1
|
Liu T, He Q, Yang X, Li Y, Yuan D, Lu Q, Tang T, Guan G, Zheng L, Zhang H, Xia C, Yin X, Wei G, Chen X, Lu F, Wang L. An Immunocompetent Mongolian Gerbil Model for Hepatitis E Virus Genotype 1 Infection. Gastroenterology 2024; 167:750-763.e10. [PMID: 38582270 DOI: 10.1053/j.gastro.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND & AIMS Hepatitis E virus (HEV), primarily genotype 1 (HEV-1), causes approximately 20.1 million infections, 44,000 deaths, and 3000 stillbirths annually. Current evidence indicates that HEV-1 is only transmitted in humans. Here, we evaluated whether Mongolian gerbils can serve as animal models for HEV-1 infection. METHODS Mongolian gerbils were used for HEV-1 and hepatitis E virus genotype 3 infection experiments. HEV infection parameters, including detection of HEV RNA and HEV antigen, liver function assessment, and histopathology, were evaluated. RESULTS We adapted a clinical isolate of HEV-1 for Mongolian gerbils by serial passaging in feces of aged male gerbils. The gerbil-adapted strain obtained at passage 3 induced a robust, acute HEV infection, characterized by stable fecal virus shedding, elevated liver enzymes, histopathologic changes in the liver, and seroconversion to anti-HEV. An infectious complementary DNA clone of the adapted virus was generated. HEV-1-infected pregnant gerbils showed a high rate of maternal mortality and vertical transmission. HEV RNA or antigens were detected in the liver, kidney, intestine, placenta, testis, and fetus liver. Liver and placental transcriptomic analyses indicated activation of host immunity. Tacrolimus prolonged HEV-1 infection, whereas ribavirin cleared infection. The protective efficacy of a licensed HEV vaccine was validated using this model. CONCLUSIONS HEV-1 efficiently infected Mongolian gerbils. This HEV-1 infection model will be valuable for investigating hepatitis E immunopathogenesis and evaluating vaccines and antivirals against HEV.
Collapse
Affiliation(s)
- Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xinyue Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuebao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Disen Yuan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qinghui Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tianyu Tang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liwei Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guochao Wei
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Amari M, Mary A, Zablocki-Thomas P, Bourgeois A, Pouydebat E. Positive effect of a diggable substrate on the behaviour of a captive naked mole rat colony. Sci Rep 2024; 14:20138. [PMID: 39209873 PMCID: PMC11362154 DOI: 10.1038/s41598-024-64146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024] Open
Abstract
Naked mole rats (Heterocephalus galber) are eusocial mammals from East Africa. Their extraordinary social organisation is accompanied by remarkable adaptations to an underground lifestyle, extreme longevity and resistance to many diseases, making naked mole rats a highly relevant model for biological research. However, their living conditions in controlled environments do not allow them to express fundamental behaviours: digging galleries and exploring. This gap probably constitutes a bias to any behavioural or even medical study, because it represents a potential obstacle to their well-being. In this article, we tested the effects of the introduction of a diggable substrate on the behaviour of a colony of naked mole rats at the Menagerie, le Zoo du Jardin des Plantes, Paris. We measured individual exploratory latencies, the number of entries per minute and the frequency with which naked mole rats gnawed tunnels during observation trials. We found that: (i) young individuals explore more quickly, (ii) the introduction of a diggable substrate encourages exploration and digging behaviour, and (iii) could therefore be a relevant element to introduce under human care. This new environmental design could improve the welfare of naked mole rats by creating opportunities for cognitive challenges such as exploration and environmental control.
Collapse
Affiliation(s)
- Myriam Amari
- UMR 7179 MECADEV, CNRS/MNHN, Département Adaptations du Vivant, Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75231, Paris, France.
