1
|
Kelly M, Janardhanan J, Wagh C, Verma S, Charles RC, Leung DT, Kamruzzaman M, Pansuriya RK, Chowdhury F, Vann WF, Kaminski RW, Khan AI, Bhuiyan TR, Qadri F, Kováč P, Xu P, Ryan ET. Development of a Shigella conjugate vaccine targeting Shigella flexneri 6 that is immunogenic and provides protection against virulent challenge. Vaccine 2024; 42:126263. [PMID: 39217775 PMCID: PMC11409015 DOI: 10.1016/j.vaccine.2024.126263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Immunity protective against shigella infection targets the bacterial O-specific polysaccharide (OSP) component of lipopolysaccharide. A multivalent shigella vaccine would ideally target the most common global Shigella species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. We previously reported development of shigella conjugate vaccines (SCVs) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using a platform squaric acid chemistry conjugation approach and carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. Here we report development of a SCV targeting S. flexneri 6 (SCV-Sf6) using the same platform approach. We demonstrated that SCV-Sf6 was recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG and IgM responses, as well as rTTHc-specific IgG responses. Immune responses were increased when administered with aluminum phosphate adjuvant. Vaccination induced bactericidal antibody responses against S. flexneri 6, and vaccinated animals were protected against lethal challenge with virulent S. flexneri 6. Our results assist in the development of a multivalent vaccine protective against shigellosis.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeshina Janardhanan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Chanchal Wagh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Smriti Verma
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah, Salt Lake City, UT, USA.
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | | | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | | | - Ashraful Islam Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA.
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA.
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
2
|
Bernshtein B, Kelly M, Cizmeci D, Zhiteneva JA, Macvicar R, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, Qadri F, Charles RC, Xu P, Kováč P, Clarkson KA, Kaminski RW, Alter G, Ryan ET. Determinants of immune responses predictive of protection against shigellosis in an endemic zone: a systems analysis of antibody profiles and function. THE LANCET. MICROBE 2024; 5:100889. [PMID: 39116906 PMCID: PMC11488819 DOI: 10.1016/s2666-5247(24)00112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Shigella is the third leading global cause of moderate or severe diarrhoea among children younger than 5 years globally, and is the leading cause in children aged 24-59 months. The mechanism of protection against Shigella infection and disease in endemic areas is uncertain. We aimed to compare the Shigella-specific antibody responses in individuals living in Shigella-endemic and non-endemic areas, and to identify correlates of protection in a Shigella-endemic location. METHODS We applied a systems approach to retrospectively analyse serological responses to Shigella across endemic and non-endemic populations. We profiled serum samples collected from 44 individuals from the USA without previous exposure to Shigella and who were experimentally challenged with Shigella sonnei (non-endemic setting), and serum samples collected from 55 Peruvian army recruits (endemic setting). In the endemic setting, a subset of 37 samples collected from individuals infected with culture-confirmed Shigella flexneri 2a were divided into two groups: susceptible, which included individuals infected within 90 days of entering the camp (n=29); or resistant, which included individuals infected later than 90 days after entering the camp (n=8). We analysed Shigella-specific antibody isotype, subclass, and Fc receptor binding profiles across IpaB, IpaC, IpaD, and lipopolysaccharide from S flexneri 2a, 3a, and 6, and S sonnei, and O-specific polysaccharide (OSP) from S flexneri 2a and 3a and S sonnei. We also evaluated antibody-mediated complement deposition and innate immune cell activation. The main outcome of interest was the detection of antibody markers and functionality associated with protection against shigellosis in a high-burden endemic setting. FINDINGS Adults with endemic exposure to Shigella possessed broad and functional antibody responses across polysaccharide, glycolipid, and protein antigens compared with individuals from non-endemic regions. In a setting with high Shigella burden, elevated levels of OSP-specific Fcα receptor (FcαR) binding antibodies were associated with resistance to shigellosis, whereas total OSP-specific IgA was not, suggesting a potentially unique functionality. OSP-specific FcαR binding IgA found in resistant individuals activated bactericidal neutrophil functions including phagocytosis, degranulation, and production of reactive oxygen species. Moreover, IgA depletion from resistant serum significantly reduced binding of OSP-specific antibodies to FcαR and antibody-mediated activation of neutrophils and monocytes. INTERPRETATION Our findings suggest that OSP-specific functional IgA responses contribute to protective immunity against Shigella infection in a high-burden setting. These findings will assist in the development and evaluation of Shigella vaccines. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
- Biana Bernshtein
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA.
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Julia A Zhiteneva
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Ryan Macvicar
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Mohammad Kamruzzaman
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh; Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Taufiqur R Bhuiyan
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Peng Xu
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- National Institute of Diabetes and Digestive and Kidney Diseases, Laboratory of Bioorganic Chemistry, National Institutes of Health, Bethesda, MD, USA
| | - Kristen A Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Latham BioPharm Group, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Bernshtein B, Zhiteneva JA, Janardhanan J, Wagh C, Kelly M, Verma S, Jung W, Basher SR, Amin MA, Mahamud S, Rajib NH, Chowdhury F, Khan AI, Charles RC, Xu P, Kováč P, Chakraborty S, Kaminski RW, Alter G, Bhuiyan TR, Qadri F, Ryan ET. Limited O-specific polysaccharide (OSP)-specific functional antibody responses in young children with Shigella infection in Bangladesh. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611236. [PMID: 39345393 PMCID: PMC11429955 DOI: 10.1101/2024.09.04.611236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Shigellosis is the second leading cause of diarrheal death in children younger than five years of age globally. At present, there is no broadly licensed vaccine against shigella infection. Previous vaccine candidates have failed at providing protection for young children in endemic settings. Improved understanding of correlates of protection against Shigella infection and severe shigellosis in young children living in endemic settings is needed. Here, we applied a functional antibody profiling approach to define Shigella-specific antibody responses in young children versus older individuals with culture-confirmed shigellosis in Bangladesh, a Shigella endemic area. We analyzed Shigella-specific antibody isotypes, FcR binding and antibody-mediated innate immune cell activation in longitudinal serum samples collected at clinical presentation and up to 1 year later. We found that higher initial Shigella O-specific polysaccharide (OSP)-specific and protein-specific IgG and FcγR binding levels correlated with less severe disease regardless of patient age, but that individuals under 5 years of age developed a less prominent class switched, FcR-binding, functional and durable antibody response against both OSP and protein Shigella antigens than older individuals. Focusing on the largest cohort, we found that functional S. flexneri 2a OSP-specific responses were significantly induced only in individuals over age 5 years, and that these responses promoted monocyte phagocytosis and activation. Our findings suggest that in a Shigella endemic region, young children with shigellosis harbor a functional antibody response that fails to maximally activate monocytes; such a response may be important in facilitating subsequent innate cell clearance of Shigella, especially via recruitment and activation of polymorphonuclear cells capable of directly killing Shigella.
Collapse
|
5
|
Conti V, Rossi O, Clarkson KA, Mancini F, Nakakana UN, Sarakinou E, Callegaro A, Ferruzzi P, Acquaviva A, Arora AK, Marchetti E, Necchi F, Frenck RW, Martin LB, Kaminski RW, Podda A, Micoli F. Putative correlates of protection against shigellosis assessing immunomarkers across responses to S. sonnei investigational vaccine. NPJ Vaccines 2024; 9:56. [PMID: 38459072 PMCID: PMC10923941 DOI: 10.1038/s41541-024-00822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/30/2024] [Indexed: 03/10/2024] Open
Abstract
Shigella spp. are a leading bacterial cause of diarrhea. No widely licensed vaccines are available and there is no generally accepted correlate of protection. We tested a S. sonnei Generalized Modules for Membrane Antigen (GMMA)-based vaccine (1790GAHB) in a phase 2b, placebo-controlled, randomized, controlled human infection model study (NCT03527173) enrolling healthy United States adults aged 18-50 years. We report analyses evaluating immune responses to vaccination, with the aim to identify correlates of risk for shigellosis among assessed immunomarkers. We found that 1790GAHB elicited S. sonnei lipopolysaccharide specific α4β7+ immunoglobulin (Ig) G and IgA secreting B cells which are likely homing to the gut, indicating the ability to induce a mucosal in addition to a systemic response, despite parenteral delivery. We were unable to establish or confirm threshold levels that predict vaccine efficacy facilitating the evaluation of vaccine candidates. However, serum anti-lipopolysaccharide IgG and bactericidal activity were identified as potential correlates of risk for shigellosis.
Collapse
Affiliation(s)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Kristen A Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Horizon Therapeutics, Deerfield, IL, USA
| | | | | | | | | | | | | | | | | | | | - Robert W Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Siena, Italy
- US Pharmacopeial Convention, Rockville, MD, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Latham BioPharm Group, Cambridge, MA, USA
| | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
- Independent Consultant, Siena, Italy
| | | |
Collapse
|
6
|
Clarkson KA, Porter CK, Talaat KR, Kapulu MC, Chen WH, Frenck RW, Bourgeois AL, Kaminski RW, Martin LB. Shigella-Controlled Human Infection Models: Current and Future Perspectives. Curr Top Microbiol Immunol 2024; 445:257-313. [PMID: 35616717 PMCID: PMC7616482 DOI: 10.1007/82_2021_248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Shigella-controlled human infection models (CHIMs) are an invaluable tool utilized by the vaccine community to combat one of the leading global causes of infectious diarrhea, which affects infants, children and adults regardless of socioeconomic status. The impact of shigellosis disproportionately affects children in low- and middle-income countries (LMICs) resulting in cognitive and physical stunting, perpetuating a cycle that must be halted. Shigella-CHIMs not only facilitate the early evaluation of enteric countermeasures and up-selection of the most promising products but also provide insight into mechanisms of infection and immunity that are not possible utilizing animal models or in vitro systems. The greater understanding of shigellosis obtained in CHIMs builds and empowers the development of new generation solutions to global health issues which are unattainable in the conventional laboratory and clinical settings. Therefore, refining, mining and expansion of safe and reproducible infection models hold the potential to create effective means to end diarrheal disease and associated co-morbidities associated with Shigella infection.
