1
|
Thomson-Luque R, Stabler TC, Fürle K, Silva JC, Daubenberger C. Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate. Expert Rev Vaccines 2024; 23:160-173. [PMID: 38100310 DOI: 10.1080/14760584.2023.2295430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG Heidelberg, Germany
| | - Thomas C Stabler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| | - Kristin Fürle
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (GHTM IHMT, UNL), Lisbon, Portugal
| | - Claudia Daubenberger
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| |
Collapse
|
2
|
Ciubotariu II, Bosch G. Teaching students to R3eason, not merely to solve problem sets: The role of philosophy and visual data communication in accessible data science education. PLoS Comput Biol 2023; 19:e1011160. [PMID: 37289659 PMCID: PMC10249832 DOI: 10.1371/journal.pcbi.1011160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Much guidance on statistical training in STEM fields has been focused largely on the undergraduate cohort, with graduate education often being absent from the equation. Training in quantitative methods and reasoning is critical for graduate students in biomedical and science programs to foster reproducible and responsible research practices. We argue that graduate student education should more center around fundamental reasoning and integration skills rather than mainly on listing 1 statistical test method after the other without conveying the bigger context picture or critical argumentation skills that will enable student to improve research integrity through rigorous practice. Herein, we describe the approach we take in a quantitative reasoning course in the R3 program at the Johns Hopkins Bloomberg School of Public Health, with an error-focused lens, based on visualization and communication competencies. Specifically, we take this perspective stemming from the discussed causes of irreproducibility and apply it specifically to the many aspects of good statistical practice in science, ranging from experimental design to data collection and analysis, and conclusions drawn from the data. We also provide tips and guidelines for the implementation and adaptation of our course material to various graduate biomedical and STEM science programs.
Collapse
Affiliation(s)
- Ilinca I. Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, R Center for Innovation in Science Education, Baltimore, Maryland, United States of America
| | - Gundula Bosch
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, R Center for Innovation in Science Education, Baltimore, Maryland, United States of America
| |
Collapse
|
3
|
Diversify and Conquer: The Vaccine Escapism of Plasmodium falciparum. Microorganisms 2020; 8:microorganisms8111748. [PMID: 33171746 PMCID: PMC7694999 DOI: 10.3390/microorganisms8111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, a great deal of effort and resources have been poured into the development of vaccines to protect against malaria, particularly targeting the most widely spread and deadly species of the human-infecting parasites: Plasmodium falciparum. Many of the known proteins the parasite uses to invade human cells have been tested as vaccine candidates. However, precisely because of the importance and immune visibility of these proteins, they tend to be very diverse, and in many cases redundant, which limits their efficacy in vaccine development. With the advent of genomics and constantly improving sequencing technologies, an increasingly clear picture is emerging of the vast genomic diversity of parasites from different geographic areas. This diversity is distributed throughout the genome and includes most of the vaccine candidates tested so far, playing an important role in the low efficacy achieved. Genomics is a powerful tool to search for genes that comply with the most desirable attributes of vaccine targets, allowing us to evaluate function, immunogenicity and also diversity in the worldwide parasite populations. Even predicting how this diversity might evolve and spread in the future becomes possible, and can inform novel vaccine efforts.
Collapse
|
4
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
5
|
Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015; 33:7525-37. [DOI: 10.1016/j.vaccine.2015.09.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
|
6
|
Curtidor H, Patarroyo ME, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 15:1567-81. [DOI: 10.1517/14712598.2015.1075505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, Patarroyo MA. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. PLoS One 2015; 10:e0123249. [PMID: 25879751 PMCID: PMC4400017 DOI: 10.1371/journal.pone.0123249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/28/2015] [Indexed: 01/14/2023] Open
Abstract
Determining immune protection-inducing protein structures (IMPIPS) involves defining the stereo-electron and topochemical characteristics which are essential in MHC-p-TCR complex formation. Modified high activity binding peptides (mHABP) were thus synthesised to produce a large panel of IMPIPS measuring 26.5 ±3.5Å between the farthest atoms fitting into Pockets 1 to 9 of HLA-DRβ1* structures. They displayed a polyproline II-like (PPIIL) structure with their backbone O and N atoms orientated to establish H-bonds with specific residues from HLA-DRβ1*-peptide binding regions (PBR). Residues having specific charge and gauche+ orientation regarding p3χ1, p5χ2, and p7χ1 angles determined appropriate rotamer orientation for perfectly fitting into the TCR to induce an appropriate immune response. Immunological assays in Aotus monkeys involving IMPIPS mixtures led to promising results; taken together with the aforementioned physicochemical principles, non-interfering, long-lasting, protection-inducing, multi-epitope, multistage, minimal subunit-based chemically-synthesised peptides can be designed against diseases scourging humankind.
Collapse
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | | | | | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
8
|
Patarroyo ME, Bermúdez A, Moreno-Vranich A. Towards the development of a fully protectivePlasmodium falciparumantimalarial vaccine. Expert Rev Vaccines 2014; 11:1057-70. [DOI: 10.1586/erv.12.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
10
|
Patarroyo ME, Cifuentes G, Piraján C, Moreno-Vranich A, Vanegas M. Atomic evidence that modification of H-bonds established with amino acids critical for host-cell binding induces sterile immunity against malaria. Biochem Biophys Res Commun 2010; 394:529-35. [DOI: 10.1016/j.bbrc.2010.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/02/2010] [Indexed: 11/16/2022]
|
11
|
Guidance on the evaluation of Plasmodium vivax vaccines in populations exposed to natural infection. Vaccine 2009; 27:5633-43. [PMID: 19638270 DOI: 10.1016/j.vaccine.2009.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/10/2009] [Indexed: 11/20/2022]
Abstract
In this paper we give guidance for the design and conduct of vaccine trials against Plasmodium vivax malaria. The paper supplements earlier guidelines on the planning of vaccine trials against Plasmodium falciparum malaria [WHO. Guidelines for the evaluation of Plasmodium falciparum vaccines in populations exposed to natural infections. Geneva: World Health Organization; 1997, http://www.who.int/vaccine_research/feuill_1_4-2.pdf], with further considerations in two later documents [Moorthy VS, Reed Z, Smith PG. Measurement of malaria vaccine efficacy in phase III trials: report of a WHO consultation. Vaccine 2007 July 9;25(28):5115-23; Moorthy V, Reed Z, Smith P. MALVAC 2008: measures of efficacy of malaria vaccines in phase 2b and phase 3 trials - scientific, regulatory and public health perspectives. Vaccine 2009 January 29;27(5):624-8]. We deal specifically with study design and methodological issues for the assessment of pre-erythrocytic and blood-stage vaccines against P. vivax. The role of vaccines in blocking transmission of P. vivax is not considered as the methodological issues are similar to those for P. falciparum, though longer follow-up would be required because of the potential for relapse discussed below. In this paper we discuss the rationale and background to trials of P. vivax vaccines, requirements for Phase IIb and Phase III field trials, implementation of clinical trials, methods of measurement and analysis, and ethical aspects.
