1
|
Sadeghi N, Mustoe A, Ross CN, McCarrey JR, Hermann BP. Benchmarks defining high-quality sperm in the common marmoset (Callithrix jacchus). Andrology 2024. [PMID: 39436318 DOI: 10.1111/andr.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Common marmosets (Callithrix jacchus) are increasingly recognized as valuable nonhuman primates (NHPs) for biomedical research due to their small size and short reproductive cycle and lifespan relative to other NHP species. Maximizing the utility of captive research marmosets, including genetically manipulated animals, will require the use of assisted reproductive techniques (ART) including manipulation, storage, and sharing of marmoset sperm. Here, we identify characteristics of high-quality semen samples and validate a simple method for selecting high-quality sperm. METHODS Computer-assisted sperm analysis (CASA) was used to evaluate sperm quality in semen samples collected from 44 marmosets and assessed the use of the swim-up method for the selection of high-quality sperm was also tested in half the samples as a potential means to optimize in vitro fertilization or intrauterine insemination. RESULTS For each reference parameter, samples at or below the 5th percentile were categorized as abnormal sperm, while those above the 5th percentile were considered to be normal. Among normal samples, those at or above the 50th percentile were categorized as high-quality. High-quality semen samples exhibited the following characteristics: semen volume ≥ 30 µL; sperm count ≥ 107/ejaculate; total motility ≥ 35%; and normal morphology ≥ 5%. Sperm isolated by swim-up exhibited superior sperm progressive motility (19.7% ± 4.5 vs. 5.6% ± 2.1; P = 0.01) and normal morphology (13.1 ± 1.59 vs. 7.65 ± 1.1; P < 0.001) compared with unselected sperm. CONCLUSION This study defines robust, statistically supported reference values for evaluating marmoset semen samples to assist with the identification of optimal sperm donors and the selection of high-quality sperm samples for assisted reproduction. Ultimately, these reference values combined with a validated selection method will contribute to consistent standards for the international sharing of genetically diverse and/or gene-edited marmoset sperm for research and reproduction.
Collapse
Affiliation(s)
- Niloofar Sadeghi
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aaryn Mustoe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Corinna N Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Tkachenko OY, Kahland T, Lindenwald D, Heistermann M, Drummer C, Daskalaki M, Rüger N, Behr R. In vitro matured oocytes have a higher developmental potential than in vivo matured oocytes after hormonal ovarian stimulation in Callithrix jacchus. J Ovarian Res 2024; 17:120. [PMID: 38824584 PMCID: PMC11144324 DOI: 10.1186/s13048-024-01441-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The common marmoset, Callithrix jacchus, is an invaluable model in biomedical research. Its use includes genetic engineering applications, which require manipulations of oocytes and production of embryos in vitro. To maximize the recovery of oocytes suitable for embryo production and to fulfil the requirements of the 3R principles to the highest degree possible, optimization of ovarian stimulation protocols is crucial. Here, we compared the efficacy of two hormonal ovarian stimulation approaches: 1) stimulation of follicular growth with hFSH followed by triggering of oocyte maturation with hCG (FSH + hCG) and 2) stimulation with hFSH only (FSH-priming). METHODS In total, 14 female marmosets were used as oocyte donors in this study. Each animal underwent up to four surgical interventions, with the first three performed as ovum pick-up (OPU) procedures and the last one being an ovariohysterectomy (OvH). In total, 20 experiments were carried out with FSH + hCG stimulation and 18 with FSH-priming. Efficacy of each stimulation protocol was assessed through in vitro maturation (IVM), in vitro fertilization (IVF) and embryo production rates. RESULTS Each study group consisted of two subgroups: the in vivo matured oocytes and the oocytes that underwent IVM. Surprisingly, in the absence of hCG triggering some of the oocytes recovered were at the MII stage, moreover, their number was not significantly lower compared to FSH + hCG stimulation (2.8 vs. 3.9, respectively (ns)). While the IVM and IVF rates did not differ between the two stimulation groups, the IVF rates of in vivo matured oocytes were significantly lower compared to in vitro matured ones in both FSH-priming and FSH + hCG groups. In total, 1.7 eight-cell embryos/experiment (OPU) and 2.1 eight-cell embryos/experiment (OvH) were obtained after FSH + hCG stimulation vs. 1.8 eight-cell embryos/experiment (OPU) and 5.0 eight-cell embryos/experiment (OvH) following FSH-priming. These numbers include embryos obtained from both in vivo and in vitro matured oocytes. CONCLUSION A significantly lower developmental competence of the in vivo matured oocytes renders triggering of the in vivo maturation with hCG as a part of the currently used FSH-stimulation protocol unnecessary. In actual numbers, between 1 and 7 blastocysts were obtained following each FSH-priming. In the absence of further studies, FSH-priming appears superior to FSH + hCG stimulation in the common marmoset under current experimental settings.