Collapse
Affiliation(s)
- Kristen A Clarkson
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Chad K Porter
- Enteric Disease Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway Street Hampton House, Baltimore, MD, 21205, USA
| | - Melissa C Kapulu
- Department of Biosciences, KEMRI-Wellcome Trust Research Programme, Kilifi County Hospital, Off Bofa Road, Kilifi, 80108, Kenya
| | - Wilbur H Chen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Robert W Frenck
- Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - A Louis Bourgeois
- PATH Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Washington, DC, 20001, USA
| | - Robert W Kaminski
- Department of Diarrheal Disease Research, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA
| | - Laura B Martin
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100, Siena, Italy.
| |
Collapse
|
7
|
Hausdorff WP, Anderson JD, Bagamian KH, Bourgeois AL, Mills M, Sawe F, Scheele S, Talaat K, Giersing BK. Vaccine value profile for Shigella. Vaccine 2023; 41 Suppl 2:S76-S94. [PMID: 37827969 DOI: 10.1016/j.vaccine.2022.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 10/14/2023]
Abstract
Shigella is the leading bacterial cause of diarrhoea and the second leading cause of diarrhoeal mortality among all ages. It also exhibits increasing levels of antibiotic resistance. The greatest burden is among children under five in low- and middle-income countries (LMICs). As such, a priority strategic goal of the World Health Organization (WHO) is the development of a safe, effective and affordable vaccine to reduce morbidity and mortality from Shigella-attributable dysentery and diarrhea, including long term outcomes associated with chronic inflammation and growth faltering, in children under 5 years of age in LMICs. In addition, a safe and effective Shigella vaccine is of potential interest to travellers and military both to prevent acute disease and rarer, long-term sequelae. An effective Shigella vaccine is also anticipated to reduce antibiotic use and thereby help diminish further emergence of enteric pathogens resistant to antimicrobials. The most advanced vaccine candidates are multivalent, parenteral formulations in Phase 2 and Phase 3 clinical studies. They rely on O-antigen-polysaccharide protein conjugate technologies or, alternatively, outer membrane vesicles expressing penta-acylated lipopolysaccharide that has been detoxified. Other parenteral and oral formulations, many delivering a broader array of Shigella antigens, are at earlier stages of clinical development. These formulations are being assessed in alignment with the WHO Preferred Product Characteristics, which call for a 1 to 2 dose primary immunization series given during the first 12 months of life, ideally starting at 6 months of age. This 'Vaccine Value Profile' (VVP) for Shigella is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, government agencies and multi-lateral organizations. All contributors have extensive expertise on various elements of the Shigella VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- William P Hausdorff
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA; Faculty of Medicine, Université de Bruxelles, Brussels 1070, Belgium.
| | - John D Anderson
- Office of Health Affairs, West Virginia University, Morgantown, WV 26505, USA; Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA
| | - Karoun H Bagamian
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL 32603, USA
| | - A Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Melody Mills
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Frederick Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Suzanne Scheele
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Kawsar Talaat
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Birgitte K Giersing
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| |
Collapse
|
8
|
Toapanta FR, Hu J, Meron-Sudai S, Mulard LA, Phalipon A, Cohen D, Sztein MB. Further characterization of Shigella-specific (memory) B cells induced in healthy volunteer recipients of SF2a-TT15, a Shigella flexneri 2a synthetic glycan-based vaccine candidate. Front Immunol 2023; 14:1291664. [PMID: 38022674 PMCID: PMC10653583 DOI: 10.3389/fimmu.2023.1291664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Shigellosis is common worldwide, and it causes significant morbidity and mortality mainly in young children in low- and middle- income countries. To date, there are not broadly available licensed Shigella vaccines. A novel type of conjugate vaccine candidate, SF2a-TT15, was developed against S. flexneri serotype 2a (SF2a). SF2a-TT15 is composed of a synthetic 15mer oligosaccharide, designed to act as a functional mimic of the SF2a O-antigen and covalently linked to tetanus toxoid (TT). SF2a-TT15 was recently shown to be safe and immunogenic in a Phase 1 clinical trial, inducing specific memory B cells and sustained antibody response up to three years after the last injection. In this manuscript, we advance the study of B cell responses to parenteral administration of SF2a-TT15 to identify SF2a LPS-specific B cells (SF2a+ B cells) using fluorescently labeled bacteria. SF2a+ B cells were identified mainly within class-switched B cells (SwB cells) in volunteers vaccinated with SF2a-TT15 adjuvanted or not with aluminium hydroxide (alum), but not in placebo recipients. These cells expressed high levels of CXCR3 and low levels of CD21 suggesting an activated phenotype likely to represent the recently described effector memory B cells. IgG SF2a+ SwB cells were more abundant than IgA SF2a + SwB cells. SF2a+ B cells were also identified in polyclonally stimulated B cells (antibody secreting cells (ASC)-transformed). SF2a+ ASC-SwB cells largely maintained the activated phenotype (CXCR3 high, CD21 low). They expressed high levels of CD71 and integrin α4β7, suggesting a high proliferation rate and ability to migrate to gut associated lymphoid tissues. Finally, ELISpot analysis showed that ASC produced anti-SF2a LPS IgG and IgA antibodies. In summary, this methodology confirms the ability of SF2a-TT15 to induce long-lived memory B cells, initially identified by ELISpots, which remain identifiable in blood up to 140 days following vaccination. Our findings expand and complement the memory B cell data previously reported in the Phase 1 trial and provide detailed information on the immunophenotypic characteristics of these cells. Moreover, this methodology opens the door to future studies at the single-cell level to better characterize the development of B cell immunity to Shigella.
Collapse
Affiliation(s)
- Franklin R. Toapanta
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jingping Hu
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiri Meron-Sudai
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Laurence A. Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité Chimie des Biomolécules, Paris, France
| | - Armelle Phalipon
- Institut Pasteur, Université Paris Cité, Laboratoire Innovation: Vaccins, Paris, France
| | - Dani Cohen
- School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo B. Sztein
- Department of Medicine and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Kelly M, Mandlik A, Charles RC, Verma S, Calderwood SB, Leung DT, Biswas R, Islam K, Kamruzzaman M, Chowdhury F, Khanam F, Vann WF, Khan AI, Bhuiyan TR, Qadri F, Vortherms AR, Kaminski R, Kováč P, Xu P, Ryan ET. Development of Shigella conjugate vaccines targeting Shigella flexneri 2a and S. flexneri 3a using a simple platform-approach conjugation by squaric acid chemistry. Vaccine 2023; 41:4967-4977. [PMID: 37400283 PMCID: PMC10529421 DOI: 10.1016/j.vaccine.2023.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
There is a need for vaccines effective against shigella infection in young children in resource-limited areas. Protective immunity against shigella infection targets the O-specific polysaccharide (OSP) component of lipopolysaccharide. Inducing immune responses to polysaccharides in young children can be problematic, but high level and durable responses can be induced by presenting polysaccharides conjugated to carrier proteins. An effective shigella vaccine will need to be multivalent, targeting the most common global species and serotypes such as Shigella flexneri 2a, S. flexneri 3a, S. flexneri 6, and S. sonnei. Here we report the development of shigella conjugate vaccines (SCV) targeting S. flexneri 2a (SCV-Sf2a) and 3a (SCV-Sf3a) using squaric acid chemistry to result in single point sun-burst type display of OSP from carrier protein rTTHc, a 52 kDa recombinant protein fragment of the heavy chain of tetanus toxoid. We confirmed structure and demonstrated that these conjugates were recognized by serotype-specific monoclonal antibodies and convalescent sera of humans recovering from shigellosis in Bangladesh, suggesting correct immunological display of OSP. We vaccinated mice and found induction of serotype-specific OSP and LPS IgG responses, as well as rTTHc-specific IgG responses. Vaccination induced serotype-specific bactericidal antibody responses against S. flexneri, and vaccinated animals were protected against keratoconjunctivitis (Sereny test) and intraperitoneal challenge with virulent S. flexneri 2a and 3a, respectively. Our results support further development of this platform conjugation technology in the development of shigella conjugate vaccines for use in resource-limited settings.
Collapse
Affiliation(s)
- Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Anjali Mandlik
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Smriti Verma
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Daniel T Leung
- Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, USA
| | - Rajib Biswas
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Kamrul Islam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Farhana Khanam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Willie F Vann
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ashraful Islam Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anthony R Vortherms
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Robert Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Bernshtein B, Kelly M, Cizmeci D, Zhiteneva JA, Macvicar R, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, Qadri F, Charles RC, Xu P, Kováč P, Kaminski RW, Alter G, Ryan ET. Shigella O-specific polysaccharide functional IgA responses mediate protection against shigella infection in an endemic high-burden setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539451. [PMID: 37205407 PMCID: PMC10187263 DOI: 10.1101/2023.05.04.539451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Shigella is the second leading cause of diarrheal disease-related death in young children in low and middle income countries. The mechanism of protection against shigella infection and disease in endemic areas is uncertain. While historically LPS-specific IgG titers have been associated with protection in endemic settings, emerging deeper immune approaches have recently elucidated a protective role for IpaB-specific antibody responses in a controlled human challenge model in North American volunteers. To deeply interrogate potential correlates of immunity in areas endemic for shigellosis, here we applied a systems approach to analyze the serological response to shigella across endemic and non-endemic populations. Additionally, we analyzed shigella-specific antibody responses over time in the context of endemic resistance or breakthrough infections in a high shigella burden location. Individuals with endemic exposure to shigella possessed broad and functional antibody responses across both glycolipid and protein antigens compared to individuals from non-endemic regions. In high shigella burden settings, elevated levels of OSP-specific FcαR binding antibodies were associated with resistance to shigellosis. OSP-specific FcαR binding IgA found in resistant individuals activated bactericidal neutrophil functions including phagocytosis, degranulation and reactive oxygen species production. Moreover, IgA depletion from resistant serum significantly reduced binding of OSP-specific antibodies to FcαR and antibody mediated activation of neutrophils and monocytes. Overall, our findings suggest that OSP-specific functional IgA responses contribute to protective immunity against shigella infection in high-burden settings. These findings will assist in the development and evaluation of shigella vaccines.
Collapse
|
11
|
Cohen D, Ashkenazi S, Schneerson R, Farzam N, Bialik A, Meron-Sudai S, Asato V, Goren S, Baran TZ, Muhsen K, Gilbert PB, MacLennan CA. Threshold protective levels of serum IgG to Shigella lipopolysaccharide: re-analysis of Shigella vaccine trials data. Clin Microbiol Infect 2023; 29:366-371. [PMID: 36243351 PMCID: PMC9993342 DOI: 10.1016/j.cmi.2022.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Establishing a correlate of protection is essential for the development and licensure of Shigella vaccines. We examined potential threshold levels of serum IgG to Shigella lipopolysaccharide (LPS) that could predict protection against shigellosis. METHODS We performed new analyses of serologic and vaccine efficacy (VE) data from two randomized vaccine-controlled trials of the Shigella sonnei-Pseudomonas aeruginosa recombinant exoprotein A (rEPA) conjugate conducted in young adults and children aged 1-4 years in Israel. Adults received either S. sonnei-rEPA (n = 183) or control vaccines (n = 277). Children received the S. sonnei-rEPA conjugate (n = 1384) or S. flexneri 2a-rEPA conjugate (n = 1315). VE against culture-proven shigellosis was determined. Sera were tested for IgG anti-S. sonnei LPS antibodies. We assessed the association of various levels of IgG anti-S. sonnei LPS antibodies with S. sonnei shigellosis risk using logistic regression models and the reverse cumulative distribution of IgG levels. RESULTS Among adults, four vaccinees and 23 controls developed S. sonnei shigellosis; the VE was 74% (95% CI, 28-100%). A threshold of ≥1:1600 IgG anti-S. sonnei LPS titre was associated with a reduced risk of S. sonnei shigellosis and a predicted VE of 73.6% (95% CI, 65-80%). The IgG anti-S. sonnei LPS correlated with serum bactericidal titres. In children, a population-based level of 4.5 ELISA Units (EU) corresponding to 1:1072 titre, predicted VE of 63%, versus 71% observed VE in children aged 3-4 years. The predicted VE in children aged 2-4 years was 49%, consistent with the 52% observed VE. CONCLUSION Serum IgG anti-S. sonnei LPS threshold levels can predict the degree of VE and can be used for the evaluation of new vaccine candidates.