Collapse
|
12
|
|
13
|
Patarroyo ME, Cifuentes G, Bermúdez A, Patarroyo MA. Strategies for developing multi-epitope, subunit-based, chemically synthesized anti-malarial vaccines. J Cell Mol Med 2009; 12:1915-35. [PMID: 19012725 PMCID: PMC4506160 DOI: 10.1111/j.1582-4934.2008.00174.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An anti-malarial vaccine against the extremely lethal Plasmodium falciparum is desperately needed. Peptides from this parasite's proteins involved in invasion and having high red blood cell-binding ability were identified; these conserved peptides were not immun genic or protection-inducing when used for immunizing Aotus monkeys. Modifying some critical binding residues in these high-activi binding peptides' (HABPs') attachment to red blood cells (RBC) allowed them to induce immunogenicity and protection against expermental challenge and acquire the ability to bind to specific HLA-DRp1* alleles. These modified HABPs adopted certain characterist structural configurations as determined by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) associated with certain HLA-DRβ1* haplotype binding activities and characteristics, such as a 2-Å-distance difference between amino acids fitting into HLA-DRp1 Pockets 1 to 9, residues participating in binding to HLA-DR pockets and residues making contact with the TCR, suggesting haplotyp and allele-conscious TCR. This has been demonstrated in HLA-DR-like genotyped monkeys and provides the basis for designing high effective, subunit-based, multi-antigen, multi-stage, synthetic vaccines, for immediate human use, malaria being one of them.
Collapse
Affiliation(s)
- M E Patarroyo
- Fundación Instituto de Inmunólogia de Colombia (FIDIC), Bogotá, Colombia.
| | | | | | | |
Collapse
|
14
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
15
|
Vivas L, O’Dea KP, Noya O, Pabon R, Magris M, Botto C, Holder AA, Brown KN. Hyperreactive malarial splenomegaly is associated with low levels of antibodies against red blood cell and Plasmodium falciparum derived glycolipids in Yanomami Amerindians from Venezuela. Acta Trop 2008; 105:207-14. [PMID: 18243148 DOI: 10.1016/j.actatropica.2007.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 12/11/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
The immunological basis of the aberrant immune response in hyperreactive malarial splenomegaly (HMS) is poorly understood, but believed to be associated with polyclonal B cell activation by an unidentified malaria mitogen, leading to unregulated immunoglobulin and autoantibody production. HMS has been previously reported in Yanomami communities in the Upper Orinoco region of the Venezuelan Amazon. To investigate a possible association between antibody responses against Plasmodium falciparum and uninfected red blood cell (URBC) glycolipids and splenomegaly, a direct comparison of the parasite versus host anti-glycolipid antibody responses was made in an isolated community of this area. The anti-P. falciparum glycolipid (Pfglp) response was IgG3 dominated, whereas the uninfected red blood cell glycolipid (URBCglp) response showed a predominance of IgG1. The levels of IgG1 against Pfglp, and of IgG4 and IgM against URBCglp were significantly higher in women, while the anti-Pfglp or URBCglp IgM levels were inversely correlated with the degree of splenomegaly. Overall, these results suggest differential regulation of anti-parasite and autoreactive responses and that these responses may be linked to the development and evolution of HMS in this population exposed to endemic malaria. The high mortality rates associated with HMS point out that its early diagnosis together with the implementation of malaria control measures in these isolated Amerindian communities are a priority.
Collapse
|
16
|
Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008; 41:377-86. [PMID: 18266328 DOI: 10.1021/ar700120t] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seventeen million people die of transmittable diseases and 2/3 of the world's population suffer them annually. Malaria, tuberculosis, AIDS, hepatitis, and reemerging and new diseases are a great threat to humankind. A logical and rational approach for vaccine development is thus desperately needed. Protein chemistry provides the best tools for tackling these problems. The tremendous complexity of microbes, the different pathways they use for invading host cells, and the immune responses they induce can only be resolved by using the minimum subunit-based (chemically produced approximately 20-mer peptides), multiantigenic (most proteins involved in invasion), multistage (different invasion mechanisms) vaccine development approach. The most lethal form of malaria caused by Plasmodium falciparum (killing 3 million and affecting 500 million people worldwide annually) was used as target disease since many of its proteins, its invasion pathways, and its genome have been described recently. A New World primate (the Aotus monkey) is highly susceptibly to human malaria; its immune system molecules are 80-100% identical to those of its human counterpart, making it an excellent model for vaccine development. Chemically synthesized approximately 20-mer peptides, covering all the P. falciparum malaria proteins involved in red blood cell (RBC) invasion were synthesized by the classical t-Boc technology (based on synthetic SPf66 antimalarial vaccine information for identifying targets) and assayed in a highly sensitive, specific, and robust test for detecting receptor-ligand interactions between high-activity binding peptides (HABPs) and RBCs. HABPs were identified, some in which the molecule displays genetic variability (to be discarded due to their tremendous complexity) and elicits a strain-specific immune response and others that are conserved (no amino acid sequence variation). Conserved HABPs were synthesized in a polymeric form by adding cysteines at their N- and C-terminal ends to be used for monkey immunization. They became nonimmunogenic (no antibodies were induced) nonprotection inducers (monkeys were not protected against P. falciparum malaria challenge with a highly infective strain) suggesting a code of immunological silence or nonresponsiveness for these conserved HABPs. A large number of monkey trials involving a considerable number of Aotus monkeys were performed to break this code of immunological silence by replacing critical residues (determined by glycine peptide analogue scanning) to find that the following amino acid changes had to be made to render them antibody and protection inducing: F<-->R; W<-->Y; L<-->H; I<-->N; M<-->K; P<-->D; Q<-->E; C<-->T. The three-dimensional (3D) structure of >100 of these native modified HABPs (determined by (1)H NMR) revealed that the following structural changes had all to be achieved to allow a better fit into the major histocompatibility complex class II (MHC II)-peptide-TCR complex to properly activate the immune system: alpha-helix shortening, modifying their beta-turn, adopting segmental alpha-helix configuration, changing residue orientation, and increasing the distance of those residues fitting into the MHC II molecules from antigen-presenting cells. More than 100 such highly immunogenic, protection-inducing (against P. falciparum malaria) modified HABPs have been identified to date with this methodology, showing that it could lead to developing a highly effective subunit-based, multiantigenic, multistage synthetic vaccine against diseases scourging humankind, malaria being one of them.
