1
|
Liu C, Yang J, Zhang C, Geng X, Zhao H. The changes of systemic immune responses during the neuroprotection induced by remote ischemic postconditioning against focal cerebral ischemia in mice. Neurol Res 2018; 41:26-36. [PMID: 30281410 DOI: 10.1080/01616412.2018.1523037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cuiying Liu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Chencheng Zhang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Zhang N, Zhu H, Han S, Sui L, Li J. cPKCγ alleviates ischemic injury through modulating synapsin Ia/b phosphorylation in neurons of mice. Brain Res Bull 2018; 142:156-162. [PMID: 30016727 DOI: 10.1016/j.brainresbull.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023]
Abstract
Conventional protein kinase C (cPKC)γ and synapsin Ia/b have been implicated in the development of ischemic stroke, but their relationships and functions are unclear. In the present study, the oxygen-glucose deprivation (OGD)-induced ischemic insult in primary cultured cortical neurons in vitro and middle cerebral artery occlusion (MCAO)-induced ischemic stroke model in vivo were used to elucidate the function of cPKCγ and its modulation on synapsin Ia/b phosphorylation in ischemic stroke. We found that cPKCγ knockout significantly increased the infarct volume of mice after 1 h MCAO/72 h reperfusion by using triphenyltetrazolium chloride (TTC) staining. In the primarily cultured cortical neurons, cPKCγ knockout also aggravated the OGD-induced cell death and morphological damage of neurites, while cPKCγ restoration could alleviate the ischemic injury. Among the five phosphorylation sites of synapsin Ia/b, only the phosphorylation levels of Ser549 and 553 could be modulated by cPKCγ in neurons following 0.5 h OGD/24 h reoxygenation. In addition, we found that cPKCγ and synapsin Ia/b could be reciprocally co-immunoprecipitated in the cerebral cortex of MCAO mice. Taken together, we proposed that cPKCγ alleviates ischemic injury through modulating Ser549/553- synapsin Ia/b phosphorylation in neurons of mice.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Chinese Medical Association Publishing House, Beijing 100710, PR China
| | - Hongyi Zhu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Leiming Sui
- Core Facility Center, Capital Medical University, Beijing 100069, PR China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Liu S, Dai Q, Hua R, Liu T, Han S, Li S, Li J. Determination of Brain-Regional Blood Perfusion and Endogenous cPKCγ Impact on Ischemic Vulnerability of Mice with Global Ischemia. Neurochem Res 2017; 42:2814-2825. [DOI: 10.1007/s11064-017-2294-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/19/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023]
|
4
|
Renin-angiotensin system acting on reactive oxygen species in paraventricular nucleus induces sympathetic activation via AT1R/PKCγ/Rac1 pathway in salt-induced hypertension. Sci Rep 2017; 7:43107. [PMID: 28338001 PMCID: PMC5364504 DOI: 10.1038/srep43107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/19/2017] [Indexed: 02/04/2023] Open
Abstract
Brain renin-angiotensin system (RAS) could regulate oxidative stress in the paraventricular nucleus (PVN) in the development of hypertension. This study was designed to explore the precise mechanisms of RAS acting on reactive oxygen species (ROS) in salt-induced hypertension. Male Wistar rats were administered with a high-salt diet (HS, 8.0% NaCl) for 8 weeks to induced hypertension. Those rats were received PVN infusion of AT1R antagonist losartan (LOS, 10 μg/h) or microinjection of small interfering RNAs for protein kinase C γ (PKCγ siRNA) once a day for 2 weeks. High salt intake resulted in higher levels of AT1R, PKCγ, Rac1 activity, superoxide and malondialdehyde (MDA) activity, but lower levels of copper/zinc superoxide dismutase (Cu/Zn-SOD), superoxide dismutase (SOD) and glutathione (GSH) in PVN than control animals. PVN infusion of LOS not only attenuated the PVN levels of AT1R, PKCγ, Rac1 activity, superoxide and decreased the arterial pressure, but also increased the PVN antioxidant capacity in hypertension. PVN microinjection of PKCγ siRNA had the same effect on LOS above responses to hypertension but no effect on PVN level of AT1R. These results, for the first time, identified that the precise signaling pathway of RAS regulating ROS in PVN is via AT1R/PKCγ/Rac1 in salt-induced hypertension.