Collapse
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel, Israel; Schneider Children's Medical Center, Petach Tikva, Israel
| | - Rachel Schneerson
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nahid Farzam
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Ramat Gan, Tel Aviv, Israel
| | - Anya Bialik
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Meron-Sudai
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valeria Asato
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tomer Ziv Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Calman A MacLennan
- Bill and Melinda Gates Foundation, London, United Kingdom; Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Bernshtein B, Ndungo E, Cizmeci D, Xu P, Kováč P, Kelly M, Islam D, Ryan ET, Kotloff KL, Pasetti MF, Alter G. Systems approach to define humoral correlates of immunity to Shigella. Cell Rep 2022; 40:111216. [PMID: 35977496 PMCID: PMC9396529 DOI: 10.1016/j.celrep.2022.111216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Shigella infection is the second leading cause of death due to diarrheal disease in young children worldwide. With the rise of antibiotic resistance, initiatives to design and deploy a safe and effective Shigella vaccine are urgently needed. However, efforts to date have been hindered by the limited understanding of immunological correlates of protection against shigellosis. We applied systems serology to perform a comprehensive analysis of Shigella-specific antibody responses in sera obtained from volunteers before and after experimental infection with S. flexneri 2a in a series of controlled human challenge studies. Polysaccharide-specific antibody responses are infrequent prior to infection and evolve concomitantly with disease severity. In contrast, pre-existing antibody responses to type 3 secretion system proteins, particularly IpaB, consistently associate with clinical protection from disease. Linked to particular Fc-receptor binding patterns, IpaB-specific antibodies leverage neutrophils and monocytes, and complement and strongly associate with protective immunity. IpaB antibody-mediated functions improve with a subsequent rechallenge resulting in complete clinical protection. Collectively, our systems serological analyses indicate protein-specific functional correlates of immunity against Shigella in humans. Serological profiling of Shigella human challenge studies indicates protective markers Pre-existing IpaB-specific functional antibodies associate with less severe disease OPS immune responses post challenge are linked to less severe disease Shigella rechallenge boosts IpaB but not OPS functional antibody responses
Collapse
Affiliation(s)
| | - Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, MD, USA
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dilara Islam
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Galit Alter
- Ragon Institute of MGH, Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
13
|
Cohen D, Meron-Sudai S, Bialik A, Asato V, Ashkenazi S. Detoxified O-Specific Polysaccharide (O-SP)-Protein Conjugates: Emerging Approach in the Shigella Vaccine Development Scene. Vaccines (Basel) 2022; 10:675. [PMID: 35632431 PMCID: PMC9145086 DOI: 10.3390/vaccines10050675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/17/2022] Open
Abstract
Shigella is the second most common cause of moderate to severe diarrhea among children worldwide and of diarrheal disease-associated mortality in young children in low-and middle-income countries. In spite of many years of attempts to develop Shigella vaccines, no licensed vaccines are yet available. Injectable conjugate vaccines made of the detoxified lipopolysaccharide (LPS) of S. flexneri 2a, S. sonnei, and S. dysenteriae type 1 covalently bound to protein carriers were developed in the early 1990s by John B. Robbins and Rachel Schneerson at the US National Institutes of Health. This approach was novel for a disease of the gut mucosa, at a time when live, rationally attenuated oral vaccine strains that intended to mimic Shigella infection and induce a protective local immune response were extensively investigated. Of keystone support to Shigella glycoconjugates development were the findings of a strong association between pre-existent serum IgG antibodies to S. sonnei or S. flexneri 2a LPS and a lower risk of infection with the homologous Shigella serotypes among Israeli soldiers serving in field units. In view of these findings and of the successful development of the pioneering Haemophilus influenzae type b conjugate vaccines, it was hypothesized that protective immunity may be conferred by serum IgG antibodies to the O-Specific Polysaccharide (O-SP) following parenteral delivery of the conjugates. S. sonnei and S. flexneri 2a glycoconjugates induced high levels of serum IgG against the homologous LPS in phase I and II studies in healthy volunteers. The protective efficacy of a S. sonnei detoxified LPS-conjugate was further demonstrated in field trials in young adults (74%) and in children older than three years of age (71%), but not in younger ones. The evaluation of the Shigella conjugates confirmed that IgG antibodies to Shigella LPS are correlates of protection and provided solid basis for the development of a new generation of glycoconjugates and other injectable LPS-based vaccines that are currently in advanced stages of clinical evaluation.
Collapse
Affiliation(s)
- Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Valeria Asato
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; (S.M.-S.); (A.B.); (V.A.)
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Schneider Children’s Medical Center, Petach Tikva 49202, Israel
| |
Collapse
|
14
|
Micoli F, Nakakana UN, Berlanda Scorza F. Towards a Four-Component GMMA-Based Vaccine against Shigella. Vaccines (Basel) 2022; 10:328. [PMID: 35214786 PMCID: PMC8880054 DOI: 10.3390/vaccines10020328] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Shigellosis remains a major public health problem around the world; it is one of the leading causes of diarrhoeal disease in low- and middle-income countries, particularly in young children. The increasing reports of Shigella cases associated with anti-microbial resistance are an additional element of concern. Currently, there are no licensed vaccines widely available against Shigella, but several vaccine candidates are in development. It has been demonstrated that the incidence of disease decreases following a prior Shigella infection and that serum and mucosal antibody responses are predominantly directed against the serotype-specific Shigella O-antigen portion of lipopolysaccharide membrane molecules. Many Shigella vaccine candidates are indeed O-antigen-based. Here we present the journey towards the development of a potential low-cost four-component Shigella vaccine, eliciting broad protection against the most prevalent Shigella serotypes, that makes use of the GMMA (Generalized Modules for Membrane Antigens) technology, a novel platform based on bacterial outer membranes for delivery of the O-antigen to the immune system.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (U.N.N.); (F.B.S.)
| | | | | |
Collapse
|
15
|
Arato V, Oldrini D, Massai L, Gasperini G, Necchi F, Micoli F. Impact of O-Acetylation on S. flexneri 1b and 2a O-Antigen Immunogenicity in Mice. Microorganisms 2021; 9:microorganisms9112360. [PMID: 34835485 PMCID: PMC8623282 DOI: 10.3390/microorganisms9112360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Shigellosis is a diarrheal disease caused prevalently by Shigella flexneri and S. sonnei and representing a major global health risk, particularly in developing countries. Bacterial O-antigen (OAg) is the primary target of the host immune response and modifications of its oligosaccharide units, including O-acetylation, are responsible for the variability among the circulating S. flexneri serotypes. No vaccines are widely available against shigellosis and the understanding of the immunogenicity induced by the OAg is fundamental for the design of a vaccine that could cover the most prevalent Shigella serotypes. To understand whether a different O-acetylation pattern could influence the immune response elicited by S. flexneri OAg, we employed as a vaccine technology GMMA purified from S. flexneri 2a and 1b strains that were easily engineered to obtain differently O-acetylated OAg. Resulting GMMA were tested in mice, demonstrating not only no major impact of O-acetyl decorations on the immune response elicited by the two OAg against the homologous strains, but also that the O-acetylation of the Rhamnose III residue (O-factor 9), shared among serotypes 1b, 2a and 6, does not induce cross-reactive antibodies against these serotypes. This work contributes to the optimization of vaccine design against Shigella, providing indication about the ability of shared epitopes to elicit broad protection against S. flexneri serotypes and supporting the identification of critical quality attributes of OAg-based vaccines.
Collapse
|
16
|
Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021; 10:pathogens10111353. [PMID: 34832508 PMCID: PMC8621228 DOI: 10.3390/pathogens10111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.
Collapse
|
17
|
Ndungo E, Andronescu LR, Buchwald AG, Lemme-Dumit JM, Mawindo P, Kapoor N, Fairman J, Laufer MK, Pasetti MF. Repertoire of Naturally Acquired Maternal Antibodies Transferred to Infants for Protection Against Shigellosis. Front Immunol 2021; 12:725129. [PMID: 34721387 PMCID: PMC8554191 DOI: 10.3389/fimmu.2021.725129] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Shigella is the second leading cause of diarrheal diseases, accounting for >200,000 infections and >50,000 deaths in children under 5 years of age annually worldwide. The incidence of Shigella-induced diarrhea is relatively low during the first year of life and increases substantially, reaching its peak between 11 to 24 months of age. This epidemiological trend hints at an early protective immunity of maternal origin and an increase in disease incidence when maternally acquired immunity wanes. The magnitude, type, antigenic diversity, and antimicrobial activity of maternal antibodies transferred via placenta that can prevent shigellosis during early infancy are not known. To address this knowledge gap, Shigella-specific antibodies directed against the lipopolysaccharide (LPS) and virulence factors (IpaB, IpaC, IpaD, IpaH, and VirG), and antibody-mediated serum bactericidal (SBA) and opsonophagocytic killing antibody (OPKA) activity were measured in maternal and cord blood sera from a longitudinal cohort of mother-infant pairs living in rural Malawi. Protein-specific (very high levels) and Shigella LPS IgG were detected in maternal and cord blood sera; efficiency of placental transfer was 100% and 60%, respectively, and had preferential IgG subclass distribution (protein-specific IgG1 > LPS-specific IgG2). In contrast, SBA and OPKA activity in cord blood was substantially lower as compared to maternal serum and varied among Shigella serotypes. LPS was identified as the primary target of SBA and OPKA activity. Maternal sera had remarkably elevated Shigella flexneri 2a LPS IgM, indicative of recent exposure. Our study revealed a broad repertoire of maternally acquired antibodies in infants living in a Shigella-endemic region and highlights the abundance of protein-specific antibodies and their likely contribution to disease prevention during the first months of life. These results contribute new knowledge on maternal infant immunity and target antigens that can inform the development of vaccines or therapeutics that can extend protection after maternally transferred immunity wanes.