Collapse
Affiliation(s)
- Manuel E. Patarroyo
- Fundacion Instituto de Inmunologia de Colombia, Bogota, Colombia, and Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel A. Patarroyo
- Fundacion Instituto de Inmunologia de Colombia, Bogota, Colombia, and Universidad Nacional de Colombia, Bogota, Colombia
| |
Collapse
|
17
|
Dubovsky F, Malkin E. Malaria vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
18
|
Abstract
BACKGROUND Four types of malaria vaccine, SPf66 and MSP/RESA vaccines (against the asexual stages of the Plasmodium parasite) and CS-NANP and RTS,S vaccines (against the sporozoite stages), have been tested in randomized controlled trials in endemic areas. OBJECTIVES To assess malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae and P ovale in preventing infection, disease and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (April 2004), CENTRAL (The Cochrane Library Issue 2, 2004), MEDLINE (1966 to April 2004), EMBASE (1980 to April 2004), Science Citation Index (1981 to April 2004), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized controlled trials comparing vaccines against Plasmodium falciparum, P. vivax, P. malariae or P. ovale with placebo or routine antimalarial control measures in people of any age receiving a challenge malaria infection. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed trial quality and extracted data. MAIN RESULTS Eighteen efficacy trials involving 10,971 participants were included. There were ten trials of SPf66 vaccine, four trials of CS-NANP vaccines, two trials of RTS,S vaccine, and two of MSP/RESA vaccine. Results with SPf66 in reducing new malaria infections (P. falciparum) were heterogeneous: it was not effective in four African trials (Peto odds ratio (OR) 0.96, 95% confidence interval (CI) 0.81 to 1.14), but in five trials outside Africa the number of first attacks was reduced (Peto OR 0.77, 95% CI 0.67 to 0.88). Trials to date have not indicated any serious adverse events with SPf66 vaccine. In three trials of CS-NANP vaccines, there was no evidence for protection by these vaccines against P. falciparum malaria (Peto OR 1.12, 95% CI 0.64 to 1.93). In a small trial in non-immune adults in the USA, RTS,S gave strong protection against experimental infection with P. falciparum. In a trial in an endemic area of the Gambia in semi-immune people, there was a reduction in clinical malaria episodes in the second year of follow up, corresponding to a vaccine efficacy of 66% (CI 14% to 85%). In a trial in Papua New Guinea, MSP/RESA had no protective effect against episodes of clinical malaria. There was evidence of an effect on parasite density, but this differed according to whether the participants had been pretreated with sulfadoxine/pyrimethamine or not. The prevalence of infections with the parasite subtype of MSP2 in the vaccine was reduced compared with the other subtype (Peto OR 0.35, CI 0.23 to 0.53). AUTHORS' CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in other regions. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified. There was not enough evidence to evaluate the use of CS-NANP vaccines. The RTS,S vaccine showed promising result, as did the MSP/RESA vaccine, but it should include the other main allelic form of MSP2. The MSP/RESA trial demonstrated that chemotherapy during a vaccine trial may reduce vaccine efficacy, and trials should consider very carefully whether this practice is justified.
Collapse
Affiliation(s)
- P Graves
- EpiVec Consulting, 606 Kimberly Lane NE, Atlanta, GA 30306, USA.
| | | |
Collapse
|
19
|
Bermúdez A, Reyes C, Guzmán F, Vanegas M, Rosas J, Amador R, Rodríguez R, Patarroyo MA, Patarroyo ME. Synthetic vaccine update: Applying lessons learned from recent SPf66 malarial vaccine physicochemical, structural and immunological characterization. Vaccine 2007; 25:4487-501. [PMID: 17403557 DOI: 10.1016/j.vaccine.2007.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/07/2007] [Indexed: 11/17/2022]
Abstract
The SPf66 synthetic malaria vaccine, developed and obtained almost 2 decades ago, represents the first approach towards developing a multi-antigenic, multi-stage synthetic malarial vaccine composed of subunits derived from different Plasmodium falciparum stage proteins. It is shown here that batches 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15 and 16 produced from a few milligrams to kilogram amounts and used in assays on monkeys and humans showed high reproducibility in physicochemical analysis. (1)H NMR two-dimensional studies also revealed high similarity, even in non-oxidized batches. Reproducibility was also high, especially in preclinical studies carried out on Aotus, clinical trials Phase I, IIa and IIb and field-studies carried out in La Tola, Rio Rosario (Colombia), Majadas (Venezuela), La Te (Ecuador), Ifakara (Tanzania) in which there was high antibody titer production, having similar population distribution when done with different batches. These results provide great support for peptide-synthesized vaccines containing minimal epitopes from protection-inducing antigens which have several advantages, such as low cost, safety, reproducibility, stability, being straightforwardly scaled-up from milligram to kilogram amounts; make them the vaccines of choice for the future in a worldwide attempt to scourge diseases such as malaria.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/immunology
- Aotidae
- Child
- Child, Preschool
- Chromatography, High Pressure Liquid
- Clinical Trials as Topic
- Female
- Humans
- Infant
- Magnetic Resonance Spectroscopy
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/adverse effects
- Malaria Vaccines/chemistry
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Male
- Molecular Sequence Data
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/adverse effects
- Protozoan Proteins/chemistry
- Protozoan Proteins/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Reproducibility of Results
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Adriana Bermúdez
- Nuclear Magnetic Resonance Department, Fundación Instituto de Inmunología de Colombia, Bogota, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Struchiner CJ, Halloran ME. Randomization and baseline transmission in vaccine field trials. Epidemiol Infect 2007; 135:181-94. [PMID: 17291359 PMCID: PMC2870563 DOI: 10.1017/s0950268806006716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2006] [Indexed: 11/07/2022] Open
Abstract
In randomized trials, the treatment assignment mechanism is independent of the outcome of interest and other covariates thought to be relevant in determining this outcome. It also allows, on average, for a balanced distribution of these covariates in the vaccine and placebo groups. Randomization, however, does not guarantee that the estimated effect is an unbiased estimate of the biological effect of interest. We show how exposure to infection can be a confounder even in randomized vaccine field trials. Based on a simple model of the biological efficacy of interest, we extend the arguments on comparability and collapsibility to examine the limits of randomization to control for unmeasured covariates. Estimates from randomized, placebo-controlled Phase III vaccine field trials that differ in baseline transmission are not comparable unless explicit control for baseline transmission is taken into account.
Collapse
Affiliation(s)
- C J Struchiner
- IMS/UERJ and Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | |
Collapse
|
21
|
Patarroyo ME, Bermúdez A, Salazar LM, Espejo F. High non-protective, long-lasting antibody levels in malaria are associated with haplotype shifting in MHC–peptide–TCR complex formation: a new mechanism for immune evasion. Biochimie 2006; 88:775-84. [PMID: 16483708 DOI: 10.1016/j.biochi.2006.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 01/06/2006] [Indexed: 11/19/2022]
Abstract
An effective malarial vaccine must contain multiple immunogenic, protection-inducing epitopes able to block and destroy the P. falciparum malaria parasite, the most lethal form of this disease in the world. Our strategy has consisted in using conserved peptides blocking parasite binding to red blood cells; however, these peptides are non-immunogenic and non-protection-inducing. Modifying their critical residues can make them immunogenic. Such peptides induced antibody titers (determined by immunofluorescence antibody test, IFA) and made the latter reactive (determined by Western blot) and protection inducing against experimental challenge with a highly infective Aotus monkey adapted P. falciparum strain. Modified peptides also induce highly non-protective long-lasting antibody levels. Modifications performed might allow them to bind specifically to different HLA-DRbeta purified molecules. These immunological and biological activities are associated with modifications in their three-dimensional structure as determined by (1)H-NMR. It was found that modified, high non-protective long-lasting antibody level peptides bound to HLA-DR molecules from a different haplotype (to which immunogenic, protection-inducers bind) and had 4.6 +/- 1.4 A shorter distances between residues fitting into these molecules' Pocket 1 to Pocket 9, suggesting fitting into an inappropriate HLA-DR molecule. A multi-component, subunit-based, malarial vaccine is therefore feasible if modified peptides are suitably modified for an appropriate fit into the correct HLA-DRbeta1* molecule in order to form a proper MHC-II-peptide-TCR complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/immunology
- Aotidae
- Blotting, Western
- Computer Simulation
- HLA-DR Antigens/chemistry
- HLA-DR Antigens/immunology
- HLA-DR Antigens/metabolism
- Humans
- Major Histocompatibility Complex/immunology
- Malaria/immunology
- Malaria Vaccines/immunology
- Malaria Vaccines/metabolism
- Models, Molecular
- Molecular Sequence Data
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/immunology
- Plasmodium falciparum/immunology
- Protein Binding
- Protein Conformation
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 No. 26-00 Bogotá, Colombia.