Collapse
|
5
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
6
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
7
|
Neuroprotective Effects of Isosteviol Sodium Injection on Acute Focal Cerebral Ischemia in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1379162. [PMID: 27047634 PMCID: PMC4800105 DOI: 10.1155/2016/1379162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022]
Abstract
Previous report has indicated that isosteviol has neuroprotective effects. However, isosteviol was administered preventively before ischemia and the inclusion criteria were limited. In the present study, a more soluble and injectable form of isosteviol sodium (STVNA) was administered intravenously hours after transient or permanent middle cerebral artery occlusion (tMCAO or pMCAO) to investigate its neuroprotective effects in rats. The rats were assessed for neurobehavioral deficits 24 hours after ischemia and sacrificed for infarct volume quantification and histology evaluation. STVNA 10 mg·kg−1 can significantly reduce the infarct volumes compared with vehicle in animals subjected to tMCAO and is twice as potent as previously reported. Additionally, the therapeutic window study showed that STVNA could reduce the infarct volume compared with the vehicle group when administered 4 hours after reperfusion. A similar effect was also observed in animals treated 4 hours after pMCAO. Assessment of neurobehavioral deficits after 24 hours showed that STVNA treatment significantly reduced neurobehavioral impairments. The number of restored NeuN-labeled neurons was increased and the number of TUNEL positive cells was reduced in animals that received STVNA treatment compared with vehicle group. All of these findings suggest that STVNA might provide therapeutic benefits against cerebral ischemia-induced injury.
Collapse
|
8
|
Imoukhuede PI, Popel AS. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012; 7:e44791. [PMID: 22984559 PMCID: PMC3440347 DOI: 10.1371/journal.pone.0044791] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/13/2012] [Indexed: 01/01/2023] Open
Abstract
VEGFR surface localization plays a critical role in converting extracellular VEGF signaling towards angiogenic outcomes, and the quantitative characterization of these parameters is critical for advancing computational models; however the levels of these receptors on blood vessels is currently unknown. Therefore our aim is to quantitatively determine the VEGFR localization on endothelial cells from mouse hindlimb skeletal muscles. We contextualize this VEGFR quantification through comparison to VEGFR-levels on cells in vitro. Using quantitative fluorescence we measure and compare the levels of VEGFR1 and VEGFR2 on endothelial cells isolated from C57BL/6 and BALB/c gastrocnemius and tibialis anterior hindlimb muscles. Fluorescence measurements are calibrated using beads with known numbers of phycoerythrin molecules. The data show a 2-fold higher VEGFR1 surface localization relative to VEGFR2 with 2,000-3,700 VEGFR1/endothelial cell and 1,300-2,000 VEGFR2/endothelial cell. We determine that endothelial cells from the highly glycolytic muscle, tibialis anterior, contain 30% higher number of VEGFR1 surface receptors than gastrocnemius; BALB/c mice display ~17% higher number of VEGFR1 than C57BL/6. When we compare these results to mouse fibroblasts in vitro, we observe high levels of VEGFR1 (35,800/cell) and very low levels of VEGFR2 (700/cell), while in human endothelial cells in vitro, we observe that the balance of VEGFRs is inverted, with higher levels VEGFR2 (5,800/cell) and lower levels of VEGFR1 (1,800/cell). Our studies also reveal significant cell-to-cell heterogeneity in receptor expression, and the quantification of these dissimilarities ex vivo for the first time provides insight into the balance of anti-angiogenic or modulatory (VEGFR1) and pro-angiogenic (VEGFR2) signaling.