Collapse
Affiliation(s)
- Esther Ndungo
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Liana R. Andronescu
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrea G. Buchwald
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Patricia Mawindo
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | | | | | - Miriam K. Laufer
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcela F. Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Frenck RW, Conti V, Ferruzzi P, Ndiaye AG, Parker S, McNeal MM, Dickey M, Granada JP, Cilio GL, De Ryck I, Necchi F, Suvarnapunya AE, Rossi O, Acquaviva A, Chandrasekaran L, Clarkson KA, Auerbach J, Marchetti E, Kaminski RW, Micoli F, Rappuoli R, Saul A, Martin LB, Podda A. Efficacy, safety, and immunogenicity of the Shigella sonnei 1790GAHB GMMA candidate vaccine: Results from a phase 2b randomized, placebo-controlled challenge study in adults. EClinicalMedicine 2021; 39:101076. [PMID: 34430837 PMCID: PMC8367798 DOI: 10.1016/j.eclinm.2021.101076] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Shigellosis accounts for substantial morbidity and mortality worldwide and is the second most common cause of moderate and severe diarrhoea in children. METHODS This phase 2b study (NCT03527173), conducted between August 2018 and November 2019, evaluated vaccine efficacy (VE), safety, and immunogenicity of a Shigella sonnei GMMA candidate vaccine (1790GAHB) in adults, using a S. sonnei 53 G controlled human infection model. Participants (randomized 1:1) received two doses of 1790GAHB or placebo (GAHB-Placebo), at day (D) 1 and D29, and an oral challenge of S. sonnei 53 G at D57. VE was evaluated using several endpoints, reflecting different case definitions of shigellosis. For the primary endpoint, the success criterion was a lower limit of the 90% confidence interval >0. FINDINGS Thirty-six and 35 participants received 1790GAHB or placebo, respectively; 33 and 29 were challenged, 15 and 12 developed shigellosis. VE was not demonstrated for any endpoint. Adverse events were more frequent in 1790GAHB versus placebo recipients post-vaccination. Anti-S. sonnei lipopolysaccharide (LPS) IgG responses increased at D29 and remained stable through D57 in group 1790GAHB; no increase was shown in placebo recipients. INTERPRETATION 1790GAHB had an acceptable safety profile and induced anti-LPS IgG responses but did not demonstrate clinical efficacy against shigellosis. Baseline/pre-challenge antibody levels were higher in participants who did not develop shigellosis post-challenge, suggesting a role of anti-LPS IgG antibodies in clinical protection, although not fully elucidated in this study. For further vaccine development an increased S. sonnei O-antigen content is likely needed to enhance anti-LPS immune responses. FUNDING GlaxoSmithKline Biologicals SA, Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Robert W. Frenck
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | | | | | | | - Susan Parker
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Monica Malone McNeal
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Michelle Dickey
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | | | | | | | | | - Akamol E. Suvarnapunya
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - Lakshmi Chandrasekaran
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | - Kristen A. Clarkson
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | | | | | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States
| | | | - Rino Rappuoli
- GSK Vaccines Institute for Global Health, Siena, Italy
- GSK, Siena, Italy
| | - Allan Saul
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
- Corresponding author at: GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
19
|
Chisenga CC, Bosomprah S, Simuyandi M, Mwila-Kazimbaya K, Chilyabanyama ON, Laban NM, Bialik A, Asato V, Meron-Sudai S, Frankel G, Cohen D, Chilengi R. Shigella-specific antibodies in the first year of life among Zambian infants: A longitudinal cohort study. PLoS One 2021; 16:e0252222. [PMID: 34043697 PMCID: PMC8158915 DOI: 10.1371/journal.pone.0252222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/11/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Shigellosis, is a leading cause of moderate-to-severe diarrhoea and related mortality in young children in low and middle income countries (LMICs). Knowledge on naturally acquired immunity can support the development of Shigella candidate vaccines mostly needed in LMICs. We aimed to quantify Shigella-specific antibodies of maternal origin and those naturally acquired in Zambian infants. Methods Plasma samples collected from infants at age 6, 14 and 52-weeks were tested for Shigella (S. sonnei and S. flexneri 2a) lipopolysaccharide (LPS) antigen specific immunoglobulin G (IgG) and A (IgA) by enzyme-linked immunosorbent assay. Results At 6 weeks infant age, the IgG geometric mean titres (GMT) against S. sonnei (N = 159) and S. flexneri 2a (N = 135) LPS were 311 (95% CI 259–372) and 446 (95% CI 343–580) respectively. By 14 weeks, a decline in IgG GMT was observed for both S. sonnei to 104 (95% CI 88–124), and S. flexneri 2a to 183 (95% CI 147–230). Both S. sonnei and S. flexneri 2a specific IgG GMT continued to decrease by 52 weeks infant age when compared to 6 weeks. In 27% and 8% of infants a significant rise in titre (4 fold and greater) against S. flexneri 2a and S. sonnei LPS, respectively, was detected between the ages of 14 and 52 weeks. IgA levels against both species LPS were very low at 6 and 14 weeks and raised significantly against S. flexneri 2a and S. sonnei LPS in 29% and 10% of the infants, respectively. Conclusion In our setting, transplacental IgG anti-Shigella LPS is present at high levels in early infancy, and begins to decrease by age 14 weeks. Our results are consistent with early exposure to Shigella and indicate naturally acquired IgG and IgA antibodies to S. flexneri 2a and S. sonnei LPS in part of infants between 14 and 52 weeks of age. These results suggest that a potential timing of vaccination would be after 14 and before 52 weeks of age to ensure early infant protection against shigellosis.
Collapse
Affiliation(s)
| | - Samuel Bosomprah
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | | | | | | | - Natasha M. Laban
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Anya Bialik
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valeria Asato
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Meron-Sudai
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gad Frankel
- Imperial College London, London, United Kingdom
| | - Daniel Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Chilengi
- Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| |
Collapse
|
20
|
Micoli F, Rossi O, Conti V, Launay O, Sciré AS, Aruta MG, Nakakana UN, Marchetti E, Rappuoli R, Saul A, Martin LB, Necchi F, Podda A. Antibodies Elicited by the Shigella sonnei GMMA Vaccine in Adults Trigger Complement-Mediated Serum Bactericidal Activity: Results From a Phase 1 Dose Escalation Trial Followed by a Booster Extension. Front Immunol 2021; 12:671325. [PMID: 34017343 PMCID: PMC8129577 DOI: 10.3389/fimmu.2021.671325] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
Shigella is the second most deadly diarrheal disease among children under five years of age, after rotavirus, with high morbidity and mortality in developing countries. Currently, no vaccine is widely available, and the increasing levels of multidrug resistance make Shigella a high priority for vaccine development. The single-component candidate vaccine against Shigella sonnei (1790GAHB), developed using the GMMA technology, contains the O antigen (OAg) portion of lipopolysaccharide (LPS) as active moiety. The vaccine was well tolerated and immunogenic in early-phase clinical trials. In a phase 1 placebo-controlled dose escalation trial in France (NCT02017899), three doses of five different vaccine formulations (0.06/1, 0.3/5, 1.5/25, 3/50, 6/100 µg of OAg/protein) were administered to healthy adults. In the phase 1 extension trial (NCT03089879), conducted 2–3 years following the parent study, primed individuals who had undetectable antibody levels before the primary series received a 1790GAHB booster dose (1.5/25 µg OAg/protein). Controls were unprimed participants immunized with one 1790GAHB dose. The current analysis assessed the functionality of sera collected from both studies using a high-throughput luminescence-based serum bactericidal activity (SBA) assay optimized for testing human sera. Antibodies with complement-mediated bactericidal activity were detected in vaccinees but not in placebo recipients. SBA titers increased with OAg dose, with a persistent response up to six months after the primary vaccination with at least 1.5/25 µg of OAg/protein. The booster dose induced a strong increase of SBA titers in most primed participants. Correlation between SBA titers and anti-S. sonnei LPS serum immunoglobulin G levels was observed. Results suggest that GMMA is a promising OAg delivery system for the generation of functional antibody responses and persistent immunological memory.
Collapse
Affiliation(s)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - Odile Launay
- Faculté de Médecine Paris Descartes, Université de Paris, Paris, France.,Inserm CIC 1417, F-CRIN I-REIVAC, Paris, France
| | | | | | | | | | - Rino Rappuoli
- GSK Vaccines Institute for Global Health, Siena, Italy
| | - Allan Saul
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
21
|
Cohen D, Atsmon J, Artaud C, Meron-Sudai S, Gougeon ML, Bialik A, Goren S, Asato V, Ariel-Cohen O, Reizis A, Dorman A, Hoitink CWG, Westdijk J, Ashkenazi S, Sansonetti P, Mulard LA, Phalipon A. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. THE LANCET. INFECTIOUS DISEASES 2021; 21:546-558. [DOI: 10.1016/s1473-3099(20)30488-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/11/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
|
22
|
Dhara D, Mulard LA. Exploratory N-Protecting Group Manipulation for the Total Synthesis of Zwitterionic Shigella sonnei Oligosaccharides. Chemistry 2021; 27:5694-5711. [PMID: 33314456 PMCID: PMC8048667 DOI: 10.1002/chem.202003480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Shigella sonnei surface polysaccharides are well-established protective antigens against this major cause of diarrhoeal disease. They also qualify as unique zwitterionic polysaccharides (ZPSs) featuring a disaccharide repeating unit made of two 1,2-trans linked rare aminodeoxy sugars, a 2-acetamido-2-deoxy-l-altruronic acid (l-AltpNAcA) and a 2-acetamido-4-amino-2,4,6-trideoxy-d-galactopyranose (AAT). Herein, the stereoselective synthesis of S. sonnei oligosaccharides comprising two, three and four repeating units is reported for the first time. Several sets of up to seven protecting groups were explored, shedding light on the singular conformational behavior of protected altrosamine and altruronic residues. A disaccharide building block equipped with three distinct N-protecting groups and featuring the uronate moiety already in place was designed to accomplish the iterative high yielding glycosylation at the axial 4-OH of the altruronate component and achieve the challenging full deprotection step. Key to the successful route was the use of a diacetyl strategy whereby the N-acetamido group of the l-AltpNAcA is masked in the form of an imide.
Collapse
Affiliation(s)
- Debashis Dhara
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| | - Laurence A. Mulard
- Unité de Chimie des BiomoléculesUMR 3523 CNRS, Institut Pasteur28 rue du Dr Roux75015ParisFrance
| |
Collapse
|
23
|
de Alwis R, Liang L, Taghavian O, Werner E, The HC, Thu TNH, Duong VT, Davies DH, Felgner PL, Baker S. The identification of novel immunogenic antigens as potential Shigella vaccine components. Genome Med 2021; 13:8. [PMID: 33451348 PMCID: PMC7809897 DOI: 10.1186/s13073-020-00824-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Shigella is a major diarrheal pathogen for which there is presently no vaccine. Whole genome sequencing provides the ability to predict and derive novel antigens for use as vaccines. Here, we aimed to identify novel immunogenic Shigella antigens that could serve as Shigella vaccine candidates, either alone, or when conjugated to Shigella O-antigen. METHODS Using a reverse vaccinology approach, where genomic analysis informed the Shigella immunome via an antigen microarray, we aimed to identify novel immunogenic Shigella antigens. A core genome analysis of Shigella species, pathogenic and non-pathogenic Escherichia coli, led to the selection of 234 predicted immunogenic Shigella antigens. These antigens were expressed and probed with acute and convalescent serum from microbiologically confirmed Shigella infections. RESULTS Several Shigella antigens displayed IgG and IgA seroconversion, with no difference in sero-reactivity across by sex or age. IgG sero-reactivity to key Shigella antigens was observed at birth, indicating transplacental antibody transfer. Six antigens (FepA, EmrK, FhuA, MdtA, NlpB, and CjrA) were identified in in vivo testing as capable of producing binding IgG and complement-mediated bactericidal antibody. CONCLUSIONS These findings provide six novel immunogenic Shigella proteins that could serve as candidate vaccine antigens, species-specific carrier proteins, or targeted adjuvants.
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Li Liang
- Vaccine Research & Development Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Omid Taghavian
- Vaccine Research & Development Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma Werner
- Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Trang Nguyen Hoang Thu
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Vu Thuy Duong
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - D Huw Davies
- Vaccine Research & Development Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Philip L Felgner
- Vaccine Research & Development Center, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Level 5, Jeffery Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
24
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
25
|
Na’amnih W, Carmeli Y, Asato V, Goren S, Adler A, Cohen D, Muhsen K. Enhanced Humoral Immune Responses against Toxin A and B of Clostridium difficile is Associated with a Milder Disease Manifestation. J Clin Med 2020; 9:jcm9103241. [PMID: 33050453 PMCID: PMC7601293 DOI: 10.3390/jcm9103241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
The role of the humoral immune response to Clostridium difficile in modulating the severity of C. difficile infection (CDI) is unclear. We compared the levels of serum immunoglobulin G (IgG) and immunoglobulin A (IgA) against toxin A (TcdA) and toxin B (TcdB) of C. difficile between CDI and control patients and according to disease severity. The levels of IgG and IgA antibodies against TcdA and TcdB were measured in sera from patients with CDI (n = 50; 19 had severe CDI) and control patients (n = 52), using ELISA. Patients with CDI had higher levels of IgG antibodies against TcdA and TcdB than controls (p = 0.001 and p = 0.04, respectively). Higher IgG levels against TcdA and TcdB were found in patients with mild vs. severe CDI 7-14 days after the diagnosis (p = 0.004 and 0.036, respectively). A factor analysis included both IgA and IgG levels against both toxins into one composite variable, which was of higher values in patients with mild vs. severe CDI (p = 0.026). In conclusion, the systemic humoral immune responses against TcdA and TcdB might modulate the severity of CDI. These preliminary findings provide a basis for future large-scale studies and support the development and evaluation of active and passive immunotherapies for CDI management.