| | | | | | | |
Collapse
|
22
|
McKenzie FE, Smith DL, O'Meara WP, Forney JR, Magill AJ, Permpanich B, Erhart LM, Sirichaisinthop J, Wongsrichanalai C, Gasser RA. Fever in patients with mixed-species malaria. Clin Infect Dis 2006; 42:1713-8. [PMID: 16705577 PMCID: PMC2481387 DOI: 10.1086/504330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 02/16/2006] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Clinical symptoms of mixed-species malaria infections have been variously reported as both less severe and more severe than those of single-species infections. METHODS Oral temperatures were taken from and blood slides were prepared for 2308 adults who presented at outpatient malaria clinics in Tak Province (Thailand) during May-August 1998, May-July 1999, and May-June 2001 with malaria infections diagnosed by 2 expert research microscopists, each of whom was blinded to the other's reports. RESULTS In each year, temperatures of patients with mixed Plasmodium vivax-Plasmodium falciparum infections were higher than temperatures of patients with P. vivax or P. falciparum infections. In every mixed-species case, P. falciparum parasitemia was higher than P. vivax parasitemia, but patient temperature was not correlated with the parasitemia of either species or with the total parasitemia. CONCLUSIONS Among adults who self-report to malaria clinics in western Thailand, patients with mixed P. vivax-P. falciparum infections have higher fevers than patients with single-species infections, a distinction that cannot be attributed to differences in parasitemia. This observation warrants more detailed investigations, spanning wider ranges of ages and transmission environments.
Collapse
Affiliation(s)
- F Ellis McKenzie
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
BACKGROUND A malaria vaccine is badly needed. SPf66 was one of the earliest vaccines developed. It is a synthetic peptide vaccine containing antigens from the blood stages of malaria linked together with an antigen from the sporozoite stage, and is targeted mainly against the blood (asexual) stages. OBJECTIVES To assess the effect of SPf66 malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae, and P. ovale in preventing infection, disease, and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group Specialized Register (September 2005), CENTRAL (The Cochrane Library 2005, Issue 3), MEDLINE (1966 to September 2005), EMBASE (1980 to September 2005), LILACS (1982 to September 2005), Science Citation Index (1981 to September 2005), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized and quasi-randomized controlled trials comparing SPf66 vaccine with placebo or routine antimalarial control measures in people of any age receiving an artificial challenge or natural exposure to malaria infection (any species). DATA COLLECTION AND ANALYSIS Two people independently assessed trial quality and extracted data, including adverse events. Results were expressed as relative risks (RR) with 95% confidence intervals (CI). MAIN RESULTS Ten efficacy trials of SPf66 involving 9698 participants were included. Results with SPf66 in reducing new episodes of P. falciparum malaria were heterogeneous: it was not effective in four African trials (RR 0.98, 95% CI 0.90 to 1.07; 2371 participants) or in one Asian trial (RR 1.06, 95% CI 0.90 to 1.25; 1221 participants). In four trials in South America the number of first attacks with P. falciparum was reduced by 28% (RR 0.72, 95% CI 0.63 to 0.82; 3807 participants). It did not reduce episodes of P. vivax malaria or admission to hospital with severe malaria. Trials have not indicated any serious adverse events with SPf66 vaccine. AUTHORS' CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in South America. There is no justification for further trials of SPf66 in its current formulation. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified.
Collapse
Affiliation(s)
- P Graves
- Centers for Diseases Control and Prevention, Division of Parasitic Diseases, Mailstop F42, Building 102, Room 2113, 4770 Burford Highway NE, Atlanta, GA 30306, USA.
| | | |
Collapse
|
24
|
Lyke KE, Dicko A, Kone A, Coulibaly D, Guindo A, Cissoko Y, Traoré K, Plowe CV, Doumbo OK. Incidence of severe Plasmodium falciparum malaria as a primary endpoint for vaccine efficacy trials in Bandiagara, Mali. Vaccine 2004; 22:3169-74. [PMID: 15297070 DOI: 10.1016/j.vaccine.2004.01.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Revised: 12/19/2003] [Accepted: 01/15/2004] [Indexed: 11/18/2022]
Abstract
Potential endpoints for blood stage malaria vaccine efficacy trials include uncomplicated malaria disease, which is hard to differentiate from other febrile illnesses, and mortality, which requires prohibitively large sample sizes. Strictly defined severe malaria predicts malaria-associated mortality where case fatality rates are known. To assess the suitability of severe malaria as a trial endpoint, we conducted a census in 1999 and measured the incidence of severe malaria from 1999 to 2001 in Bandiagara, Mali. The annual incidence of severe malaria in children <6 years of age was 2.3% (n = 2,284) yielding an estimated sample size of 4,580 for a vaccine trial designed to detect 50% efficacy with 80% power at P = 0.05 with 5% loss to follow-up. A trial using severe malaria as an endpoint in this setting would thus require expanding the study population or the length of the trial. This approach may be useful in assessing the suitability of potential sites for malaria vaccine trials.
Collapse
Affiliation(s)
- Kirsten E Lyke
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, HSF 480, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Struchiner CJ, Halloran ME, Brunet RC, Ribeiro JM, Massad E. Malaria vaccines: lessons from field trials. CAD SAUDE PUBLICA 2004; 10 Suppl 2:310-26. [PMID: 15042221 DOI: 10.1590/s0102-311x1994000800009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Malaria vaccine candidates have already been tested and new trials are being carried out. We present a brief description of specific issues of validity that are relevant when assessing vaccine efficacy in the field and illustrate how the application of these principles might improve our interpretation of the data being gathered in actual malaria vaccine field trials. Our discussion assumes that vaccine evaluation shares the same general principles of validity with epidemiologic causal inference, i.e., the process of drawing inferences from epidemiologic data aiming at the identification of causes of diseases. Judicious exercise of these principles indicates that, for meaningful interpretation, measures of vaccine efficacy require definitions based upon arguments conditional on the amount of exposure to infection, and specification of the initial and final states in which one believes the effect of interest takes place.