Collapse
Affiliation(s)
- Princess I. Imoukhuede
- Department of Bioengineering, University of Illinois Urbana Champaign, Urbana, Illinois, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
NMDA receptor-mediated Ca2+ influx triggers nucleocytoplasmic translocation of diacylglycerol kinase ζ under oxygen–glucose deprivation conditions, an in vitro model of ischemia, in rat hippocampal slices. Histochem Cell Biol 2012; 137:499-511. [DOI: 10.1007/s00418-011-0907-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2011] [Indexed: 02/07/2023]
|
10
|
Mac Gabhann F, Qutub AA, Annex BH, Popel AS. Systems biology of pro-angiogenic therapies targeting the VEGF system. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:694-707. [PMID: 20890966 PMCID: PMC2990677 DOI: 10.1002/wsbm.92] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a family of cytokines for which the dysregulation of expression is involved in many diseases; for some, excess VEGF causes pathological hypervascularization, while for others VEGF-induced vascular remodeling may alleviate ischemia and/or hypoxia. Anti-angiogenic therapies attacking the VEGF pathway have begun to live up to their promise for treatment of certain cancers and of age-related macular degeneration. However, the corollary is not yet true: in coronary artery disease and peripheral artery disease, clinical trials of pro-angiogenic VEGF delivery have not, so far, proven successful. The VEGF and VEGF-receptor system is complex, with at least five ligand genes, some encoding multiple protein isoforms and five receptor genes. A systems biology approach for designing pro-angiogenic therapies, using a combination of quantitative experimental approaches and detailed computational models, is essential to deal with this complexity and to understand the effects of drugs targeting the system. This approach allows us to learn from unsuccessful clinical trials and to design and test novel single therapeutics or combinations of therapeutics. Among the parameters that can be varied in order to determine optimal strategy are dosage, timing of multiple doses, route of administration, and the molecular target.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Amina A Qutub
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Brian H Annex
- Division of Cardiovascular Medicine, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
11
|
Mac Gabhann F, Peirce SM. Collateral capillary arterialization following arteriolar ligation in murine skeletal muscle. Microcirculation 2010; 17:333-47. [PMID: 20618691 DOI: 10.1111/j.1549-8719.2010.00034.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Chronic and acute ischemic diseases-peripheral artery disease, coronary artery disease, stroke-result in tissue damage unless blood flow is maintained or restored in a timely manner. Mice of different strains recover from arteriolar ligation (by increasing collateral blood flow) at different speeds. We quantify the spatio-temporal patterns of microvascular network remodeling following arteriolar ligation in different mouse strains to better understand inter-individual variability. METHODS Whole-muscle spinotrapezius microvascular networks of mouse strains C57Bl/6, Balb/c and CD1 were imaged using confocal microscopy following ligation of feeding arterioles. RESULTS Baseline arteriolar structures of C57Bl/6 and Balb/c mice feature heavily ramified arcades and unconnected dendritic trees, respectively. This network angioarchitecture identifies ischemia-protected and ischemia-vulnerable tissues; unlike C57Bl/6, downstream capillary perfusion in Balb/c spinotrapezius is lost following ligation. Perfusion recovery requires arterialization (expansion and investment of mural cells) of a subset of capillaries forming a new low-resistance collateral pathway between arteriolar trees. Outbred CD1 exhibit either Balb/c-like or C57Bl/6-like spinotrapezius angioarchitecture, predictive of response to arteriolar ligation. CONCLUSIONS This collateral capillary arterialization process may explain the reported longer time required for blood flow recovery in Balb/c hindlimb ischemia, as low-resistance blood flow pathways along capillary conduits must be formed ("arterialization") before reperfusion.
Collapse
Affiliation(s)
- Feilim Mac Gabhann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
12
|
Turkkan A, Alkan T, Goren B, Kocaeli H, Akar E, Korfali E. Citicoline and postconditioning provides neuroprotection in a rat model of ischemic spinal cord injury. Acta Neurochir (Wien) 2010; 152:1033-42. [PMID: 20112033 DOI: 10.1007/s00701-010-0598-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 01/05/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemic spinal cord injury is a chain of events caused by the reduction and/or cessation of spinal cord blood flow, which results in neuronal degeneration and loss. Ischemic postconditioning is defined as a series of intermittent interruptions of blood flow in the early phase of reperfusion and has been shown to reduce the infarct size in cerebral ischemia. Our study aimed to characterize the relationship between the neuronal injury-decreasing effects of citicoline and ischemic postconditioning, which were proven to be effective against the apoptotic process. METHOD Spinal cord ischemia was produced in rats using an intrathoracic approach to implement the synchronous arcus aorta and subclavian artery clipping method. In our study, 42 male Sprague-Dawley rats (309 +/- 27 g) were used. Animals were divided into sham operated, spinal ischemia, citicoline, postconditioning, and postconditioning citicoline groups. Postconditioning was generated by six cycles of 1 min occlusion/5 min reperfusion. A 600 mmol/kg dose of citicoline was given intraperitoneally before ischemia in the citicoline and postconditioning citicoline groups. All rats were sacrificed 96 h after reperfusion. For immunohistochemical analysis, bcl-2, caspase 3, caspase 9, and bax immune staining were performed. Caspase 3, caspase 9, bax, and bcl-2 were used as apoptotic and antiapoptotic markers, respectively. FINDINGS The blood pressure values obtained at the onset of reperfusion were significantly lower than the preischemic values. A difference in immunohistochemical scoring was detected between the caspase 3, caspase 9, bax, and bcl-2 groups. When comparisons between the ischemia (groups 2, 3, 4, and 5) and sham groups (group 1) were performed, a significant increase in caspase 3, caspase 9, bax, and bcl-2 was detected. When comparing the subgroups, the average score of caspase 9 was found to be significantly higher in ischemia group 2. The average score of bcl-2 was also found to be significantly higher in postconditioning and citicoline group 5. CONCLUSIONS It is thus thought that combining citicoline with postconditioning provides protection by inhibiting the caspase pathway and by increasing the antiapoptotic proteins.
