1
|
Guo T, Chen L, Luan L, Yang M, Zhang X, Yang H. Variations in inflammatory regulators in male patients with chronic schizophrenia associated with psychopathology and cognitive deficits. BMC Psychiatry 2024; 24:811. [PMID: 39548412 PMCID: PMC11566147 DOI: 10.1186/s12888-024-06288-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Immune dysregulation has been identified as a contributing factor in the pathophysiology of schizophrenia. This study aimed to investigate variations in specific immune regulators and their correlation with psychopathology and cognitive functions in male patients with chronic schizophrenia. METHODS Employing a cross-sectional design, this study included 72 male patients with chronic schizophrenia. The Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status were utilized to assess psychopathology and cognitive functions, respectively. RESULTS Serum levels of interleukin (IL)-4, IL-10, IL-12p40, IL-13, and monocyte chemoattractant protein-1 (MCP-1) were measured. There were significantly increased levels of IL-4, IL-13, and MCP-1, alongside decreased levels of IL-10 in patients compared to controls (all P < 0.05). IL-4 levels showed a significant negative association with PANSS positive symptoms (beta=-0.222, P = 0.042). After controlling for antipsychotic medication, BMI, and smoking, this correlation was no longer significant (r=-0.232, P = 0.055). Additionally, positive correlations of IL-4 (beta = 0.297, P = 0.008), IL-13 (beta = 0.371, P = 0.001), and MCP-1 (beta = 0.280, P = 0.013) with language scores were observed. Increased levels of IL-4 (P = 0.044, OR = 1.994), IL-13 (P = 0.019, OR = 2.245), as well as IL-4 and MCP-1 interactions (P = 0.043, OR = 2.000) were positively associated with the risk of chronic schizophrenia, while lower levels of IL-10 (P = 0.003, OR = 0.2.867) were also linked to an increased risk. CONCLUSION The identified associations between specific immune markers and the clinical and cognitive features of chronic schizophrenia in males underscored the potential immune-mediated mechanisms underlying schizophrenia.
Collapse
Affiliation(s)
- Tianming Guo
- Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Lihua Chen
- Medical College of Soochow University, Suzhou, 215137, PR China
| | - Lingshu Luan
- Xuzhou Medical University, Xuzhou, 221004, PR China
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, No. 316, Jiefangdong Road, Lianyungang, Jiangsu, 222003, PR China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, No. 316, Jiefangdong Road, Lianyungang, Jiangsu, 222003, PR China
| | - Xiaobin Zhang
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, No. 316, Jiefangdong Road, Lianyungang, Jiangsu, 222003, PR China.
- Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| |
Collapse
|
2
|
Huang L, Mut-Arbona P, Varga B, Török B, Brunner J, Arszovszki A, Iring A, Kisfali M, Vizi ES, Sperlágh B. P2X7 purinergic receptor modulates dentate gyrus excitatory neurotransmission and alleviates schizophrenia-like symptoms in mouse. iScience 2023; 26:107560. [PMID: 37649698 PMCID: PMC10462828 DOI: 10.1016/j.isci.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023] Open
Abstract
ATP-gated P2X7 receptors (P2X7Rs) play a crucial role in brain disorders. However, how they affect normal and pathological synaptic transmission is still largely unclear. Here, by using whole-cell patch-clamp technique to record AMPA- and NMDA receptor-mediated excitatory postsynaptic currents (s/mEPSCs) in dentate gyrus granule cells (DG GCs), we revealed a modulation by P2X7Rs of presynaptic sites, especially originated from entorhinal cortex (EC)-GC path but not the mossy cell (MC)-GC path. The involvement of P2X7Rs was confirmed using a pharmacological approach. Additionally, the acute activation of P2X7Rs directly elevated calcium influx from EC-GC terminals. In postnatal phencyclidine (PCP)-induced mouse model of schizophrenia, we observed that P2X7R deficiency restored the EC-GC synapse alteration and alleviated PCP-induced symptoms. To summarize, P2X7Rs participate in the modulation of GC excitatory neurotransmission in the DG via EC-GC pathway, contributing to pathological alterations of neuronal functions leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bernadett Varga
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiana Török
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - János Brunner
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Antonia Arszovszki