Collapse
Affiliation(s)
- Olena Y Tkachenko
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
| | - Tobias Kahland
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dimitri Lindenwald
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Maria Daskalaki
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Nancy Rüger
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
3
|
Hirayama R, Taketsuru H, Nakatsukasa E, Natsume R, Saito N, Adachi S, Kuwabara S, Miyamoto J, Miura S, Fujisawa N, Maeda Y, Takao K, Abe M, Sasaoka T, Sakimura K. Production of marmoset eggs and embryos from xenotransplanted ovary tissues. Sci Rep 2023; 13:18196. [PMID: 37875516 PMCID: PMC10598121 DOI: 10.1038/s41598-023-45224-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
The common marmoset (Callithrix jacchus) has attracted attention as a valuable primate model for the analysis of human diseases. Despite the potential for primate genetic modification, however, its widespread lab usage has been limited due to the requirement for a large number of eggs. To make up for traditional oocyte retrieval methods such as hormone administration and surgical techniques, we carried out an alternative approach by utilizing ovarian tissue from deceased marmosets that had been disposed of. This ovarian tissue contains oocytes and can be used as a valuable source of follicles and oocytes. In this approach, the ovarian tissue sections were transplanted under the renal capsules of immunodeficient mice first. Subsequent steps consist of development of follicles by hormone administrations, induction of oocyte maturation and fertilization, and culture of the embryo. This method was first established with rat ovaries, then applied to marmoset ovaries, ultimately resulting in the successful acquisition of the late-stage marmoset embryos. This approach has the potential to contribute to advancements in genetic modification research and disease modeling through the use of primate models, promoting biotechnology with non-human primates and the 3Rs principle in animal experimentation.
Collapse
Affiliation(s)
- Runa Hirayama
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroaki Taketsuru
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Nae Saito
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Shuko Adachi
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Sayaka Kuwabara
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Jun Miyamoto
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Shiori Miura
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
- Institute for Research Administration, Niigata University, Niigata, 950-2181, Japan
| | - Nobuyoshi Fujisawa
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yoshitaka Maeda
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
4
|
Kubiura-Ichimaru M, Penfold C, Kojima K, Dollet C, Yabukami H, Semi K, Takashima Y, Boroviak T, Kawaji H, Woltjen K, Minoda A, Sasaki E, Watanabe T. mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells. Stem Cell Reports 2023; 18:1987-2002. [PMID: 37683645 PMCID: PMC10656353 DOI: 10.1016/j.stemcr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.
Collapse
Affiliation(s)
- Musashi Kubiura-Ichimaru
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, UK; Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kazuaki Kojima
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Constance Dollet
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Thorsten Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Toshiaki Watanabe
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
5
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Burns M. Review of Environmental and Health Factors Impacting Captive Common Marmoset Welfare in the Biomedical Research Setting. Vet Sci 2023; 10:568. [PMID: 37756090 PMCID: PMC10535419 DOI: 10.3390/vetsci10090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
As a small-bodied neotropical nonhuman primate species, common marmosets have unique requirements for adequate husbandry and veterinary care to ensure proper maintenance and to promote good animal welfare in a biomedical research setting. Environmental conditions, as well as medical and research-related manipulations, can impact marmoset welfare. Research focus areas, including basic neuroscience, transgenics, and aging, involve additional implications for marmoset welfare. This manuscript provides a comprehensive review of factors that should be considered and mitigated as needed by clinical and research staff working with marmosets in biomedical research facilities to optimize the welfare of captive marmosets.