Collapse
|
13
|
Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. ACTA ACUST UNITED AC 2010; 64:328-63. [PMID: 20685221 DOI: 10.1016/j.brainresrev.2010.05.003] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic and complex interface between blood and the central nervous system that strictly controls the exchanges between the blood and brain compartments, therefore playing a key role in brain homeostasis and providing protection against many toxic compounds and pathogens. In this review, the unique properties of brain microvascular endothelial cells and intercellular junctions are examined. The specific interactions between endothelial cells and basement membrane as well as neighboring perivascular pericytes, glial cells and neurons, which altogether constitute the neurovascular unit and play an essential role in both health and function of the central nervous system, are also explored. Some relevant pathways across the endothelium, as well as mechanisms involved in the regulation of BBB permeability, and the emerging role of the BBB as a signaling interface are addressed as well. Furthermore, we summarize some of the experimental approaches that can be used to monitor BBB properties and function in a variety of conditions and have allowed recent advances in BBB knowledge. Elucidation of the molecular anatomy and dynamics of the BBB is an essential step for the development of new strategies directed to maintain or restore BBB integrity and barrier function and ultimately preserve the delicate interstitial brain environment.
Collapse
Affiliation(s)
- Filipa Lourenço Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|
14
|
Role of PKCbetaII and PKCdelta in blood-brain barrier permeability during aglycemic hypoxia. Neurosci Lett 2009; 468:254-8. [PMID: 19900507 DOI: 10.1016/j.neulet.2009.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/23/2022]
Abstract
Blood-brain barrier (BBB) dysfunction contributes to the pathophysiology of cerebrovascular diseases such as stroke. In the present study, we investigated the role of PKC isoforms in aglycemic hypoxia-induced hyperpermeability using an in vitro model of the BBB consisting of mouse bEnd.3 cells. PKCbetaII and PKCdelta isoforms were activated during aglycemic hypoxia. CGP53353, a specific PKCbetaII inhibitor, significantly attenuated aglycemic hypoxia-induced BBB hyperpermeability and disruption of occludin and zonula occludens-1 (ZO-1), indicating a deleterious role of PKCbetaII in the regulation of BBB permeability during aglycemic hypoxia. Conversely, rottlerin, a specific PKCdelta inhibitor, exacerbated BBB hyperpermeability and tight junction (TJ) disruption during aglycemic hypoxia, indicating a protective role of PKCdelta against aglycemic hypoxia-induced BBB hyperpermeability. Furthermore, disruption of TJ proteins during aglycemic hypoxia was attenuated by PKCbetaII DN and PKCdelta WT overexpression, and aggravated by PKCbetaII WT and PKCdelta DN overexpression. These results suggest that PKCbetaII and PKCdelta counter-regulate BBB permeability during aglycemic hypoxia.
Collapse
|
15
|
Inhibition of PKCgamma membrane translocation mediated morphine preconditioning-induced neuroprotection against oxygen–glucose deprivation in the hippocampus slices of mice. Neurosci Lett 2008; 444:87-91. [DOI: 10.1016/j.neulet.2008.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 07/29/2008] [Accepted: 08/06/2008] [Indexed: 01/24/2023]
|
16
|
Nagaraja TN, Karki K, Ewing JR, Croxen RL, Knight RA. Identification of Variations in Blood-Brain Barrier Opening After Cerebral Ischemia by Dual Contrast-Enhanced Magnetic Resonance Imaging and T
1sat
Measurements. Stroke 2008; 39:427-32. [DOI: 10.1161/strokeaha.107.496059] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Variations in blood-brain barrier (BBB) opening after ischemia have been suggested by some tracer and magnetization transfer studies, although direct in vivo proof is still lacking. Contrast-enhanced magnetic resonance imaging (MRI) is also often used to visualize BBB damage in stroke. We hypothesized that MR contrast agents of different sizes enhance differently when BBB openings vary in size and that magnetization transfer alterations, measured by T
1
in the presence of off-resonance radiofrequency saturation (T
1sat
), in these regions reflect such differences.