- Département de Biologie, École normale supérieure, PSL Université Paris, 75005, Paris, France.
| | - Alma Mary
- UMR 7179 MECADEV, CNRS/MNHN, Département Adaptations du Vivant, Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75231, Paris, France
| | - Pauline Zablocki-Thomas
- UMR 7179 MECADEV, CNRS/MNHN, Département Adaptations du Vivant, Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75231, Paris, France
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Aude Bourgeois
- Ménagerie, Le Zoo du Jardin des Plantes, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75005, Paris, France
| | - Emmanuelle Pouydebat
- UMR 7179 MECADEV, CNRS/MNHN, Département Adaptations du Vivant, Mécanismes Adaptatifs et Evolution, Muséum National d'Histoire Naturelle, 57 Rue Cuvier, 75231, Paris, France
| |
Collapse
|
3
|
Paździor-Czapula K, Mikiewicz M, Fiedorowicz J, Otrocka-Domagała I. Mammary and reproductive tract tumours and tumour-like lesions of 286 small pet mammals: a retrospective study. J Comp Pathol 2024; 213:46-58. [PMID: 39116801 DOI: 10.1016/j.jcpa.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Small mammals are very popular companion animals, and the incidence of particular tumour types in these animals is the subject of extensive research. We carried out a retrospective and comparative analysis of the incidence of reproductive tract and mammary tumours and tumour-like lesions collected from 103 pet rabbits, 75 pet rats, 71 guinea pigs, 12 mice, 11 hamsters, eight African pygmy hedgehogs, four ferrets and two chinchillas. The results indicate that uterine tumours and tumour-like lesions are common in pet rabbits, guinea pigs and African pygmy hedgehogs. In pet rabbits, the most common uterine tumour was endometrial adenocarcinoma, while in guinea pigs benign lesions predominated (ie, leiomyoma, endometrial adenoma, cystic endometrial hyperplasia and deciduoma). Uterine tumours in African pygmy hedgehogs included adenosarcomas and endometrial polyps. Ovarian lesions were found only in guinea pigs (ovarian rete adenomas, rete cysts) and African pygmy hedgehogs (mostly granulosa cell tumours), while testicular tumours were diagnosed in pet rabbits, one pet rat and one guinea pig. Mammary tumours were common in pet rabbits, pet rats, guinea pigs, mice, hamsters and African pygmy hedgehogs. In pet rats, the most common mammary tumour was fibroadenoma, while in other animals carcinomas predominated. In guinea pigs and, to a lesser extent, in pet rats, a significant percentage of mammary tumours occurred in males. Guinea pigs seem to be predisposed to mammary tumours of ductal origin. This study describes for the first time uterine angioleiomyoma in the pet rabbit and mammary spindle cell carcinoma in the Djungarian hamster and chinchilla.
Collapse
Affiliation(s)
- Katarzyna Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland.
| | - Mateusz Mikiewicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Joanna Fiedorowicz
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Riva F, Draghi S, Inglesi A, Filipe J, Cremonesi P, Lavazza A, Cavadini P, Vigo D, Agradi S, Menchetti L, Di Giancamillo A, Aidos L, Modina SC, Fehri NE, Pastorelli G, Serra V, Balzaretti CM, Castrica M, Severgnini M, Brecchia G, Curone G. Bovine Colostrum Supplementation in Rabbit Diet Modulates Gene Expression of Cytokines, Gut-Vascular Barrier, and Red-Ox-Related Molecules in the Gut Wall. Animals (Basel) 2024; 14:800. [PMID: 38473185 DOI: 10.3390/ani14050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rabbits, pivotal in the EU as livestock, pets, and experimental animals, face bacterial infection challenges, prompting a quest for alternatives to curb antibiotic resistance. Bovine colostrum (BC), rich in immunoregulatory compounds, antimicrobial peptides, and growth factors, is explored for disease treatment and prevention. This study assesses BC diet supplementation effects on rabbit intestines, examining gene expression. Thirty female New Zealand White rabbits at weaning (35 days) were divided into three experimental groups: control (commercial feed), 2.5% BC, and 5% BC. The diets were administered until slaughtering (81 days). BC-upregulated genes in the jejunum included IL-8, TGF-β, and CTNN-β1 at 5% BC, while PLVAP at 2.5% BC. Antioxidant-related genes (SOD1, GSR) were downregulated in the cecum and colon with 2.5% BC. BC 5% promoted IL-8 in the jejunum, fostering inflammation and immune cell migration. It also induced genes regulating inflammatory responses (TGF-β) and gastrointestinal permeability (CTNN-β1). BC 5% enhanced antioxidant activity in the cecum and colon, but no significant impact on anti-myxo antibody production was observed. These results suggest that BC has significant effects on the rabbit gastrointestinal tract's inflammatory and antioxidant response, but further research is required to fully understand its histological and physiological impact.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Susanna Draghi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Alessia Inglesi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), National Research Council (CNR), Via Einstein, 26900 Lodi, Italy
| | - Antonio Lavazza