Collapse
Affiliation(s)
- Monika Burns
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Yoshimatsu S, Seki F, Okahara J, Watanabe H, Sasaguri H, Haga Y, Hata JI, Sanosaka T, Inoue T, Mineshige T, Lee CY, Shinohara H, Kurotaki Y, Komaki Y, Kishi N, Murayama AY, Nagai Y, Minamimoto T, Yamamoto M, Nakajima M, Zhou Z, Nemoto A, Sato T, Ikeuchi T, Sahara N, Morimoto S, Shiozawa S, Saido TC, Sasaki E, Okano H. Multimodal analyses of a non-human primate model harboring mutant amyloid precursor protein transgenes driven by the human EF1α promoter. Neurosci Res 2022; 185:49-61. [PMID: 36075457 DOI: 10.1016/j.neures.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia which afflicts tens of millions of people worldwide. Despite many scientific progresses to dissect the AD's molecular basis from studies on various mouse models, it has been suffered from evolutionary species differences. Here, we report generation of a non-human primate (NHP), common marmoset model ubiquitously expressing Amyloid-beta precursor protein (APP) transgenes with the Swedish (KM670/671NL) and Indiana (V717F) mutations. The transgene integration of generated two transgenic marmosets (TG1&TG2) was thoroughly investigated by genomic PCR, whole-genome sequencing, and fluorescence in situ hybridization. By reprogramming, we confirmed the validity of transgene expression in induced neurons in vitro. Moreover, we discovered structural changes in specific brain regions of transgenic marmosets by magnetic resonance imaging analysis, including in the entorhinal cortex and hippocampus. In immunohistochemistry, we detected increased Aβ plaque-like structures in TG1 brain at 7 years old, although evident neuronal loss or glial inflammation was not observed. Thus, this study summarizes our attempt to establish an NHP AD model. Although the transgenesis approach alone seemed not sufficient to fully recapitulate AD in NHPs, it may be beneficial for drug development and further disease modeling by combination with other genetically engineered models and disease-inducing approaches.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Fumiko Seki
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Hirotaka Watanabe
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yawara Haga
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo 116-8551, Japan
| | - Jun-Ichi Hata
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo 116-8551, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Takayuki Mineshige
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Chia-Ying Lee
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Haruka Shinohara
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Yoko Kurotaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Yuji Komaki
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Noriyuki Kishi
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Ayaka Y Murayama
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba City, Chiba 263-8555, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba City, Chiba 263-8555, Japan
| | - Masafumi Yamamoto
- ICLAS Monitoring Center, Central Institute for Experimental Animals, Kanagawa 210-0821, Japan
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Zhi Zhou
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akisa Nemoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8122, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba City, Chiba 263-8555, Japan
| | - Satoru Morimoto
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan.
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako City, Saitama 351-0198, Japan.
| |
Collapse
|
8
|
Sasaguri H, Hashimoto S, Watamura N, Sato K, Takamura R, Nagata K, Tsubuki S, Ohshima T, Yoshiki A, Sato K, Kumita W, Sasaki E, Kitazume S, Nilsson P, Winblad B, Saito T, Iwata N, Saido TC. Recent Advances in the Modeling of Alzheimer's Disease. Front Neurosci 2022; 16:807473. [PMID: 35431779 PMCID: PMC9009508 DOI: 10.3389/fnins.2022.807473] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Since 1995, more than 100 transgenic (Tg) mouse models of Alzheimer's disease (AD) have been generated in which mutant amyloid precursor protein (APP) or APP/presenilin 1 (PS1) cDNA is overexpressed ( 1st generation models ). Although many of these models successfully recapitulate major pathological hallmarks of the disease such as amyloid β peptide (Aβ) deposition and neuroinflammation, they have suffered from artificial phenotypes in the form of overproduced or mislocalized APP/PS1 and their functional fragments, as well as calpastatin deficiency-induced early lethality, calpain activation, neuronal cell death without tau pathology, endoplasmic reticulum stresses, and inflammasome involvement. Such artifacts bring two important uncertainties into play, these being (1) why the artifacts arise, and (2) how they affect the interpretation of experimental results. In addition, destruction of endogenous gene loci in some Tg lines by transgenes has been reported. To overcome these concerns, single App knock-in mouse models harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice) were developed ( 2nd generation models ). While these models are interesting given that they exhibit Aβ pathology, neuroinflammation, and cognitive impairment in an age-dependent manner, the model with the Artic mutation, which exhibits an extensive pathology as early as 6 months of age, is not suitable for investigating Aβ metabolism and clearance because the Aβ in this model is resistant to proteolytic degradation and is therefore prone to aggregation. Moreover, it cannot be used for preclinical immunotherapy studies owing to the discrete affinity it shows for anti-Aβ antibodies. The weakness of the latter model (without the Arctic mutation) is that the pathology may require up to 18 months before it becomes sufficiently apparent for experimental investigation. Nevertheless, this model was successfully applied to modulating Aβ pathology by genome editing, to revealing the differential roles of neprilysin and insulin-degrading enzyme in Aβ metabolism, and to identifying somatostatin receptor subtypes involved in Aβ degradation by neprilysin. In addition to discussing these issues, we also provide here a technical