Methods—
Male Wistar rats (≈300 g, n=7) were subjected to 3 hours of suture occlusion of the middle cerebral artery followed by reperfusion. Status of the BBB at 24 hours after the ictus was assessed first by Gd-DTPA (554 Da) MRI and then by Gd–bovine serum albumin linked to Evans blue (Gd-BSA-EB; ≈68 kDa) MRI for contrast enhancement; T
1sat
changes, cerebral blood flow, and blood-to-brain transfer constants (
K
i
s) for the 2 contrast agents were measured. After MRI, rats were injected with fluorescent dextran and brains were studied by fluorescence microscopy.
Results—
The Gd-BSA-EB–enhancing areas were always smaller (147±80 pixels) than those for Gd-DTPA (308±204 pixels) and were contained within the latter. The difference between the 2 areas was significant (
P
=0.024). Changes in T
1sat
were larger in Gd-BSA-EB–enhancing areas (ipsilateral to contralateral [I/C]=1.53±0.20) than in Gd-DTPA–enhancing areas (I/C=1.40±0.24,
P
=0.005). The differences in cerebral blood flow values between the 2 regions were not significant (
P
=0.62), but those for the
K
i
values of the 2 tracers were different (
P
=0.01 to 0.02). Excellent agreement between regions of Gd-BSA-EB enhancement and EB fluorescence was also observed.
Conclusions—
These results substantiate earlier reports of regional differences in BBB opening after stroke and provide the first in vivo evidence for this phenomenon. They also support the possible use of T
1sat
in quantifying stroke-induced graded BBB damage in the absence of contrast-enhanced MRI.
Collapse
Affiliation(s)
- Tavarekere N. Nagaraja
- From the Departments of Anesthesiology (T.N.N., R.L.C.) and Neurology (K.K., J.R.E., R.A.K.), Henry Ford Hospital, Detroit, Mich; and the Department of Physics (K.K., J.R.E., R.A.K.), Oakland University, Rochester, Mich
| | - Kishor Karki
- From the Departments of Anesthesiology (T.N.N., R.L.C.) and Neurology (K.K., J.R.E., R.A.K.), Henry Ford Hospital, Detroit, Mich; and the Department of Physics (K.K., J.R.E., R.A.K.), Oakland University, Rochester, Mich
| | - James R. Ewing
- From the Departments of Anesthesiology (T.N.N., R.L.C.) and Neurology (K.K., J.R.E., R.A.K.), Henry Ford Hospital, Detroit, Mich; and the Department of Physics (K.K., J.R.E., R.A.K.), Oakland University, Rochester, Mich
| | - Richard L. Croxen
- From the Departments of Anesthesiology (T.N.N., R.L.C.) and Neurology (K.K., J.R.E., R.A.K.), Henry Ford Hospital, Detroit, Mich; and the Department of Physics (K.K., J.R.E., R.A.K.), Oakland University, Rochester, Mich
| | - Robert A. Knight
- From the Departments of Anesthesiology (T.N.N., R.L.C.) and Neurology (K.K., J.R.E., R.A.K.), Henry Ford Hospital, Detroit, Mich; and the Department of Physics (K.K., J.R.E., R.A.K.), Oakland University, Rochester, Mich
| |
Collapse
|
17
|
Zhang D, Anantharam V, Kanthasamy A, Kanthasamy AG. Neuroprotective effect of protein kinase C delta inhibitor rottlerin in cell culture and animal models of Parkinson's disease. J Pharmacol Exp Ther 2007; 322:913-22. [PMID: 17565007 DOI: 10.1124/jpet.107.124669] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies from our laboratory demonstrated that the protein kinase C (PKC) delta isoform is an oxidative stress-sensitive kinase and a key mediator of apoptotic cell death in Parkinson's Disease (PD) models (Eur J Neurosci 18:1387-1401, 2003; Mol Cell Neurosci 25:406-421, 2004). We showed that native PKC delta is proteolytically activated by caspase-3 and that suppression of PKC delta by dominant-negative mutant or small interfering RNA against the kinase can effectively block apoptotic cell death in cellular models of PD. In an attempt to translate the mechanistic studies to a neuroprotective strategy targeting PKC delta, we systematically characterized the neuroprotective effect of a PKC delta inhibitor, rottlerin, in 1-methyl-4-phenylpyridinium (MPP(+))-treated primary mesencephalic neuronal cultures as well as in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of PD. Rottlerin treatment in primary mesencephalic cultures significantly attenuated MPP(+)-induced tyrosine hydroxylase (TH)-positive neuronal cell and neurite loss. Administration of rottlerin, either intraperitoneally or orally, to C57 black mice showed significant protection against MPTP-induced locomotor deficits and striatal depletion of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid. Notably, rottlerin post-treatment was