Collapse
Affiliation(s)
- C J Struchiner
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21041-210, Brazil
| | | | | | | | | |
Collapse
|
26
|
Espejo F, Bermúdez A, Torres E, Urquiza M, Rodríguez R, López Y, Patarroyo ME. Shortening and modifying the 1513 MSP-1 peptide’s α-helical region induces protection against malaria. Biochem Biophys Res Commun 2004; 315:418-27. [PMID: 14766224 DOI: 10.1016/j.bbrc.2004.01.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Indexed: 11/25/2022]
Abstract
Immunogenic and protective peptide sequences are of prime importance in the search for an anti-malarial vaccine. The MSP-1 conserved and semi-conserved sequences have been shown to contain red blood cell (RBC) membrane high affinity binding peptides (HABP). HABP 1513 sequence ((42)GYSLFQKEKMVLNEGTSGTA(61)), from this protein's N-terminal, has been shown to possess a T-epitope; however, it did not induce a humoral immune response or complete protection when evaluated in Aotus monkeys. Analogue peptides with critical binding residues replaced by amino acids with similar mass but different charge were synthesised and tested for immunogenicity and protectivity in monkey. NMR studies correlated structural behaviour with biological function. Non-immunogenic and non-protective 1513 native peptide presented a helical fragment between residues L(4) and E(14). C-terminal, 5-residue-shorter, non-immunogenic, non-protective peptide 17894 contained an alpha-helix from Q(6) to L(12) residues. Immunogenic and protective peptide 13946 presented a shorter alpha-helix between K(7) to N(13) residues. These data suggest that changing certain residues permits better peptide fit within the MHC class II-peptide-TCR complex, thus activating the immune system and inducing a protective immune response.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aotidae
- Blotting, Western
- Cell Membrane/metabolism
- Circular Dichroism
- Epitopes/chemistry
- Erythrocytes/metabolism
- Fluorescent Antibody Technique, Indirect
- Magnetic Resonance Spectroscopy
- Malaria Vaccines
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/prevention & control
- Merozoite Surface Protein 1/chemistry
- Models, Molecular
- Molecular Sequence Data
- Peptide Biosynthesis
- Peptide Fragments
- Peptides/chemistry
- Plasmodium falciparum/metabolism
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Fabiola Espejo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Universidad Nacional de Colombia-Bogotá, Cra. 50 No. 26-00, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
27
|
Carcaboso AM, Hernández RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004; 22:1423-32. [PMID: 15063565 DOI: 10.1016/j.vaccine.2003.10.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Accepted: 10/27/2003] [Indexed: 10/26/2022]
Abstract
The immunogenicity of the synthetic malaria vaccine SPf66 has been recently improved by the application of new adjuvants as QS-21 saponin or poly-D,L-lactide-co-glycolide (PLGA) polymers. The search for less invasive administration routes made us test the immunogenicity of SPf66-loaded microparticles by the nasal route in Balb/c mice. We report here that the intranasal administration of the adequate PLGA vaccine formulations greatly improves and maintains higher antibody levels compared to the conventional alum adjuvant and to the administration of the particles by other routes (subcutaneous, oral). Systemic immune responses were characterized as mixed Th1/Th2-type: IFN-gamma and IgG2a isotype were found as signs of Th1 activation, whilst IgE and IgG1 secretions indicate Th2 response. Since both types of response have been associated to protective immunity in malaria, we postulate that this new approach supposes an advantage over the traditional adjuvants and routes.
Collapse
Affiliation(s)
- A M Carcaboso
- Pharmacy and Pharmaceutical Technology Laboratory, Universidad del País Vasco (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Chauhan VS, Bhardwaj D. Current status of malaria vaccine development. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 84:143-82. [PMID: 12934936 DOI: 10.1007/3-540-36488-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
There is an urgent need to develop an effective vaccine against malaria--a disease that has approximately 10% of the world population at risk of infection at any given time. The economic burden this disease puts on the medico-social set-up of countries in Sub-Saharan Africa and South East Asia is phenomenal. Increasing drug resistance and failure of vector control strategies have necessitated the search for a suitable vaccine that could be integrated into the extended program of immunization for countries in the endemic regions. Malaria vaccine development has seen a surge of activity in the last decade or so owing largely to the advances made in the fields of genetic engineering and biotechnology. This revolution has brought sweeping changes in the understanding of the biology of the parasite and has helped formulate newer more effective strategies to combat the disease. Latest developments in the field of malaria vaccine development will be discussed in this chapter.
Collapse
Affiliation(s)
- Virander Singh Chauhan
- Malaria Research Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | | |
Collapse
|
29
|
Carcaboso AM, Hernández RM, Igartua M, Gascón AR, Rosas JE, Patarroyo ME, Pedraz JL. Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 2003; 260:273-82. [PMID: 12842346 DOI: 10.1016/s0378-5173(03)00266-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthetic peptide SPf66 adsorbed on alum is one of the few Plasmodium falciparum vaccines which have been tested in field trials. We previously reported that subcutaneous administration of SPf66 loaded PLGA microparticles (MP) enhances the antibody response to this antigen compared to the conventional alum formulation. We now evaluate the suitability of polymeric formulations to obtain systemic immune responses by gastric intubation of Balb/c mice. Formulations composed of 1:1 mixtures of PLGA 50:50 and 75:25 (lactic:glycolic) microparticles were administered by the oral route, and when animals were boosted 3 weeks later significant systemic IgG antibody responses were elicited, comparable to alum triple shot and superior to the aqueous vaccine given by the oral route. The finding of IgG2a isotype for PLGA-vaccinated mice compared to the absent levels of this isotype for the alum-vaccinated group could be interpreted as a sign of Th1-like immune response and cellular immune response activation. Our results confirm that using the appropriate schedule the oral administration of PLGA particles is suitable to obtain systemic immune responses to the carried antigen.
Collapse
Affiliation(s)
- A M Carcaboso
- Pharmacy and Pharmaceutical Technology Laboratory, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad no 7, 01006 Vitoria-Gasteiz, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
BACKGROUND Four types of malaria vaccine, SPf66 and MSP/RESA vaccines (against the asexual stages of the Plasmodium parasite) and CS-NANP and RTS,S vaccines (against the sporozoite stages), have been tested in randomized controlled trials in endemic areas. OBJECTIVES To assess malaria vaccines against Plasmodium falciparum, P. vivax, P. malariae and P ovale in preventing infection, disease and death. SEARCH STRATEGY We searched the Cochrane Infectious Diseases Group trials register (July 2002), the Cochrane Controlled Trials Register (The Cochrane Library Issue 2, 2002), MEDLINE (1966 to July 2002), EMBASE (1980 to May 2002), Science Citation Index (1981 to July 2002), and reference lists of articles. We also contacted organizations and researchers in the field. SELECTION CRITERIA Randomized controlled trials comparing vaccines against Plasmodium falciparum, P. vivax, P. malariae or P. ovale with placebo or routine antimalarial control measures in people of any age receiving a challenge malaria infection. DATA COLLECTION AND ANALYSIS Two reviewers independently assessed trial quality and extracted data. MAIN RESULTS Eighteen efficacy trials involving 10,971 participants were included. There were ten trials of SPf66 vaccine, four trials of CS-NANP vaccines, two trials of RTS,S vaccine, and two of MSP/RESA vaccine. Results with SPf66 in reducing new malaria infections (P. falciparum) were heterogeneous: it was not effective in four African trials (Peto odds ratio (OR) 0.96, 95% confidence interval (CI) 0.81 to 1.14), but in five trials outside Africa the number of first attacks was reduced (Peto OR 0.77, 95% CI 0.67 to 0.88). Trials to date have not indicated any serious adverse events with SPf66 vaccine. In three trials of CS-NANP vaccines, there was no evidence for protection by these vaccines against P. falciparum malaria (Peto OR 1.12, 95% CI 0.64 to 1.93). In a small trial in non-immune adults in the USA, RTS,S gave strong protection against experimental infection with P. falciparum. In a trial in an endemic area of the Gambia in semi-immune people, there was a reduction in clinical malaria episodes in the second year of follow up, corresponding to a vaccine efficacy of 66% (CI 14% to 85%). In a trial in Papua New Guinea, MSP/RESA had no protective effect against episodes of clinical malaria. There was evidence of an effect on parasite density, but this differed according to whether the participants had been pretreated with sulfadoxine/pyrimethamine or not. The prevalence of infections with the parasite subtype of MSP2 in the vaccine was reduced compared with the other subtype (Peto OR 0.35, CI 0.23 to 0.53). REVIEWER'S CONCLUSIONS There is no evidence for protection by SPf66 vaccines against P. falciparum in Africa. There is a modest reduction in attacks of P. falciparum malaria following vaccination with SPf66 in other regions. Further research with SPf66 vaccines in South America or with new formulations of SPf66 may be justified. There was not enough evidence to evaluate the use of CS-NANP vaccines. The RTS,S vaccine showed promising result, as did the MSP/RESA vaccine, but it should include the other main allelic form of MSP2. The MSP/RESA trial demonstrated that chemotherapy during a vaccine trial may reduce vaccine efficacy, and trials should consider very carefully whether this practice is justified.