guide for the application of App knock-in mice to AD research. Subsequently, a new double knock-in line carrying the AppNL-F and Psen1 P117L/WT mutations was generated, the pathogenic effect of which was found to be synergistic. A characteristic of this 3rd generation model is that it exhibits more cored plaque pathology and neuroinflammation than the AppNL-G-F line, and thus is more suitable for preclinical studies of disease-modifying medications targeting Aβ. Furthermore, a derivative AppG-F line devoid of Swedish mutations which can be utilized for preclinical studies of β-secretase modifier(s) was recently created. In addition, we introduce a new model of cerebral amyloid angiopathy that may be useful for analyzing amyloid-related imaging abnormalities that can be caused by anti-Aβ immunotherapy. Use of the App knock-in mice also led to identification of the α-endosulfine-K ATP channel pathway as components of the somatostatin-evoked physiological mechanisms that reduce Aβ deposition via the activation of neprilysin. Such advances have provided new insights for the prevention and treatment of preclinical AD. Because tau pathology plays an essential role in AD pathogenesis, knock-in mice with human tau wherein the entire murine Mapt gene has been humanized were generated. Using these mice, the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) was discovered as a mediator linking tau pathology to neurodegeneration and showed that tau humanization promoted pathological tau propagation. Finally, we describe and discuss the current status of mutant human tau knock-in mice and a non-human primate model of AD that we have successfully created.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kenya Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Wakako Kumita
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
9
|
Schaeffer DJ, Klassen LM, Hori Y, Tian X, Szczupak D, Yen CCC, Cléry JC, Gilbert KM, Gati JS, Menon RS, Liu C, Everling S, Silva AC. An open access resource for functional brain connectivity from fully awake marmosets. Neuroimage 2022; 252:119030. [PMID: 35217206 PMCID: PMC9048130 DOI: 10.1016/j.neuroimage.2022.119030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.
Collapse
Affiliation(s)
- David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - CiRong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
10
|
Burns M, Silva AC. Current Topics in Research, Care, and Welfare of Common Marmosets. ILAR J 2022. [DOI: 10.1093/ilar/ilac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Although the common marmoset (Callithrix jacchus) has been maintained in captivity in biomedical research settings for decades, interest and use of the species as an animal model for a diverse array of purposes has increased in the 21st century. Unfortunately, the development of validated animal care standards such as nutrition, husbandry, and clinical care has not expanded with the same rapidity as the use of the species in research. The goal of this themed issue of the ILAR Journal is to review current literature relevant to topics that impact marmoset health, welfare, and use in research. As the population of captive marmosets increases worldwide, the editors urge scientists, veterinary clinicians, and colony managers to continue conducting and publishing robust studies to develop evidence-based standards related to marmoset care and use. The editors also encourage IACUCs and other institutional review bodies to seek training on topics relevant to marmoset welfare and develop related policies prior to acquiring animals as a novel species.
Collapse
Affiliation(s)
- Monika Burns
- Animal Welfare Compliance, Scientific Operations, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Kinter LB, DeHaven R, Johnson DK, DeGeorge JJ. A Brief History of Use of Animals in Biomedical Research and Perspective on Non-Animal Alternatives. ILAR J 2021; 62:7-16. [PMID: 34181728 DOI: 10.1093/ilar/ilab020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 05/22/2021] [Indexed: 11/13/2022] Open
Abstract
Animals have been closely observed by humans for at least 17 000 years to gain critical knowledge for human and later animal survival. Routine scientific observations of animals as human surrogates began in the late 19th century driven by increases in new compounds resulting from synthetic chemistry and requiring characterization for potential therapeutic utility and safety. Statistics collected by the United States Department of Agriculture's Animal and Plant Health Inspection Service and United Kingdom Home Office show that animal usage in biomedical research and teaching activities peaked after the mid-20th century and thereafter fell precipitously until the early 21st century, when annual increases (in the UK) were again observed, this time driven by expansion of genetically modified animal technologies. The statistics also show a dramatic transfer of research burden in the 20th and 21st centuries away from traditional larger and more publicly sensitive species (dogs, cats, non-human primates, etc) towards smaller, less publicly sensitive mice, rats, and fish. These data show that new technology can produce multi-faceted outcomes to reduce and/or to increase annual animal usage and to redistribute species burden in biomedical research. From these data, it is estimated that annual total vertebrate animal usage in biomedical research and teaching in the United States was 15 to 25 million per year during 2001-2018. Finally, whereas identification and incorporation of non-animal alternatives are products of, but not an integral component of, the animal research cycle, they replace further use of animals for specific research and product development purposes and create their own scientific research cycles, but are not necessarily a substitute for animals or humans for discovery, acquisition, and application of new (eg, previously unknown and/or unsuspected) knowledge critical to further advance human and veterinary medicine and global species survival.
Collapse
Affiliation(s)
- Lewis B Kinter
- GLP Scientific Consulting, Unionville, Pennsylvania, USA
| | - Ron DeHaven
- DeHaven Veterinary Solutions, LLC, El Dorado Hills, California, USA
| | | | | |
Collapse
|