Collapse
Affiliation(s)
- Wasef Na’amnih
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
- Department of Geriatric Rehabilitation, Tel-Aviv Sourasky medical Center, Tel Aviv 6423906, Israel
- Correspondence: (W.N.); (K.M.); Tel.: +972-3-6405945 (W.N.); Fax: +972-3-6409868 (W.N.)
| | - Yehuda Carmeli
- Division of Epidemiology, and the National Institute for Antibiotic Resistance and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
| | - Valeria Asato
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
| | - Sophy Goren
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
| | - Amos Adler
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky medical Center, Tel Aviv 6423906, Israel
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6139001, Israel; (V.A.); (S.G.); (A.A.); (D.C.)
- Correspondence: (W.N.); (K.M.); Tel.: +972-3-6405945 (W.N.); Fax: +972-3-6409868 (W.N.)
| |
Collapse
|
26
|
Abstract
Shigella is a major cause of moderate to severe diarrhea largely affecting children (<5 years old) living in low- and middle-income countries. Several vaccine candidates are in development, and controlled human infection models (CHIMs) can be useful tools to provide an early assessment of vaccine efficacy and potentially support licensure. A lyophilized strain of S. sonnei 53G was manufactured and evaluated to establish a dose that safely and reproducibly induced a ≥60% attack rate. Samples were collected pre- and postchallenge to assess intestinal inflammatory responses, antigen-specific serum and mucosal antibody responses, functional antibody responses, and memory B cell responses. Infection with S. sonnei 53G induced a robust intestinal inflammatory response as well as antigen-specific antibodies in serum and mucosal secretions and antigen-specific IgA- and IgG-secreting B cells positive for the α4β7 gut-homing marker. There was no association between clinical disease outcomes and systemic or functional antibody responses postchallenge; however, higher lipopolysaccharide (LPS)-specific serum IgA- and IgA-secreting memory B cell responses were associated with a reduced risk of disease postchallenge. This study provides unique insights into the immune responses pre- and postinfection with S. sonnei 53G in a CHIM, which could help guide the rational design of future vaccines to induce protective immune responses more analogous to those triggered by infection.IMPORTANCE Correlate(s) of immunity have yet to be defined for shigellosis. As previous disease protects against subsequent infection in a serotype-specific manner, investigating immune response profiles pre- and postinfection provides an opportunity to identify immune markers potentially associated with the development of protective immunity and/or with a reduced risk of developing shigellosis postchallenge. This study is the first to report such an extensive characterization of the immune response after challenge with S. sonnei 53G. Results demonstrate an association of progression to shigellosis with robust intestinal inflammatory and mucosal gut-homing responses. An important finding in this study was the association of elevated Shigella LPS-specific serum IgA and memory B cell IgA responses at baseline with reduced risk of disease. The increased baseline IgA responses may contribute to the lack of dose response observed in the study and suggests that IgA responses should be further investigated as potential correlates of immunity.
Collapse
|
27
|
Kaminski RW, Pasetti MF, Aguilar AO, Clarkson KA, Rijpkema S, Bourgeois AL, Cohen D, Feavers I, MacLennan CA. Consensus Report on Shigella Controlled Human Infection Model: Immunological Assays. Clin Infect Dis 2020; 69:S596-S601. [PMID: 31816067 PMCID: PMC6901123 DOI: 10.1093/cid/ciz909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Moderate to severe diarrhea caused by Shigella is a global health concern due to its substantial contribution to morbidity and mortality in children aged <5 years in low- and middle-income countries. Although antibiotic treatment can be effective, emerging antimicrobial resistance, limited access, and cost affirm the role of vaccines as the most attractive countermeasure. Controlled human infection models (CHIMs) represent a valuable tool for assessing vaccine efficacy and potentially accelerating licensure. Currently, immunological analysis during CHIM studies is customized based on vaccine type, regimen, and administration route. Additionally, differences in type of immunoassays and procedures used limit comparisons across studies. In November 2017, an expert working group reviewed Shigella CHIM studies performed to date and developed consensus guidelines on prioritization of immunoassays, specimens, and collection time points. Immunoassays were ranked into 3 tiers, with antibodies to Shigella lipopolysaccharide (LPS) being the highest priority. To facilitate comparisons across clinical studies, a second workshop was conducted in December 2017, which focused on the pathway toward a recognized enzyme-linked immunosorbent assay (ELISA) to determine serum immunoglobulin G titers against Shigella LPS. The consensus of the meeting was to establish a consortium of international institutions with expertise in Shigella immunology that would work with the National Institute for Biological Standards and Control to establish a harmonized ELISA, produce a reference sera, and identify a reliable source of Shigella LPS for global utilization. Herein we describe efforts toward establishing common procedures to advance Shigella vaccine development, support licensure, and ultimately facilitate vaccine deployment and uptake.
Collapse
Affiliation(s)
- Robert W Kaminski
- Subunit Enteric Vaccines and Immunology, Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring
| | - Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore
| | | | - Kristen A Clarkson
- Subunit Enteric Vaccines and Immunology, Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring
| | - Sjoerd Rijpkema
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | | | - Dani Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ian Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | | |
Collapse
|
28
|
Intra-Laboratory Evaluation of Luminescence Based High-Throughput Serum Bactericidal Assay (L-SBA) to Determine Bactericidal Activity of Human Sera against Shigella. High Throughput 2020; 9:ht9020014. [PMID: 32521658 PMCID: PMC7361673 DOI: 10.3390/ht9020014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Despite the huge decrease in deaths caused by Shigella worldwide in recent decades, shigellosis still causes over 200,000 deaths every year. No vaccine is currently available, and the morbidity of the disease coupled with the rise of antimicrobial resistance renders the introduction of an effective vaccine extremely urgent. Although a clear immune correlate of protection against shigellosis has not yet been established, the demonstration of the bactericidal activity of antibodies induced upon vaccination may provide one means of the functionality of antibodies induced in protecting against Shigella. The method of choice to evaluate the complement-mediated functional activity of vaccine-induced antibodies is the Serum Bactericidal Assay (SBA). Here we present the development and intra-laboratory characterization of a high-throughput luminescence-based SBA (L-SBA) method, based on the detection of ATP as a proxy of surviving bacteria, to evaluate the complement-mediated killing of human sera. We demonstrated the high specificity of the assay against a homologous strain without any heterologous aspecificity detected against species-related and non-species-related strains. We assessed the linearity, repeatability and reproducibility of L-SBA on human sera. This work will guide the bactericidal activity assessment of clinical sera raised against S. sonnei. The method has the potential of being applicable with similar performances to determine the bactericidal activity of any non-clinical and clinical sera that rely on complement-mediated killing.
Collapse
|
29
|
Barel LA, Mulard LA. Classical and novel strategies to develop a Shigella glycoconjugate vaccine: from concept to efficacy in human. Hum Vaccin Immunother 2020; 15:1338-1356. [PMID: 31158047 PMCID: PMC6663142 DOI: 10.1080/21645515.2019.1606972] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Shigella are gram-negative bacteria that cause severe diarrhea and dysentery, with a high level of antimicrobial resistance. Disease-induced protection against reinfection in Shigella-endemic areas provides convincing evidence on the feasibility of a vaccine and on the importance of Shigella lipopolysaccharides as targets of the host humoral protective immune response against disease. This article provides an overview of the original and current strategies toward the development of a Shigella glycan-protein conjugate vaccine that would cover the most commonly detected strains. Going beyond pioneering “lattice”-type polysaccharide-protein conjugates, progress, and challenges are addressed with focus on promising alternatives, which have reached phases I and II clinical trial. Glycoengineered bioconjugates and “sun”-type conjugates featuring well-defined synthetic carbohydrate antigens are discussed with insights on the molecular parameters governing the rational design of a cost-effective glycoconjugate vaccine efficacious in preventing diseases caused by Shigella in the most at risk populations, young children living in endemic areas.
Collapse
Affiliation(s)
- Louis-Antoine Barel
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France.,b Université Paris Descartes , Paris , France
| | - Laurence A Mulard
- a Chemistry of Biomolecules Unit, Department of Structural Biology and Chemistry , Institut Pasteur, UMR3523, CNRS , Paris , France
| |
Collapse
|
30
|
Ravenscroft N, Braun M, Schneider J, Dreyer AM, Wetter M, Haeuptle MA, Kemmler S, Steffen M, Sirena D, Herwig S, Carranza P, Jones C, Pollard AJ, Wacker M, Kowarik M. Characterization and immunogenicity of a Shigella flexneri 2a O-antigen bioconjugate vaccine candidate. Glycobiology 2019; 29:669-680. [PMID: 31206156 PMCID: PMC6704370 DOI: 10.1093/glycob/cwz044] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022] Open
Abstract
Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Vaccination represents a promising preventive measure to fight the burden of the disease, but despite enormous efforts, an efficacious vaccine is not available to date. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of a multivalent conjugate vaccine to prevent shigellosis. This bioconjugation approach has been used to produce the Shigella dysenteriae type O1 conjugate that has been successfully tested in a phase I clinical study in humans. In this report, we describe a similar approach for the production of an additional serotype required for a broadly protective shigellosis vaccine candidate. The Shigella flexneri 2a O-polysaccharide is conjugated to introduced asparagine residues of the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa by co-expression with the PglB oligosaccharyltransferase. The bioconjugate was purified, characterized using physicochemical methods and subjected to preclinical evaluation in rats. The bioconjugate elicited functional antibodies as shown by a bactericidal assay for S. flexneri 2a. This study confirms the applicability of bioconjugation for the S. flexneri 2a O-antigen, which provides an intrinsic advantage over chemical conjugates due to the simplicity of a single production step and ease of characterization of the homogenous monomeric conjugate formed. In addition, it shows that bioconjugates are able to raise functional antibodies against the polysaccharide antigen.