Collapse
Affiliation(s)
- P Graves
- 1400 W. Oak Street, Fort Collins, CO 80521, USA.
| | | |
Collapse
|
31
|
Edelman R, Wasserman SS, Kublin JG, Bodison SA, Nardin EH, Oliveira GA, Ansari S, Diggs CL, Kashala OL, Schmeckpeper BJ, Hamilton RG. Immediate-type hypersensitivity and other clinical reactions in volunteers immunized with a synthetic multi-antigen peptide vaccine (PfCS-MAP1NYU) against Plasmodium falciparum sporozoites. Vaccine 2002; 21:269-80. [PMID: 12450702 DOI: 10.1016/s0264-410x(02)00468-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We tested the clinical reactions to a synthetic, Plasmodium falciparum, circumsporozoite multiple antigen peptide (MAP) vaccine in 39 volunteers immunized two to three times over 2-8 months using a dose escalation design. Immediate pain at the injection site was associated with the adjuvant QS-21 (P<0.001), and delayed local inflammatory reactions were associated with high-titered circulating IgG anti-MAP antibody (P=0.03). Because two volunteers developed acute, systemic urticaria after the third immunization associated with development of serum IgE MAP antibody, we employed immediate-type hypersensitivity skin tests (ITH-STs) using intradermal injections of diluted MAP vaccine to identify persons sensitized to the vaccine. ITH-STs were negative in seven volunteers tested 27 days after the first vaccination, but six of these individuals developed positive wheal and flare reactions when tested 14 or 83 days after the second vaccination; IgE MAP antibody was detected in only one of them. Another cohort of 16 volunteers, including the 2 allergic individuals, were ITH-ST negative when first tested late after their second or third vaccination at 6-7 months. Five of five non-immunized persons were also ITH-ST negative. ITH-STs may help identify individuals sensitized to malaria peptides and at potential risk of developing systemic allergic reactions after re-vaccination.
Collapse
Affiliation(s)
- Robert Edelman
- Department of Medicine, University of Maryland School of Medicine, Room 480, 685 West Baltimore Street, Baltimore, MD 21201 USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kashala O, Amador R, Valero MV, Moreno A, Barbosa A, Nickel B, Daubenberger CA, Guzman F, Pluschke G, Patarroyo ME. Safety, tolerability and immunogenicity of new formulations of the Plasmodium falciparum malaria peptide vaccine SPf66 combined with the immunological adjuvant QS-21. Vaccine 2002; 20:2263-77. [PMID: 12009282 DOI: 10.1016/s0264-410x(02)00115-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SPf66 is a synthetic malaria peptide vaccine, which has been widely tested in combination with aluminium hydroxide (alum) as the adjuvant. Since this formulation is weakly immunogenic, we sought to improve its immunogenicity by using the saponin adjuvant QS-21. SPf66/QS-21 vaccines were evaluated for safety, tolerability and immunogenicity in healthy adults. The vaccines were found to be safe in 87/89 (97.8%) volunteers studied. However, two individuals developed severe vaccine allergy following the third dose of 1/3 SPf66/QS-21 formulations tested. Vaccine formulations containing QS-21 induced a 45- to over 200-fold increase in anti-SPf66 IgG titres over the alum formulation after the second and third doses, respectively. Anti-SPf66 antibody from some subjects reacted against asexual blood stage parasites, as demonstrated by immunofluorescence and immunoblotting. Antibody responses generated by the QS-21 formulations were of longer duration compared to those evoked by the alum formulation. While SPf66/alum has been found to induce only CD4+ T cell response, the QS-21 formulations exhibited the potential to also elicit SPf66-specific CD8+ responses. These observations demonstrate that the use of QS-21 can substantially enhance the immunogenicity of peptide vaccines, such as SPf66.
Collapse
Affiliation(s)
- Oscar Kashala
- Aquila Biopharmaceuticals Inc., Framingham, MA 01702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bojang KA, Milligan PJ, Pinder M, Vigneron L, Alloueche A, Kester KE, Ballou WR, Conway DJ, Reece WH, Gothard P, Yamuah L, Delchambre M, Voss G, Greenwood BM, Hill A, McAdam KP, Tornieporth N, Cohen JD, Doherty T. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 2001; 358:1927-34. [PMID: 11747915 DOI: 10.1016/s0140-6736(01)06957-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND RTS,S/AS02 is a pre-erythrocytic malaria vaccine based on the circumsporozoite surface protein of Plasmodium falciparum fused to HBsAg, incorporating a new adjuvant (AS02). We did a randomised trial of the efficacy of RTS,S/AS02 against natural P. falciparum infection in semi-immune adult men in The Gambia. METHODS 306 men aged 18-45 years were randomly assigned three doses of either RTS,S/AS02 or rabies vaccine (control). Volunteers were given sulfadoxine/pyrimethamine 2 weeks before dose 3, and kept under surveillance throughout the malaria transmission season. Blood smears were collected once a week and whenever a volunteer developed symptoms compatible with malaria. The primary endpoint was time to first infection with P. falciparum. Analysis was per protocol. FINDINGS 250 men (131 in the RTS,S/AS02 group and 119 in the control group) received three doses of vaccine and were followed up for 15 weeks. RTS,S/AS02 was safe and well tolerated. P. falciparum infections occurred significantly earlier in the control group than the RTS,S/AS02 group (Wilcoxon's test p=0.018). Vaccine efficacy, adjusted for confounders, was 34% (95% CI 8.0-53, p=0.014). Protection seemed to wane: estimated efficacy during the first 9 weeks of follow-up was 71% (46-85), but decreased to 0% (-52 to 34) in the last 6 weeks. Vaccination induced strong antibody responses to circumsporozoite protein and strong T-cell responses. Protection was not limited to the NF54 parasite genotype from which the vaccine was derived. 158 men received a fourth dose the next year and were followed up for 9 weeks; during this time, vaccine efficacy was 47% (4-71, p=0.037). INTERPRETATION RTS,S/AS02 is safe, immunogenic, and is the first pre-erythrocytic vaccine to show significant protection against natural P. falciparum infection.