effective even when MPTP-induced depletion of dopamine and its metabolites was greater than 60%, demonstrating its neurorescue potential. Furthermore, the dose of rottlerin used in neuroprotective studies effectively attenuated the MPTP-induced PKC delta kinase activity. Importantly, stereological analysis of nigral neurons revealed rottlerin treatment significantly protected against MPTP-induced TH-positive neuronal loss in the substantia nigra compacta. Collectively, our findings demonstrate the neuroprotective effect of rottlerin in both cell culture and preclinical animal models of PD, and they suggest that pharmacological modulation of PKC delta may offer a novel therapeutic strategy for treatment of PD.
Collapse
Affiliation(s)
- Danhui Zhang
- Parkinson's Disorder Research Laboratory, Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | |
Collapse
|
18
|
Moyanova SG, Kortenska LV, Mitreva RG, Pashova VD, Ngomba RT, Nicoletti F. Multimodal assessment of neuroprotection applied to the use of MK-801 in the endothelin-1 model of transient focal brain ischemia. Brain Res 2007; 1153:58-67. [PMID: 17466282 DOI: 10.1016/j.brainres.2007.03.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/23/2007] [Accepted: 03/24/2007] [Indexed: 11/28/2022]
Abstract
Transient focal ischemia produced by local infusion of endothelin-1 (ET1) in the territory of the middle cerebral artery has been proposed as a potentially useful model for the screening of drugs developed for the treatment of thrombo-embolic stroke. However, most of the data rely exclusively on the assessment of the infarct volume, which is only a partial predictor of the neurological outcome of stroke. Here, we have validated the model using a multimodal approach for the assessment of neuroprotection, which includes (i) determination of the infarct volume by 2,3,5-triphenyltetrazolium chloride staining; (ii) an in-depth behavioral analysis of the neurological deficit; and (iii) an EEG analysis of electrophysiological abnormalities in the peri-infarct somatosensory forelimb cortical area, S1FL. The non-competitive NMDA receptor antagonist, MK-801 (3 mg/kg, injected i.p. 20 min after ET1 infusion in conscious rats) could reduce the infarct volume, reverse the EEG changes occurring at early times post-ET1, and markedly improve the neurological deficit in ischemic animals. The latter effect, however, was visible at day 3 post-ET1, because the drug itself produced substantial behavioral abnormalities at earlier times. We conclude that a multimodal approach can be applied to the ET1 model of focal ischemia, and that MK-801 can be used as a reference compound to which the activity of safer neuroprotective drugs should be compared.
Collapse
Affiliation(s)
- Slavianka Georgieva Moyanova
- Department of Neurobiology of Adaptation, Laboratory of Integrative Neuropharmacology, Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
19
|
Selvatici R, Falzarano S, Franceschetti L, Cavallini S, Marino S, Siniscalchi A. Differential activation of protein kinase C isoforms following chemical ischemia in rat cerebral cortex slices. Neurochem Int 2006; 49:729-36. [PMID: 16963162 DOI: 10.1016/j.neuint.2006.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/23/2022]
Abstract
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (alpha, beta(1), beta(2), gamma, delta and epsilon) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10mM NaN(3), combined with 2mM 2-deoxyglucose (chemical ischemia); (iii) 1h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC beta(1), delta and epsilon isoforms total levels (cytosol+particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while alpha isoform was slightly reduced and gamma isoform was no longer detectable. After reperfusion, the changes displayed by alpha, beta(1), gamma, delta and epsilon were maintained and even potentiated, moreover, an increase in beta(2) (by 41+/-12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC alpha isoform, which following reperfusion was found only in the cytosol. PKC beta(1) and delta isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC beta(2) and epsilon isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 1mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1muM, prevented the translocation of beta(1) isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in beta(2) and epsilon isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening.