- Laboratory of Cellular Neuropharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - E. Sylvester Vizi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai Doctoral School, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Boccazzi M, Raffaele S, Zanettin T, Abbracchio MP, Fumagalli M. Altered Purinergic Signaling in Neurodevelopmental Disorders: Focus on P2 Receptors. Biomolecules 2023; 13:biom13050856. [PMID: 37238724 DOI: 10.3390/biom13050856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
With the umbrella term 'neurodevelopmental disorders' (NDDs) we refer to a plethora of congenital pathological conditions generally connected with cognitive, social behavior, and sensory/motor alterations. Among the possible causes, gestational and perinatal insults have been demonstrated to interfere with the physiological processes necessary for the proper development of fetal brain cytoarchitecture and functionality. In recent years, several genetic disorders caused by mutations in key enzymes involved in purine metabolism have been associated with autism-like behavioral outcomes. Further analysis revealed dysregulated purine and pyrimidine levels in the biofluids of subjects with other NDDs. Moreover, the pharmacological blockade of specific purinergic pathways reversed the cognitive and behavioral defects caused by maternal immune activation, a validated and now extensively used rodent model for NDDs. Furthermore, Fragile X and Rett syndrome transgenic animal models as well as models of premature birth, have been successfully utilized to investigate purinergic signaling as a potential pharmacological target for these diseases. In this review, we examine results on the role of the P2 receptor signaling in the etiopathogenesis of NDDs. On this basis, we discuss how this evidence could be exploited to develop more receptor-specific ligands for future therapeutic interventions and novel prognostic markers for the early detection of these conditions.
Collapse
Affiliation(s)
- Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Stefano Raffaele
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Thomas Zanettin
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
4
|
Sluyter R, Adriouch S, Fuller SJ, Nicke A, Sophocleous RA, Watson D. Animal Models for the Investigation of P2X7 Receptors. Int J Mol Sci 2023; 24:ijms24098225. [PMID: 37175933 PMCID: PMC10179175 DOI: 10.3390/ijms24098225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Sahil Adriouch
- UniRouen, INSERM, U1234, Pathophysiology, Autoimmunity, and Immunotherapy, (PANTHER), Univ Rouen Normandie, University of Rouen, F-76000 Rouen, France
| | - Stephen J Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Nepean Hospital, Kingswood, NSW 2750, Australia
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Debbie Watson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Wong ZW, Engel T. More than a drug target: Purinergic signalling as a source for diagnostic tools in epilepsy. Neuropharmacology 2023; 222:109303. [PMID: 36309046 DOI: 10.1016/j.neuropharm.2022.109303] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Epilepsy is one of the most common and disabling chronic neurological diseases affecting people of all ages. Major challenges of epilepsy management include the persistently high percentage of drug-refractoriness among patients, the absence of disease-modifying treatments, and its diagnosis and prognosis. To date, long-term video-electroencephalogram (EEG) recordings remain the gold standard for an epilepsy diagnosis. However, this is very costly, has low throughput, and in some instances has very limited availability. Therefore, much effort is put into the search for non-invasive diagnostic tests. Purinergic signalling, via extracellularly released adenosine triphosphate (ATP), is gaining increasing traction as a therapeutic strategy for epilepsy treatment which is supported by evidence from both experimental models and patients. This includes in particular the ionotropic P2X7 receptor. Besides that, other components from the ATPergic signalling cascade such as the metabotropic P2Y receptors (e.g., P2Y1 receptor) and ATP-release channels (e.g., pannexin-1), have also been shown to contribute to seizures and epilepsy. In addition to the therapeutic potential of purinergic signalling, emerging evidence has also shown its potential as a diagnostic tool. Following seizures and epilepsy, the concentration of purines in the blood and the expression of different compounds of the purinergic signalling cascade are significantly altered. Herein, this review will provide a detailed discussion of recent findings on the diagnostic potential of purinergic signalling for epilepsy management and the prospect of translating it for clinical application. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Zheng Wei Wong
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.
| |
Collapse
|