuroscience, Department of Psychological and Brain Sciences, Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - Jane R. Taylor
- Department of Psychiatry, Yale University,Department of Neuroscience, Yale University,Department of Psychology, Yale University
| |
Collapse
|
10
|
Noworyta K, Cieslik A, Rygula R. Neuromolecular Underpinnings of Negative Cognitive Bias in Depression. Cells 2021; 10:cells10113157. [PMID: 34831380 PMCID: PMC8621066 DOI: 10.3390/cells10113157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
This selective review aims to summarize the recent advances in understanding the neuromolecular underpinnings of biased cognition in depressive disorder. We begin by considering the cognitive correlates of depressed mood and the key brain systems implicated in its development. We then review the core findings across two domains of biased cognitive function in depression: pessimistic judgment bias and abnormal response to negative feedback. In considering their underlying substrates, we focus on the neurochemical mechanisms identified by genetic, molecular and pharmacological challenge studies. We conclude by discussing experimental approaches to the treatment of depression, which are derived largely from an improved understanding of its cognitive substrates.
Collapse
|