Collapse
Affiliation(s)
- K A Bojang
- Medical Research Council Laboratories, PO Box 273, The, Banjul, Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rosas JE, Hernández RM, Gascón AR, Igartua M, Guzman F, Patarroyo ME, Pedraz JL. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001; 19:4445-51. [PMID: 11483270 DOI: 10.1016/s0264-410x(01)00192-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
SPf66 is the first chemically synthesised vaccine to elicit a partial protective immune response against malaria. The aluminium hydroxide (alum)-adsorbed SPf66 vaccine is weakly immunogenic and of poor to moderate efficacy in humans. To investigate the possibility of improving SPf66 vaccine immunogenicity, a delivery system based on poly-D,L-lactide-co-glycolide (PLGA) microspheres was developed and the immune response induced after its subcutaneous administration into mice was evaluated. Microspheres were prepared by a solvent extraction/double emulsion (w/o/w) method and characterised for morphology, size, peptide loading, release profile and peptide integrity. The in vitro and in vivo results obtained showed that there was no apparent effect of the encapsulation procedure on SPf66 integrity and immunogenicity. The subcutaneous administration of microspheres showed a significantly higher immune response (serum IgG levels) than that obtained with alum adsorbed SPf66 and it was comparable to that of SPf66 emulsified with Freund's adjuvant (FA). These observations illustrate the potential of PLGA microspheres as a delivery system for chemically synthesised antigens.
Collapse
Affiliation(s)
- J E Rosas
- Pharmacy and Pharmaceutical Technology Laboratory, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad no.7, 01006, Vitoria-Gasteiz, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Dong W, Li M, Bi H, Li Y, Wu J, Qu L. Assessment of a vaccinia virus vectored multi-epitope live vaccine candidate for Plasmodium falciparum. Int J Parasitol 2001; 31:57-62. [PMID: 11165271 DOI: 10.1016/s0020-7519(00)00110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We constructed a live recombinant vaccinia virus vaccine candidate containing a synthesised hybrid gene termed 'HGFSP' encoding circumsporozoite protein (CSP), major merozoite surface antigen-1(MSA1), major merozoite surface antigen-2 (MSA2), and ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum, interleukin-1 (IL-1) and tetanus toxin (TT) epitopes. Anti-recombinant vaccinia virus rabbit sera and IgG were tested in inhibition experiments in vitro. Results showed that the recombinant vaccinia virus had some capability to inhibit the growth of P. falciparum in vitro. The sera of rabbits, rats, and mice immunised with recombinant virus showed obvious IL-2 activity 4-6 weeks after immunisation. The interferon (IFN) level of sera from these animals 6 weeks after immunisation was significantly higher than before immunisation. These results indicate that the recombinant vaccinia virus can stimulate cell mediated responses (Th1 cell response) in immunised animals, and has the capability to inhibit multiplication of in vitro cultured P. falciparum. Thus this recombinant vaccinia virus is an appropriate vaccine candidate for further evaluation in Aotus monkey or human clinical trails.
Collapse
Affiliation(s)
- W Dong
- Institute of Tropical Medicine, First Military Medical University, 510515, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
36
|
Benmohamed L, Thomas A, Bossus M, Brahimi K, Wubben J, Gras-Masse H, Druilhe P. High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules. Vaccine 2000; 18:2843-55. [PMID: 10812228 DOI: 10.1016/s0264-410x(00)00068-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the immunogenicity in chimpanzees of twelve synthetic peptides derived from four new Plasmodium falciparum molecules expressed at pre-erythrocytic stages of the human malaria parasite. These parasite molecules were initially selected through their ability to be recognized by stage restricted human antibodies. Twelve 20- to 41-mer peptides representing potential human B- or T-cell epitopes were selected from these proteins, and synthesized. Six of these were modified by a C-terminal lipidic chain in order to re-inforce their immunogenicity. Strong B- and T-helper cell responses were induced in chimpanzees by lipopeptides injected without adjuvant and by peptides in Montanide. All twelve peptides induced CD4(+) T-cell proliferative responses, as well as the secretion of IFN-gamma (some of them at very high levels) and eleven peptides induced antibody responses. The immune responses elicited in this way were reactive with native parasite proteins, as shown by recall studies with sporozoite stage proteins, and proved to be long-lasting (up to 10 months after immunization). Our results support the strategy employed to select these four new malarial antigens and the corresponding peptides, and suggest that the immunizing formulations are both efficient and clinically acceptable.
Collapse
Affiliation(s)
- L Benmohamed
- Unité de Parasitologie Bio-Médicale, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Pöltl-Frank F, Zurbriggen R, Helg A, Stuart F, Robinson J, Glück R, Pluschke G. Use of reconstituted influenza virus virosomes as an immunopotentiating delivery system for a peptide-based vaccine. Clin Exp Immunol 1999; 117:496-503. [PMID: 10469053 PMCID: PMC1905361 DOI: 10.1046/j.1365-2249.1999.00989.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunopotentiating reconstituted influenza virosomes (IRIV) were used as a delivery system for the synthetic peptide-based malaria vaccine SPf66. The reduced SPf66 peptide molecules containing terminal cysteine residues were covalently attached to phosphatidylethanolamine with the heterobifunctional crosslinker gamma-maleimidobutyric acid N-hydroxysuccinimide ester. The SPf66-phosphatidylethanolamine was incorporated into IRIV and BALB/c mice were immunized twice by intramuscular injection with peptide-loaded virosomes. Titres of elicited anti-SPf66 IgG were determined by ELISA. These titres were significantly higher and the required doses of antigen were lower, when mice had been preimmunized with a commercial whole virus influenza vaccine. After preimmunization with the influenza vaccine, SPf66-IRIV elicited far more consistently anti-SPf66 antibody responses than SPf(66)n adsorbed to alum. MoAb produced by four B cell hybridoma clones derived from a SPf66-IRIV-immunized mouse cross-reacted with Plasmodium falciparum blood stage parasites in immunofluorescence assays. All four MoAbs were specific for the merozoite surface protein-1 (MSP-1)-derived 83.1 portion of SPf66. Sequencing of their functionally rearranged kappa light chain variable region genes demonstrated that the four hybridomas were generated from clonally related splenic B cells. Biomolecular interaction analyses (BIA) together with these sequencing data provided evidence for the selection of somatically mutated affinity-matured B cells upon repeated immunization with SPf66-IRIV. The results indicate that IRIV are a suitable delivery system for synthetic peptide vaccines and thus have a great potential for the design of molecularly defined combined vaccines targeted against multiple antigens and development stages of one parasite, as well as against multiple pathogens.
Collapse
|
38
|
Metzger WG, Haywood M, D'Alessandro U, Drakeley CJ, Weiss H, Bojang K, Targett GA, Greenwood BM. Serological responses of Gambian children to immunization with the malaria vaccine SPf66. Parasite Immunol 1999; 21:335-40. [PMID: 10417667 DOI: 10.1046/j.1365-3024.1999.00231.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antibody responses to the malaria vaccine SPf66 and to its constituent peptides were measured over a period of 2 years in Gambian children who had been immunized with SPf66 or with a control vaccine (inactivated polio vaccine). Three hundred and six of 308 children (99%) who had received three doses of SPf66 vaccine had antibodies to SPf66 at a level above that found in European controls who had not been exposed to malaria. Responses to the constituent peptides derived from 35.1, 55.1 and 83.1-kDa proteins were found in 88%, 97% and 97% of children, respectively; 26% had an antibody response to the NANP repeat peptide of circumsporozoite protein which is also included in the SPf66 vaccine. A response to SPf66 was found in 22% of children who had received the control vaccine. Antibody responses to NANP, 35.1, 55.1 and 83.1-kDa peptide were found in 3%, 33%, 49% and 33% of these children. Overall, no significant correlation was found between the level of anti-SPf66 antibody at the beginning of the malaria transmission season following vaccination and the subsequent risk of malaria. However, further analysis showed that among the control children who had acquired antibodies to SPf66 as a result of natural exposure to malaria, those with high levels of anti-SPf66 were less at risk of malaria, perhaps reflecting their greater previous exposure and thus immunity. In contrast, among children who had received three doses of SPf66, those with high antibody levels were at greater risk of have malaria during the subsequent malaria transmission season.