Collapse
Affiliation(s)
- Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Martin Braun
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Joerg Schneider
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Anita M Dreyer
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Michael Wetter
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Micha A Haeuptle
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Stefan Kemmler
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Michael Steffen
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Dominique Sirena
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Stefan Herwig
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Paula Carranza
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Claire Jones
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Michael Wacker
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
- Wacker Biotech Consulting AG, Obere Hönggerstrasse 9a, 8103 Unterengstringen, Switzerland
| | - Michael Kowarik
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| |
Collapse
|
31
|
Ndungo E, Pasetti MF. Functional antibodies as immunological endpoints to evaluate protective immunity against Shigella. Hum Vaccin Immunother 2019; 16:197-205. [PMID: 31287754 PMCID: PMC7670857 DOI: 10.1080/21645515.2019.1640427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development, clinical advancement and licensure of vaccines, and monitoring of vaccine effectiveness could be expedited and simplified by the ability to measure immunological endpoints that can predict a favorable clinical outcome. Antigen-specific and functional antibodies have been described in the context of naturally acquired immunity and vaccination against Shigella, and their presence in serum has been associated with reduced risk of disease in human subjects. The relevance of these antibodies as correlates of protective immunity, their mechanistic contribution to protection (e.g. target antigens, interference with pathogenesis, and participation in microbial clearance), and factors that influence their magnitude and makeup (e.g. host age, health condition, and environment) are important considerations that need to be explored. In addition to facilitating vaccine evaluation, immunological correlates of protection could be useful for identifying groups at risk and advancing immune therapies. Herein we discuss the precedent and value of functional antibodies as immunological endpoints to predict vaccine efficacy and the relevance of functional antibody activity to evaluate protective immunity against shigellosis.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Mani S, Toapanta FR, McArthur MA, Qadri F, Svennerholm AM, Devriendt B, Phalipon A, Cohen D, Sztein MB. Role of antigen specific T and B cells in systemic and mucosal immune responses in ETEC and Shigella infections, and their potential to serve as correlates of protection in vaccine development. Vaccine 2019; 37:4787-4793. [PMID: 31230883 PMCID: PMC7413037 DOI: 10.1016/j.vaccine.2019.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
Abstract
The generation of robust systemic and mucosal antibody and cell-mediated immune (CMI) responses that are protective, long-lasting, and can quickly be recalled upon subsequent re-exposure to the cognate antigen is the key to the development of effective vaccine candidates. These responses, whether they represent mechanistic or non-mechanistic immunological correlates of protection, usually entail the activation of T cell memory and effector subsets (T-CMI) and induction of long-lasting memory B cells. However, for ETEC and Shigella, the precise role of these key immune cells in primary and secondary (anamnestic) immune responses remains ill-defined. A workshop to address immune correlates for ETEC and Shigella, in general, and to elucidate the mechanistic role of T-cell subsets and B-cells, both systemically and in the mucosal microenvironment, in the development of durable protective immunity against ETEC and Shigella was held at the recent 2nd Vaccines against Shigella and ETEC (VASE) conference in June 2018. This report is a summary of the presentations and the discussion that ensued at the workshop.
Collapse
Affiliation(s)
| | - Franklin R Toapanta
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrheal Diseases Research, Dhaka, Bangladesh
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Bert Devriendt
- Faculty of Veterinary Medicine, Department of Virology, Parasitology, and Immunology, Ghent University, Belgium
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis, INSERM U1202, Institut Pasteur, Paris, France
| | - Daniel Cohen
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
33
|
Cohen D, Meron-Sudai S, Bialik A, Asato V, Goren S, Ariel-Cohen O, Reizis A, Hochberg A, Ashkenazi S. Serum IgG antibodies to Shigella lipopolysaccharide antigens - a correlate of protection against shigellosis. Hum Vaccin Immunother 2019; 15:1401-1408. [PMID: 31070988 DOI: 10.1080/21645515.2019.1606971] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shigella is a leading cause of diarrhea among children globally and of diarrheal deaths among children under 5 years of age in low- and middle-income countries. To date, no licensed Shigella vaccine exists. We review evidence that serum IgG antibodies to Shigella LPS represent a good correlate of protection against shigellosis; this could support the process of development and evaluation of Shigella vaccine candidates. Case-control and cohort studies conducted among Israeli soldiers serving under field conditions showed significant serotype-specific inverse associations between pre-exposure serum IgG antibodies to Shigella LPS and shigellosis incidence. The same serum IgG fraction showed a dose-response relationship with the protective efficacy attained by vaccine candidates tested in phase III trials of young adults and children aged 1-4 years and in Controlled Human Infection Model studies and exhibited mechanistic protective capabilities. Identifying a threshold level of these antibodies associated with protection can promote the development of an efficacious vaccine for infants and young children.
Collapse
Affiliation(s)
- Dani Cohen
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Shiri Meron-Sudai
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Anya Bialik
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Valeria Asato
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Sophy Goren
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Ortal Ariel-Cohen
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Arava Reizis
- a School of Public Health, Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv Israel
| | - Amit Hochberg
- b Newborn and Neonatal Care Department , Hillel Yaffe Medical Center , Hadera , Israel
| | - Shai Ashkenazi
- c Adelson School of Medicine , Ariel University, and Schneider Children's Medical Center , Israel
| |
Collapse
|
34
|
Behar A, Baker KS, Bassal R, Ezernitchi A, Valinsky L, Thomson NR, Cohen D. Microevolution and Patterns of Transmission of Shigella sonnei within Cyclic Outbreaks Shigellosis, Israel. Emerg Infect Dis 2019; 24:1335-1339. [PMID: 29912703 PMCID: PMC6038740 DOI: 10.3201/eid2407.171313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whole-genome sequencing unveiled host and environment-related insights to Shigella sonnei transmission within cyclic epidemics during 2000–2012 in Israel. The Israeli reservoir contains isolates belonging to S. sonnei lineage III but of different origin, shows loss of tetracycline resistance genes, and little genetic variation within the O antigen: highly relevant for Shigella vaccine development.
Collapse
|
35
|
Launay O, Ndiaye AGW, Conti V, Loulergue P, Sciré AS, Landre AM, Ferruzzi P, Nedjaai N, Schütte LD, Auerbach J, Marchetti E, Saul A, Martin LB, Podda A. Booster Vaccination With GVGH Shigella sonnei 1790GAHB GMMA Vaccine Compared to Single Vaccination in Unvaccinated Healthy European Adults: Results From a Phase 1 Clinical Trial. Front Immunol 2019; 10:335. [PMID: 30906291 PMCID: PMC6418009 DOI: 10.3389/fimmu.2019.00335] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/08/2019] [Indexed: 11/18/2022] Open
Abstract
The investigational Shigella sonnei vaccine (1790GAHB) based on GMMA (generalized modules for membrane antigens) is immunogenic, with an acceptable safety profile in adults. However, pre-vaccination anti-S. sonnei lipopolysaccharide (LPS) antibody levels seemed to impact vaccine-related immune responses. This phase 1, open-label, non-randomized extension study (ClinicalTrials.gov: NCT03089879) evaluated immunogenicity of a 1790GAHB booster dose in seven adults with undetectable antibodies prior to priming with three 1790GAHB vaccinations 2–3 years earlier (boosted group), compared to one dose in 28 vaccine-naïve individuals (vaccine-naïve group). Anti-S. sonnei LPS serum IgG geometric mean concentrations and seroresponse (increase of ≥25 EU or ≥50% from baseline antibody ≤ 50 EU and ≥50 EU, respectively) rates were calculated at vaccination (day [D]1), D8, D15, D29, D85. Safety was assessed. Geometric mean concentrations at D8 were 168 EU (boosted group) and 32 EU (vaccine-naïve group). Response peaked at D15 (883 EU) and D29 (100 EU) for the boosted and vaccine-naïve groups. Seroresponse rates at D8 were 86% (boosted group) and 24% (vaccine-naïve group) and increased at subsequent time points. Across both groups, pain (local) and fatigue (systemic) were the most frequent solicited adverse events (AEs). Unsolicited AEs were reported by 57% of boosted and 25% of vaccine-naïve participants. No deaths, serious AEs, or AEs of special interest (except one mild neutropenia case, possibly vaccination-related) were reported. One 1790GAHB dose induced a significant booster response in previously-primed adults, regardless of priming dose, and strong immune response in vaccine-naïve individuals. Vaccination was well tolerated.
Collapse
Affiliation(s)
- Odile Launay
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm CIC 1417, F-CRIN I-REIVAC, Paris, France.,Assistance Publique Hôpitaux de Paris, CIC Cochin-Pasteur, Paris, France
| | | | | | - Pierre Loulergue
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm CIC 1417, F-CRIN I-REIVAC, Paris, France.,Assistance Publique Hôpitaux de Paris, CIC Cochin-Pasteur, Paris, France
| | | | - Anais Maugard Landre
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm CIC 1417, F-CRIN I-REIVAC, Paris, France.,Assistance Publique Hôpitaux de Paris, CIC Cochin-Pasteur, Paris, France
| | | | - Naouel Nedjaai
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Inserm CIC 1417, F-CRIN I-REIVAC, Paris, France.,Assistance Publique Hôpitaux de Paris, CIC Cochin-Pasteur, Paris, France
| | | | | | | | - Allan Saul
- GSK Vaccines Institute for Global Health, Siena, Italy
| | | | - Audino Podda
- GSK Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
36
|
Burden and risk factors of Shigella sonnei shigellosis among children aged 0-59 months in hyperendemic communities in Israel. Int J Infect Dis 2019; 82:117-123. [PMID: 30831222 DOI: 10.1016/j.ijid.2019.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Ultraorthodox Jewish populations living in towns with good sanitary infrastructure but with conditions of crowding have been the epicenter of Shigella sonnei shigellosis outbreaks. In this study, the incidence and risk factors of S. sonnei shigellosis in children living in an ultraorthodox community were determined. METHODS Data for the years 2000-2013 for all reported culture-proven S. sonnei shigellosis cases in children aged 0-59 months in the city of Elad were compared with data for the rest of the sub-district. Environmental factors obtained through parental interviews were evaluated for 78 incident cases of S. sonnei shigellosis and 141 community controls, matched by age, sex, and neighborhood. Conditional logistic regression models were performed. RESULTS Cyclic epidemics of S. sonnei shigellosis occurred every 2 years. The mean annual incidence was 10.0 per 1000 children in Elad (95% confidence interval 7.9-12.6) vs. 3.8 per 1000 children (95% confidence interval 3.3-4.4) in the sub-district (p<0.001). Concurrent diarrheal disease in family members, having the same person in the daycare center responsible for food handling and changing diapers, and more rooms and sinks in the center, were positively associated with S. sonnei shigellosis, while children's hand-washing before meals was inversely associated. CONCLUSIONS The burden of S. sonnei shigellosis in ultraorthodox communities is high. Enhanced hygiene interventions are required for epidemic control.
Collapse
|
37
|
Affiliation(s)
- Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Laird RM, Ma Z, Dorabawila N, Pequegnat B, Omari E, Liu Y, Maue AC, Poole ST, Maciel M, Satish K, Gariepy CL, Schumack NM, McVeigh AL, Poly F, Ewing CP, Prouty MG, Monteiro MA, Savarino SJ, Guerry P. Evaluation of a conjugate vaccine platform against enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni and Shigella. Vaccine 2018; 36:6695-6702. [PMID: 30269917 DOI: 10.1016/j.vaccine.2018.09.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/08/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni (CJ), and Shigella sp. are major causes of bacterial diarrhea worldwide, but there are no licensed vaccines against any of these pathogens. Most current approaches to ETEC vaccines are based on recombinant proteins that are involved in virulence, particularly adhesins. In contrast, approaches to Shigella and CJ vaccines have included conjugate vaccines in which Shigella lipopolysaccharides (LPS) or CJ capsule polysaccharides are chemically conjugated to proteins. We have explored the feasibility of developing a multi-pathogen vaccine by using ETEC proteins as conjugating partners for CJ and Shigella polysaccharides. We synthesized three vaccines in which two CJ polysaccharides were conjugated to two recombinant ETEC adhesins based on CFA/I (CfaEB) and CS6 (CssBA), and LPS from Shigella flexneri was also conjugated to CfaEB. The vaccines were immunogenic in mice as monovalent, bivalent and trivalent formulations. Importantly, functional antibodies capable of inducing hemaglutination inhibition (HAI) of a CFA/I expressing ETEC strain were induced in all vaccines containing CfaEB. These data suggest that conjugate vaccines could be a platform for a multi-pathogen, multi-serotype vaccine against the three major causes of diarrheal disease worldwide.