- Virology Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Patrizia Cavadini
- Virology Laboratory, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Laura Menchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93-95, 62024 Matelica, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Nour Elhouda Fehri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Claudia Maria Balzaretti
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Marta Castrica
- Dipartimento di Biomedicina Comparata e Alimentazione-BCA, University of Padua, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
5
|
Hankenson FC, Prager EM, Berridge BR. Advocating for Generalizability: Accepting Inherent Variability in Translation of Animal Research Outcomes. Annu Rev Anim Biosci 2024; 12:391-410. [PMID: 38358839 DOI: 10.1146/annurev-animal-021022-043531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Advancing scientific discovery requires investigators to embrace research practices that increase transparency and disclosure about materials, methods, and outcomes. Several research advocacy and funding organizations have produced guidelines and recommended practices to enhance reproducibility through detailed and rigorous research approaches; however, confusion around vocabulary terms and a lack of adoption of suggested practices have stymied successful implementation. Although reproducibility of research findings cannot be guaranteed due to extensive inherent variables in attempts at experimental repetition, the scientific community can advocate for generalizability in the application of data outcomes to ensure a broad and effective impact on the comparison of animals to translation within human research. This report reviews suggestions, based upon work with National Institutes of Health advisory groups, for improving rigor and transparency in animal research through aspects of experimental design, statistical assessment, and reporting factors to advocate for generalizability in the application of comparative outcomes between animals and humans.
Collapse
Affiliation(s)
- F C Hankenson
- Division of Laboratory Animal Medicine, Department of Pathobiology, School of Veterinary Medicine and University Laboratory Animal Resources, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - E M Prager
- Research Program Management, Regeneron Pharmaceuticals, Inc., Tarrytown, New York, USA;
| | - B R Berridge
- B2 Pathology Solutions LLC, Cary, North Carolina, USA;
| |
Collapse
|
6
|
Tangkawattana S, Suyapoh W, Taiki N, Tookampee P, Chitchak R, Thongrin T, Tangkawattana P. Unraveling the relationship among inflammatory responses, oxidative damage, and host susceptibility to Opisthorchis viverrini infection: A comparative analysis in animal models. Vet World 2023; 16:2303-2312. [PMID: 38152278 PMCID: PMC10750739 DOI: 10.14202/vetworld.2023.2303-2312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim Opisthorchis viverrini infection-induced inflammation contributes to cholangiocarcinoma (CCA) development in humans and animals. Inflammation generates free radicals, such as reactive oxygen species and reactive nitrogen species (RNS), which damage the host's DNA. However, only 5% of O. viverrini-infected individuals develop malignancy, suggesting that variations in the inflammatory response of individuals to the parasite may influence susceptibility. Due to limitations in studying human susceptibility, we used an animal model to investigate the profiles of inflammatory reactions, oxidative burst, and irreversible DNA damage. This study aimed to explore the potential role of inflammation and RNS in causing DNA damage that may predispose susceptible hosts and non-susceptible animal models to cancer development in O. viverrini infection. Materials and Methods This experimental study was conducted on 30 Syrian golden hamsters (OV-H) and 30 BALB/c mice (OV-M) infected with O. viverrini, representing susceptible and non-susceptible models, respectively. Five animals per group were examined at six predetermined time points during the experiment. Biliary tract samples were systematically investigated using histopathological evaluation for inflammatory cell infiltration and immunohistochemical staining for RNS production and markers of DNA damage, including nitrotyrosine and 8-hydroxy-2'-deoxyguanosine. These features were quantified and compared among the experimental groups. Mann-Whitney U-test was used for statistical analysis, with p < 0.05 considered statistically significant. Results The comparison revealed that the OV-M group exhibited significantly earlier and higher rates of inflammatory cell infiltration during the acute phase, whereas the OV-H group exhibited chronic and more severe inflammation (p < 0.020). Intracellular RNS production and DNA damage were closely associated with the inflammatory response. Conclusion This study demonstrates differential responses in susceptible and non-susceptible models of O. viverrini infection regarding disease onset and duration, as well as intracellular RNS production and DNA damage caused by inflammation. Persistent inflammation generated oxidatively damaged DNA, which is a distinct pathological characteristic of susceptible hosts and may be critical for CCA development.