Collapse
Affiliation(s)
- Rita Selvatici
- Department of Experimental and Diagnostic Medicine, Medical Genetics Section, University of Ferrara, Via Fossato di Mortara 74, 44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Background and Purpose—
Stroke is a leading cause of disability and death in the United States, yet limited therapeutic options exist. The need for novel neuroprotective agents has spurred efforts to understand the intracellular signaling pathways that mediate cellular response to stroke. Protein kinase C (PKC) plays a central role in mediating ischemic and reperfusion damage in multiple tissues, including the brain. However, because of conflicting reports, it remains unclear whether PKC is involved in cell survival signaling, or mediates detrimental processes.
Summary of Review—
This review will examine the role of PKC activity in stroke. In particular, we will focus on more recent insights into the PKC isozyme-specific responses in neuronal preconditioning and in ischemia and reperfusion-induced stress.
Conclusion—
Examination of PKC isozyme activities during stroke demonstrates the clinical promise of PKC isozyme-specific modulators for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Rachel Bright
- Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | | |
Collapse
|
21
|
Sridhar J, Pattabiraman N. Synthesis and isozyme selectivity of small molecule protein kinase C inhibitors: a review of patents. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.12.1691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Gupta YK, Briyal S, Sharma U, Jagannathan NR, Gulati A. Effect of endothelin antagonist (TAK-044) on cerebral ischemic volume, oxidative stress markers and neurobehavioral parameters in the middle cerebral artery occlusion model of stroke in rats. Life Sci 2005; 77:15-27. [PMID: 15848215 DOI: 10.1016/j.lfs.2004.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/19/2004] [Indexed: 11/24/2022]
Abstract
Stroke causes brain injury in millions of people world wide each year. Despite the enormity of problem, currently there is no established therapy, which can restore the blood flow at infracted area and also improve the neurological deficit. The present study was carried out to investigate the effect of an endothelin antagonist (TAK-044) in middle cerebral artery (MCA) occlusion model of acute ischemic stroke in rats. Male Wistar rats were pretreated with TAK-044 (5 mg/kg, i.p.) for 7 days and thereafter subjected to focal ischemia by occlusion of MCA using intraluminal thread for two hours. 30 min after reperfusion the animals were subjected to diffusion-weighted imaging (DWI) for assessment of protective effect. Twenty-four hours later the motor performance was tested and subsequently the animals were sacrificed for estimation of markers of oxidative stress; malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Control group received vehicle (saline) and similar experimental protocol was followed. In the TAK-044 pretreated group, percent hemispheric lesion area (% HLA) in DWI was significantly attenuated 17.5 +/- 0.5% as compared to control group 61.2 +/- 5.9%. Significant motor impairment, with significant elevated levels of MDA, decrease in GSH and SOD were observed in the vehicle treated MCA occluded rats. Pretreatment with TAK-044 prevented the motor impairment and significantly reversed the changes in markers of oxidative stress (MDA, GSH and SOD). In addition to well-known vasodilatory effect, TAK-044 has recently been documented to have antioxidant and anti-inflammatory properties. These effects can contribute to the protection afforded by TAK-044 in the present study.
Collapse
Affiliation(s)
- Yogendra K Gupta
- Neuropharmacology Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | | | | | | | | |
Collapse
|
23
|
Chou WH, Messing RO. Protein Kinase C Isozymes in Stroke. Trends Cardiovasc Med 2005; 15:47-51. [PMID: 15885569 DOI: 10.1016/j.tcm.2005.01.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/25/2022]
Abstract
Stroke is a devastating neurologic disease and a leading cause of death and disability worldwide. Thrombolytic agents have been used to re-establish circulation in thromboembolic stroke, but their utility is limited by hemorrhage and reperfusion injury. Studies with experimental stroke models, mouse genetics, and selective peptide inhibitors and activators have implicated protein kinase C (PKC) epsilon in ischemic preconditioning and PKCdelta and gamma in tissue injury. PKCdelta, resident both in neutrophils and in the brain, appears particularly essential for reperfusion injury, and recent work using PKCdelta-specific peptide inhibitors suggests that PKCdelta inhibitors could prove useful in attenuating reperfusion injury and improving outcome following thrombolysis.
Collapse
Affiliation(s)
- Wen-Hai Chou
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California 94608, USA
| | | |
Collapse
|
24
|
|