Collapse
Affiliation(s)
- Renee M Laird
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | - Zuchao Ma
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Nelum Dorabawila
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Brittany Pequegnat
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Eman Omari
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Yang Liu
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Alexander C Maue
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Steven T Poole
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Milton Maciel
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Kavyashree Satish
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Christina L Gariepy
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Nina M Schumack
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Annette L McVeigh
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Frédéric Poly
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Cheryl P Ewing
- Henry M. Jackson Foundation for Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA; Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Michael G Prouty
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mario A Monteiro
- Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, Ontario N1G 2W1, Canada
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| |
Collapse
|
39
|
Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, Brewer TG, Engmann CM, Houpt ER, Kang G, Kotloff KL, Levine MM, Luby SP, MacLennan CA, Pan WK, Pavlinac PB, Platts-Mills JA, Qadri F, Riddle MS, Ryan ET, Shoultz DA, Steele AD, Walson JL, Sanders JW, Mokdad AH, Murray CJL, Hay SI, Reiner RC. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016. THE LANCET. INFECTIOUS DISEASES 2018; 18:1229-1240. [PMID: 30266330 PMCID: PMC6202441 DOI: 10.1016/s1473-3099(18)30475-4] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Background Shigella and enterotoxigenic Escherichia coli (ETEC) are bacterial pathogens that are frequently associated with diarrhoeal disease, and are a significant cause of mortality and morbidity worldwide. The Global Burden of Diseases, Injuries, and Risk Factors study 2016 (GBD 2016) is a systematic, scientific effort to quantify the morbidity and mortality due to over 300 causes of death and disability. We aimed to analyse the global burden of shigella and ETEC diarrhoea according to age, sex, geography, and year from 1990 to 2016. Methods We modelled shigella and ETEC-related mortality using a Bayesian hierarchical modelling platform that evaluates a wide range of covariates and model types on the basis of vital registration and verbal autopsy data. We used a compartmental meta-regression tool to model the incidence of shigella and ETEC, which enforces an association between incidence, prevalence, and remission on the basis of scientific literature, population representative surveys, and health-care data. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings Shigella was the second leading cause of diarrhoeal mortality in 2016 among all ages, accounting for 212 438 deaths (95% UI 136 979–326 913) and about 13·2% (9·2–17·4) of all diarrhoea deaths. Shigella was responsible for 63 713 deaths (41 191–93 611) among children younger than 5 years and was frequently associated with diarrhoea across all adult age groups, increasing in elderly people, with broad geographical distribution. ETEC was the eighth leading cause of diarrhoea mortality in 2016 among all age groups, accounting for 51 186 deaths (26 757–83 064) and about 3·2% (1·8–4·7) of diarrhoea deaths. ETEC was responsible for about 4·2% (2·2–6·8) of diarrhoea deaths in children younger than 5 years. Interpretation The health burden of bacterial diarrhoeal pathogens is difficult to estimate. Despite existing prevention and treatment options, they remain a major cause of morbidity and mortality globally. Additional emphasis by public health officials is needed on a reduction in disease due to shigella and ETEC to reduce disease burden. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
| | | | | | - Puja C Rao
- Institute for Health Metrics and Evaluation, Seattle WA, USA
| | | | | | - Thomas G Brewer
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA
| | - Cyril M Engmann
- Maternal, Newborn, Child Health & Nutrition, PATH, Seattle, WA, USA; Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Gagandeep Kang
- Translational Health Science and Technology Institute, Faridabad, India
| | - Karen L Kotloff
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myron M Levine
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Calman A MacLennan
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - William K Pan
- Institute for Health Metrics and Evaluation, Seattle WA, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Patricia B Pavlinac
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Edward T Ryan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - David A Shoultz
- Drug Development, PATH, Seattle, WA, USA; Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Albers School of Business & Economics, Seattle University, Seattle, WA, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Judd L Walson
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA
| | - John W Sanders
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ali H Mokdad
- Institute for Health Metrics and Evaluation, Seattle WA, USA
| | | | - Simon I Hay
- Institute for Health Metrics and Evaluation, Seattle WA, USA; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, Seattle WA, USA.
| |
Collapse
|
40
|
Ndungo E, Randall A, Hazen TH, Kania DA, Trappl-Kimmons K, Liang X, Barry EM, Kotloff KL, Chakraborty S, Mani S, Rasko DA, Pasetti MF. A Novel Shigella Proteome Microarray Discriminates Targets of Human Antibody Reactivity following Oral Vaccination and Experimental Challenge. mSphere 2018; 3:e00260-18. [PMID: 30068560 PMCID: PMC6070737 DOI: 10.1128/msphere.00260-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shigella spp. are a major cause of diarrhea and dysentery in children under 5 years old in the developing world. The development of an effective vaccine remains a public health priority, necessitating improved understanding of immune responses to Shigella and identification of protective antigens. We report the development of a core Shigella proteome microarray consisting of 2,133 antigen targets common to all Shigella species. We evaluated the microarray with serum samples from volunteers immunized with either an inactivated whole-cell S. flexneri serotype 2a (Sf2aWC) vaccine or a live attenuated S. flexneri 2a vaccine strain (CVD 1204) or challenged with wild-type S. flexneri 2a (Sf2a challenge). Baseline reactivities to most antigens were detected postintervention in all three groups. Similar immune profiles were observed after CVD 1204 vaccination and Sf2a challenge. Antigens with the largest increases in mean reactivity postintervention were members of the type three secretion system (T3SS), some of which are regarded as promising vaccine targets: these are the invasion plasmid antigens (Ipas) IpaB, IpaC, and IpaD. In addition, new immunogenic targets (IpaA, IpaH, and SepA) were identified. Importantly, immunoreactivities to antigens in the microarray correlated well with antibody titers determined by enzyme-linked immunosorbent assay (ELISA), validating the use of the microarray platform. Finally, our analysis uncovered an immune signature consisting of three conserved proteins (IpaA, IpaB, and IpaC) that was predictive of protection against shigellosis. In conclusion, the Shigella proteome microarray is a robust platform for interrogating serological reactivity to multiple antigens at once and identifying novel targets for the development of broadly protective vaccines.IMPORTANCE Each year, more than 180 million cases of severe diarrhea caused by Shigella occur globally. Those affected (mostly children in poor regions) experience long-term sequelae that severely impair quality of life. Without a licensed vaccine, the burden of disease represents a daunting challenge. An improved understanding of immune responses to Shigella is necessary to support ongoing efforts to identify a safe and effective vaccine. We developed a microarray containing >2,000 proteins common to all Shigella species. Using sera from human adults who received a killed whole-cell or live attenuated vaccine or were experimentally challenged with virulent organisms, we identified new immune-reactive antigens and defined a T3SS protein signature associated with clinical protection.
Collapse
Affiliation(s)
- Esther Ndungo
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Arlo Randall
- Antigen Discovery, Inc., Irvine, California, USA
| | - Tracy H Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dane A Kania
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Xiaowu Liang
- Antigen Discovery, Inc., Irvine, California, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen L Kotloff
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - David A Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Development, Interlaboratory Evaluations, and Application of a Simple, High-Throughput Shigella Serum Bactericidal Assay. mSphere 2018; 3:3/3/e00146-18. [PMID: 29898979 PMCID: PMC6001606 DOI: 10.1128/msphere.00146-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/28/2018] [Indexed: 12/02/2022] Open
Abstract
Shigella is an important cause of diarrhea worldwide, and efforts are ongoing to produce a safe and effective Shigella vaccine. Although a clear immune correlate of protection has not been established, antibodies with bactericidal capacity may provide one means of protecting against shigellosis. Thus, it is important to measure the functional capacity of antibodies, as opposed to only binding activity. This article describes a simple, robust, and high-throughput serum bactericidal assay capable of measuring Shigella-specific functional antibodies in vitro. We show for the first time that this assay was successfully performed by multiple laboratories and generated highly comparable results, particularly when SBA titers were normalized using a reference standard. The serum bactericidal assay, along with a reference serum, should greatly facilitate Shigella vaccine development. Shigella is an important cause of diarrhea worldwide, with serotypes Shigella flexneri 2a, S. flexneri 3a, and Shigella sonnei demonstrating epidemiological prevalence. Many development efforts are focused on Shigella lipopolysaccharide (LPS)-based vaccines, as O antigen-specific conjugate vaccines are immunogenic and efficacious. Immunization with Shigella vaccines containing LPS can elicit antibodies capable of killing Shigella in a serotype-specific manner. Thus, to facilitate Shigella vaccine development, we have developed a serum bactericidal assay (SBA) specific for three Shigella serotypes that measures killing of target bacteria at multiple serum dilutions and in the presence of exogenous complement. The SBA has a high analytical throughput and uses simple technologies and readily available reagents. The SBA was characterized with human sera with bactericidal antibodies against S. flexneri 2a, S. flexneri 3a, and S. sonnei. Purified LPS of a homologous serotype, but not a heterologous serotype, inhibited bacterial killing. Assessment of precision found median intra-assay precision to be 13.3% and median interassay precision to be 19 to 30% for the three serotypes. The SBA is linear, with slight deviations for samples with low (~40) killing indices. The SBA was sensitive enough to allow about 100-fold predilution of serum samples. Repeat assays yielded results with less than 2-fold deviations, indicating the robustness of the assay. Assay results from four different laboratories were highly comparable when normalized with a reference serum. The Shigella SBA, combined with a reference serum, should facilitate the development of Shigella vaccines across the field. IMPORTANCEShigella is an important cause of diarrhea worldwide, and efforts are ongoing to produce a safe and effective Shigella vaccine. Although a clear immune correlate of protection has not been established, antibodies with bactericidal capacity may provide one means of protecting against shigellosis. Thus, it is important to measure the functional capacity of antibodies, as opposed to only binding activity. This article describes a simple, robust, and high-throughput serum bactericidal assay capable of measuring Shigella-specific functional antibodies in vitro. We show for the first time that this assay was successfully performed by multiple laboratories and generated highly comparable results, particularly when SBA titers were normalized using a reference standard. The serum bactericidal assay, along with a reference serum, should greatly facilitate Shigella vaccine development.
Collapse
|
42
|
Holmgren J, Parashar UD, Plotkin S, Louis J, Ng SP, Desauziers E, Picot V, Saadatian-Elahi M. Correlates of protection for enteric vaccines. Vaccine 2017; 35:3355-3363. [PMID: 28504192 PMCID: PMC11342448 DOI: 10.1016/j.vaccine.2017.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
An immunological Correlate of Protection (CoP) is an immune response that is statistically interrelated with protection. Identification of CoPs for enteric vaccines would help design studies to improve vaccine performance of licensed vaccines in low income settings, and would facilitate the testing of future vaccines in development that might be more affordable. CoPs are lacking today for most existing and investigational enteric vaccines. In order to share the latest information on CoPs for enteric vaccines and to discuss novel approaches to correlate mucosal immune responses in humans with protection, the Foundation Mérieux organized an international conference of experts where potential CoPs for vaccines were examined using case-studies for both bacterial and viral enteric pathogens. Experts on the panel concluded that to date, all established enteric vaccine CoPs, such as those for hepatitis A, Vi typhoid and poliovirus vaccines, are based on serological immune responses even though these may poorly reflect the relevant gut immune responses or predict protective efficacy. Known CoPs for cholera, norovirus and rotavirus could be considered as acceptable for comparisons of similarly composed vaccines while more work is still needed to establish CoPs for the remaining enteric pathogens and their candidate vaccines. Novel approaches to correlate human mucosal immune responses with protection include the investigation of gut-originating antibody-secreting cells (ASCs), B memory cells and follicular helper T cells from samples of peripheral blood during their recirculation.