Collapse
Affiliation(s)
- Sirikachorn Tangkawattana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharapol Suyapoh
- Department of Veterinary Science, Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Nathamon Taiki
- Doctor of Veterinary Medicine Program, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Paramin Tookampee
- Doctor of Veterinary Medicine Program, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Ravisara Chitchak
- Doctor of Veterinary Medicine Program, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Theerayut Thongrin
- Master of Science Program in Veterinary Science, Faculty of Veterinary Medicine, Khon Kaen University, Thailand
| | - Prasarn Tangkawattana
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Jin J, Yang X, Gong H, Li X. Time- and Gender-Dependent Alterations in Mice during the Aging Process. Int J Mol Sci 2023; 24:12790. [PMID: 37628974 PMCID: PMC10454612 DOI: 10.3390/ijms241612790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Compared to young people and adults, there are differences in the ability of elderly people to resist diseases or injuries, with some noticeable features being gender-dependent. However, gender differences in age-related viscera alterations are not clear. To evaluate a potential possibility of gender differences during the natural aging process, we used three age groups to investigate the impact on spleens, kidneys, and adrenal glands. The immunofluorescence results showed that male-specific p21 proteins were concentrated in the renal tubule epithelial cells of the kidney. Histological staining revealed an increase in the frequencies of fat vacuoles located in the renal tubule epithelial cells of the cortex, under the renal capsule in the kidneys of male mice with age. In female mice, we found that the width of the globular zone in the adrenal gland cortex was unchanged with age. On the contrary, the male displayed a reduction in width. Compared to females, the content of epinephrine in adrenal gland tissue according to ELISA analysis was higher in adults, and a greater decline was observed in aged males particularly. These data confirmed the age-dependent differences between female and male mice; therefore, gender should be considered one of the major factors for personalized treatment in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Jin
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China (H.G.)
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215004, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Mourão CF, Lowenstein A, Mello-Machado RC, Ghanaati S, Pinto N, Kawase T, Alves GG, Messora MR. Standardization of Animal Models and Techniques for Platelet-Rich Fibrin Production: A Narrative Review and Guideline. Bioengineering (Basel) 2023; 10:482. [PMID: 37106669 PMCID: PMC10135737 DOI: 10.3390/bioengineering10040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Experimental research is critical for advancing medical knowledge and enhancing patient outcomes, including in vitro and in vivo preclinical assessments. Platelet-rich fibrin (PRF) is a blood by-product that has garnered attention in the medical and dental fields due to its potential for tissue regeneration and wound healing. Animal models, such as rabbits and rats, have been used to produce PRF and examine its properties and applications. PRF has demonstrated potential in the dental and medical fields for reducing inflammation, promoting tissue repair, and accelerating wound healing. This narrative review aims to compare existing evidence and provide guidelines for PRF animal research, emphasizing the importance of standardizing animal models, following ethical considerations, and maintaining transparency and accountability. The authors highlight the necessity to use the correct relative centrifugal force (RCF), standardize centrifugal calibration, and report detailed information about blood collection and centrifuge parameters for reproducible results. Standardizing animal models and techniques is crucial for narrowing the gap between laboratory research and clinical applications, ultimately enhancing the translation of findings from bench to bedside.
Collapse
Affiliation(s)
- Carlos Fernando Mourão
- Department of Periodontology, Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adam Lowenstein
- Department of Periodontology, Division of Dental Research Administration, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | | | - Shahram Ghanaati
- Frankfurt Oral Regenerative Medicine, Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, 60596 Frankfurt Am Main, Germany
| | - Nelson Pinto
- Department of Periodontics and Implant Dentistry, University of the Andes, Santiago 12455, Chile
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Gutemberg Gomes Alves
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói 24033-900, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-904, Brazil
| |
Collapse
|
9
|
Gabrielson K, Myers S, Yi J, Gabrielson E, Jimenez IA. Comparison of Cardiovascular Pathology In Animal Models of SARS-CoV-2 Infection: Recommendations Regarding Standardization of Research Methods. Comp Med 2023; 73:58-71. [PMID: 36731878 PMCID: PMC9948900 DOI: 10.30802/aalas-cm-22-000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the viral pathogen that led to the global COVID-19 pandemic that began in late 2019. Because SARS-CoV-2 primarily causes a respiratory disease, much research conducted to date has focused on the respiratory system. However, SARS-CoV-2 infection also affects other organ systems, including the cardiovascular system. In this critical analysis of published data, we evaluate the evidence of cardiovascular pathology in human patients and animals. Overall, we find that the presence or absence of cardiovascular pathology is reported infrequently in both human autopsy studies and animal models of SARS-CoV-2 infection. Moreover, in those studies that have reported cardiovascular pathology, we identified issues in their design and execution that reduce confidence in the conclusions regarding SARS-CoV-2 infection as a cause of significant cardiovascular pathology. Throughout this overview, we expand on these limitations and provide recommendations to ensure a high level of scientific rigor and reproducibility.
Collapse
Affiliation(s)
- Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie Myers
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas; and
| | - Jena Yi
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Isabel A Jimenez
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Godoi AR, Fioravante VC, Santos BM, Martinez FE, Pinheiro PFF. Maternal exposure of rats to sodium saccharin during gestation and lactation on male offspring†. Biol Reprod 2023; 108:98-106. [PMID: 36219170 DOI: 10.1093/biolre/ioac190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/29/2022] [Accepted: 10/06/2022] [Indexed: 01/20/2023] Open
Abstract
We investigated the effects of fetal programming in Sprague-Dawley rats through the maternal consumption of sodium saccharin on the testicular structure and function in male offspring. Feed intake and efficiency, organ and fat weight, quantification and expression of androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) proteins, sperm count, and hormone levels were determined. Consumption alterations were found in the final weeks of the experiment. Decreases in AR and PCNA expression and quantification, tubular diameter, and luminal volume, and increases in epithelial and interstitial relative volumes were observed. Lower sperm count and transit, and lower estradiol concentration were also found. Sodium saccharin consumption by dams programmed male offspring by affecting the hypothalamic-pituitary-gonad axis with alterations in the Sertoli cell population, in spermatogonia proliferation, the expression and quantification of AR, and in sperm count. We hypothesized that these changes may be due to an estradiol reduction that caused the loosening of adhesion junctions of the blood-testis barrier, causing cell losses during spermatogenesis, also reflected by a decrease in tubular diameter with an increase in epithelial volume and consequent decrease in luminal volume. We conclude that maternal sodium saccharin consumption during pregnancy and lactation programmed alterations in the reproductive parameters of male offspring, thus influencing spermatogenesis.
Collapse
Affiliation(s)
- Alana Rezende Godoi
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Vanessa Caroline Fioravante
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Beatriz Melo Santos
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | - Francisco Eduardo Martinez
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, Brazil
| | | |
Collapse
|
11
|
Powers CM, Akingbade GM, Phillips IL, Etzioni AL, Gilbreath E. Organomegaly, lethargy, and hind limb trembling in a 3-year-old intact male Syrian hamster (Mesocricetus auratus). J Am Vet Med Assoc 2022; 261:562-565. [PMID: 36434764 DOI: 10.2460/javma.22.07.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Berridge BR. Animal Study Translation: The Other Reproducibility Challenge. ILAR J 2022. [DOI: 10.1093/ilar/ilac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Animal research is currently an irreplaceable contributor to our efforts to protect and improve public health. Its relevance, importance, and contributions are represented in historical precedent, regulatory expectations, evidence of our rapidly developing understanding of human health and disease, as well as success in the development of novel therapeutics that are improving quality of life and extending human and animal life expectancy. The rapid and evolving success in responding to the current COVID pandemic significantly supported by animal studies is a clear example of the importance of animal research. But there is growing interest in reducing our dependence on animals and challenges to the effective translation of current animal studies to human applications. There are several potential contributors to gaps in the translatability of animal research to humans, including our approaches to choosing or rationalizing the relevance of a particular animal model, our understanding of their biological variability and how that applies to outcomes, the data we collect from animal studies, and even how we manage the animals. These important contributors to the success of animal research are explored in this issue of the ILAR Journal.
Collapse
Affiliation(s)
- Brian R Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences in Research, Triangle Park, North Carolina, USA
| |
Collapse
|