Collapse
Affiliation(s)
- Jan Holmgren
- University of Gothenburg Vaccine Research Institute, Box 435, S-40530 Gothenburg, Sweden.
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta GA, United States.
| | - Stanley Plotkin
- University of Pennsylvania and Vaxconsult, LLC, United States.
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France.
| | - Su-Peing Ng
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | - Eric Desauziers
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | | | - Mitra Saadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon cedex 03, France.
| |
Collapse
|
43
|
McArthur MA, Maciel M, Pasetti MF. Human immune responses against Shigella and enterotoxigenic E. coli: Current advances and the path forward. Vaccine 2017; 35:6803-6806. [PMID: 28558984 PMCID: PMC5749635 DOI: 10.1016/j.vaccine.2017.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/04/2017] [Accepted: 05/10/2017] [Indexed: 11/28/2022]
Abstract
Robust and well-established immunological assays and firm immune correlates of protection that can predict disease outcome and/or vaccine efficacy are essential to adequately assess human immune responses to infection and vaccination. The availability of reagents and calibrated controls is also critically important to standardize assays and generate comparable results among different laboratories. The workshop “Human Immune Responses against Shigella and ETEC: Current Advances and the Path Forward” held during the VASE meeting provided an opportunity to disseminate and discuss recent advances in the field of Shigella and ETEC immunology, identify research needs, and propose collaborative activities to advance the field. Four presentations featured current knowledge on humoral and cellular immune responses to Shigella and ETEC during infection and vaccination. A discussion followed on immunological methods relevant for clinical studies, immune parameters associated with protection, harmonization of assays among laboratories, and availability of reagents and standards. Specific recommendations proposed to facilitate “the path forward” included supporting communication among scientists, harmonization of assays and sharing of protocols, the creation of a repository of reagents and calibrated controls and distribution of such material to the research community, and expansion of exploratory studies to better understand the interactions between these pathogens and the human immune system and the ensuing responses.
Collapse
Affiliation(s)
- Monica A McArthur
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Milton Maciel
- Enteric Diseases Department, Naval Medical Research Center/ETEC Vaccine Program, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Marcela F Pasetti
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Functional and Antigen-Specific Serum Antibody Levels as Correlates of Protection against Shigellosis in a Controlled Human Challenge Study. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00412-16. [PMID: 27927680 PMCID: PMC5299116 DOI: 10.1128/cvi.00412-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
Abstract
Shigella is an important cause of diarrheal disease in young children living in developing countries. No approved vaccines are available, and the development of vaccine candidates has been hindered by the lack of firm immunological correlates of protection, among other reasons. To address this gap in knowledge, we established quantitative assays to measure Shigella-specific serum bactericidal antibody (SBA) and opsonophagocytic killing antibody (OPKA) activities and investigated their potential association with protection against disease in humans. SBA, OPKA, and Ipa-, VirG (IscA)-, and Shigella flexneri 2a lipopolysaccharide-specific serum IgG titers were determined in adult volunteers who received Shigella vaccine candidate EcSf2a-2 and in unvaccinated controls, all of whom were challenged with virulent Shigella flexneri 2a. Prechallenge antibody titers were compared with disease severity after challenge. SBA and OPKA, as well as IpaB- and VirG-specific IgG, significantly correlated with reduced illness. SBA and OPKA assays were also used to evaluate the immunogenicity of leading live attenuated vaccine candidates Shigella CVD 1204 and CVD 1208S in humans. A single oral immunization with CVD 1204 or CVD 1208S resulted in SBA seroconversion rates of 71% and 47% and OPKA seroconversion rates of 57% and 35%, respectively. Higher functional antibody responses were induced by CVD 1204, which is consistent with its lower attenuation. This is the first demonstration of SBA, OPKA, and IpaB- and VirG-specific IgG levels as potential serological correlates of protection against shigellosis in humans. These results warrant further studies to establish their capacity to predict protective immunity and vaccine efficacy.
Collapse
|
45
|
Shigella Vaccine Development: Finding the Path of Least Resistance. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:904-907. [PMID: 27707764 DOI: 10.1128/cvi.00444-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Shigella spp. represent the second most common etiologic pathogen causing childhood diarrhea in developing countries. There are no licensed Shigella vaccines, and progress for such vaccines has been limited. In this issue of Clinical and Vaccine Immunology, Riddle and colleagues (M. S. Riddle, R. W. Kaminski, C. Di Paolo, C. K. Porter, R. L. Gutierrez, et al., Clin Vaccine Immunol 23:908-917, 2016, http://dx.doi.org/10.1128/CVI.00224-16) report results from a phase I study of a parenterally administered monovalent O-polysaccharide "bioconjugate" directed against Shigella flexneri 2a. Ultimately, the goal is to develop a broad-spectrum Shigella vaccine to address this public health concern. A parenteral Shigella vaccine capable of eliciting protection in children of developing countries would be an important tool to reach this goal.
Collapse
|
46
|
Mani S, Wierzba T, Walker RI. Status of vaccine research and development for Shigella. Vaccine 2016; 34:2887-2894. [DOI: 10.1016/j.vaccine.2016.02.075] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
|
47
|
Tennant SM, Steele AD, Pasetti MF. Highlights of the 8th International Conference on Vaccines for Enteric Diseases: the Scottish Encounter To Defeat Diarrheal Diseases. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:272-81. [PMID: 26936100 PMCID: PMC4820512 DOI: 10.1128/cvi.00082-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diarrhea is a leading cause of morbidity and of mortality; the burden of disease affects individuals of all ages but particularly young children, especially those living in poor regions where the disease is endemic. It is also a health concern for international travelers to these areas. Experts on vaccines and enteric infections and advocates for global health improvement gathered in Scotland from 8 to 10 July 2015 to discuss recent advances in the assessment and understanding of the burden of enteric diseases and progress in the development and implementation of strategies to prevent these infections. Highlights of the meeting included description of advances in molecular assays to estimate pathogen-specific prevalence, methods to model epidemiologic trends, novel approaches to generate broad-spectrum vaccines, new initiatives to evaluate vaccine performance where they are most needed, renewed interest in human challenge models, immunological readouts as predictors of vaccine efficacy, maternal immunization to prevent enteric infections, and the impact of maternal immunity on the vaccine take of infants. A follow-up scientific gathering to advance Shigella and enterotoxigenic Escherichia coli (ETEC) vaccine efforts will be held from 28 to 30 June 2016 in Washington, DC.
Collapse
Affiliation(s)
- Sharon M Tennant
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Marcela F Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Thompson CN, Le TPT, Anders KL, Nguyen TH, Lu LV, Nguyen VVC, Vu TD, Nguyen NMC, Tran THC, Ha TT, Tran VTN, Pham VM, Tran DHN, Le TQN, Saul A, Martin LB, Podda A, Gerke C, Thwaites G, Simmons CP, Baker S. The transfer and decay of maternal antibody against Shigella sonnei in a longitudinal cohort of Vietnamese infants. Vaccine 2015; 34:783-90. [PMID: 26742945 PMCID: PMC4742520 DOI: 10.1016/j.vaccine.2015.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 11/16/2022]
Abstract
Shigella sonnei is an emergent and highly drug resistant diarrheal pathogen. The half-life of maternal S. sonnei IgG in infants is 43 days. Maternal titer, antibody transfer ratio and gestational age influence birth titer. Incidence of seroconversion in infants in southern Vietnam is 4/100 infant years. Children should be vaccinated after 5 months of age if a candidate is licensed.
Background Shigella sonnei is an emergent and major diarrheal pathogen for which there is currently no vaccine. We aimed to quantify duration of maternal antibody against S. sonnei and investigate transplacental IgG transfer in a birth cohort in southern Vietnam. Methods and results Over 500-paired maternal/infant plasma samples were evaluated for presence of anti-S. sonnei-O IgG and IgM. Longitudinal plasma samples allowed for the estimation of the median half-life of maternal anti-S. sonnei-O IgG, which was 43 days (95% confidence interval: 41–45 days). Additionally, half of infants lacked a detectable titer by 19 weeks of age. Lower cord titers were associated with greater increases in S. sonnei IgG over the first year of life, and the incidence of S. sonnei seroconversion was estimated to be 4/100 infant years. Maternal IgG titer, the ratio of antibody transfer, the season of birth and gestational age were significantly associated with cord titer. Conclusions Maternal anti-S. sonnei-O IgG is efficiently transferred across the placenta and anti-S. sonnei-O maternal IgG declines rapidly after birth and is undetectable after 5 months in the majority of children. Preterm neonates and children born to mothers with low IgG titers have lower cord titers and therefore may be at greater risk of seroconversion in infancy.
Collapse
Affiliation(s)
- Corinne N Thompson
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK; London School of Hygiene and Tropical Medicine, London, UK
| | - Thi Phuong Tu Le
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | | | | | - Lan Vi Lu
- The Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | - Thuy Duong Vu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Ngoc Minh Chau Nguyen
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Thi Hong Chau Tran
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Thanh Tuyen Ha
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Vu Thieu Nga Tran
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Van Minh Pham
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Do Hoang Nhu Tran
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Thi Quynh Nhi Le
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam
| | - Allan Saul
- Novartis Vaccines Institute for Global Health(2), A GSK Company, Siena, Italy
| | - Laura B Martin
- Novartis Vaccines Institute for Global Health(2), A GSK Company, Siena, Italy
| | - Audino Podda
- Novartis Vaccines Institute for Global Health(2), A GSK Company, Siena, Italy
| | - Christiane Gerke
- Novartis Vaccines Institute for Global Health(2), A GSK Company, Siena, Italy
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK; Department of Microbiology and Immunology, University of Melbourne, Australia
| | - Stephen Baker
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK; London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
49
|
Heine SJ, Franco-Mahecha OL, Chen X, Choudhari S, Blackwelder WC, van Roosmalen ML, Leenhouts K, Picking WL, Pasetti MF. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice. Immunol Cell Biol 2015; 93:641-52. [PMID: 25776843 PMCID: PMC4534326 DOI: 10.1038/icb.2015.24] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 02/01/2023]
Abstract
Shigella spp. are among the enteric pathogens with the
highest attributable incidence of moderate-to-severe diarrhea in children under
5 years of age living in endemic areas. There are no vaccines available to
prevent this disease. In this work, we investigated a new
Shigella vaccine concept consisting of non-living,
self-adjuvanted, Lactococcus lactis bacterium-like particles
(BLP) displaying Shigella invasion plasmid antigen (Ipa) B and
IpaD and examined its immunogenicity and protective efficacy in adult and
newborn/infant mice immunized via the nasal route. Unique advantages of this
approach include the potential for broad protection due to the highly conserved
structure of the Ipas and the safety and practicality of a probiotic-based
mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and
BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool
IgA in a dose-dependent manner. Immune responses and protection were enhanced by
BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and
cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased
survival post-challenge. Ipa-specific antibody secreting cells were detected in
nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow
cells produced IpaB/D-specific antibodies and contributed to protection after
adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80%
protection against S. flexneri and S. sonnei,
respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and
IpaD serum antibodies; 90% were protected against S.
flexneri and 44% against S. sonnei. The
BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially
effective immunization of children against shigellosis.
Collapse
Affiliation(s)
- Shannon J Heine
- 1] Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA [2] Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olga L Franco-Mahecha
- 1] Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA [2] Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaotong Chen
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Shyamal Choudhari
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - William C Blackwelder
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Wendy L Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Marcela F Pasetti
- 1] Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA [2] Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
50
|
|