Collapse
Affiliation(s)
- W G Metzger
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Haywood M, Conway DJ, Weiss H, Metzger W, D'Alessandro U, Snounou G, Targett G, Greenwood B. Reduction in the mean number of Plasmodium falciparum genotypes in Gambian children immunized with the malaria vaccine SPf66. Trans R Soc Trop Med Hyg 1999; 93 Suppl 1:65-8. [PMID: 10450429 DOI: 10.1016/s0035-9203(99)90330-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SPf66, a synthetic peptide Plasmodium falciparum vaccine, did not protect young Gambian children against clinical attacks of malaria. Nevertheless, Gambian children who had been vaccinated with SPf66 and who were parasitaemic at the end of the first malaria transmission season after vaccination had significantly fewer detectable P. falciparum genotypes than control children, as determined by polymerase chain reaction analysis of 3 polymorphic loci--the msp1 block 2 repeat region, the msp2 repeat region, and the R11 region of the glutamate-rich protein gene (glurp). Geometric mean numbers of genotypes were 1.66 vs. 1.87, 1.95 vs. 2.43, and 1.21 vs. 1.50 for msp1, msp2 and glurp, respectively (P = 0.31, P = 0.04 and P < 0.01). Differences between groups became a little more marked for msp1 and msp2 when children with symptomatic malaria were excluded. No significant difference was found between parasites obtained from SPf66-vaccinated or control children in the prevalences of amino acid alleles at positions 44 and 47 in the 11 amino acid sequence of the merozoite surface protein 1 molecule, which is present in SPf66. The reduction in the number of genotypes observed could not be explained by a difference in parasite densities between SPf66-vaccinated and control children, as geometric mean parasite densities were almost identical in the 2 groups. These observations suggest that SPf66 vaccine may have induced an immune response which reduced the incidence of new infections in immunized children or accelerated the rate of clearance of parasites of individual genotypes. However, no reduction in the prevalence or density of parasitaemia was recorded in SPf66-vaccinated children, suggesting the existence of some kind of density-dependent mechanism for controlling low levels of malaria parasitaemia.
Collapse
Affiliation(s)
- M Haywood
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, UK
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lozano JM, Espejo F, Diaz D, Salazar LM, Rodriguez J, Pinzón C, Calvo JC, Guzmán F, Patarroyo ME. Reduced amide pseudopeptide analogues of a malaria peptide possess secondary structural elements responsible for induction of functional antibodies which react with native proteins expressed in Plasmodium falciparum erythrocyte stages. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:457-69. [PMID: 9924990 DOI: 10.1111/j.1399-3011.1998.tb01250.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A psi[CH2NH] isoster bond was introduced by replacing one peptide bond at a time within the 1513 malaria peptide KEKMV motif to obtain a set of five pseudopeptides. The motif belongs to a Plasmodium falciparum malarial peptide coded 1513, derived from the MSP-1 protein. This high-binding motif included in the 1513 peptide is involved in the attachment of the malarial parasite to human erythrocytes. The novel malaria 1513 psi[CH2NH] surrogates were analyzed using RP-HPLC and MALDI-TOF mass spectrometry techniques. Nuclear magnetic resonance experiments allowed definition of the five pseudopeptide analogues' secondary structural features. Such structures are present in only a very few molecules in the 1513 parent peptide. A molecular model demonstrating the solution of the three-dimensional structure of the 1 513 peptide Pse-437 analogue was constructed on the basis of 1H-NMR spectral parameters. Monoclonal antibodies were generated to the five 1513 malaria peptide pseudopeptide analogues. These antibodies not only recognize the native MSP-1 (195 kDa) and its 83 kDa and 42 kDa proteolytic processing proteins but also different SPf(66)n malaria vaccine batches containing the native sequence. In addition, the mAbs were able to modify the kinetics of Plasmodium falciparum parasites' intraerythrocytic development and their ability to invade new RBCs. The presented evidence suggests that peptide bond-modified peptides could reproduce a transient state in 1513's native sequence and represent useful candidates in the development of a second generation of effective malarial vaccines.
Collapse
Affiliation(s)
- J M Lozano
- Instituto de Inmunología Hospital San Juan de Dios, Universidad Nacional de Colombia, Bogotá.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lopera TM, Restrepo M, Blair S, García HI. Humoral immune response to the anti-malaria vaccine SPf66 in the Colombian Atrato River region. Mem Inst Oswaldo Cruz 1998; 93:495-500. [PMID: 9711340 DOI: 10.1590/s0074-02761998000400015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The immunogenicity of anti-malaria synthetic vaccine SPf66 was tested in a region of the Colombian middle Atrato river. The specific serum antibodies against SPf66 were quantified in vaccinees and placebo injected controls for a two-years period post-immunization. The frequency of individuals showing seroconversion of anti-SPf66 antibodies three months after completion of the immunization schedule was higher in vaccinees than in controls (52.7% and 25.5%, respectively, p < 0.01). However, an over than four-fold increase of the specific anti-SPf66 antibody titers was observed only in 1.4% of vaccinees and 0.2% of the controls (p < 0.01). The anti-SPf66 antibody titers augmented in vaccinees from first dose application to three months after the third dose, continuously decreasing thereafter to reach below baseline values two years after completion of the immunization schedule. The results show that SPf66 has very low immunogenicity and induces a short term humoral immune response (six months).
Collapse
Affiliation(s)
- T M Lopera
- Instituto Colombiano de Medicina Tropical, Medellin, Colombia.
| | | | | | | |
Collapse
|
42
|
Alonso PL, Lopez MC, Bordmann G, Smith TA, Aponte JJ, Weiss NA, Urassa H, Armstrong-Schellenberg JR, Kitua AY, Masanja H, Thomas MC, Oettli A, Hurt N, Hayes R, Kilama WL, Tanner M. Immune responses to Plasmodium falciparum antigens during a malaria vaccine trial in Tanzanian children. Parasite Immunol 1998; 20:63-71. [PMID: 9572049 DOI: 10.1046/j.1365-3024.1998.00125.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among Tanzanian children living in an area of intense and perennial malaria transmission, prevalence of naturally acquired IgG antibodies that recognize SPf66, NANP, p190 and a 19 kDa fragment of the merozoite surface protein-1 (MSP-1) is high and increases with age. This possibly reflects the high level of natural exposure of the children to P. falciparum. The prevalences of IgG antibodies that recognize the three putative merozoite derived sequences contained in the malaria vaccine SPf66 (83.1, 55.1 and 35.1) is low but also show some age dependence. Three doses of the SPf66 vaccine induce a strong IgG antibody response against both the SPf66 construct, NANP and the three individual peptides. Vaccination with SPf66 did not result in an increase of anti19 kDa fragment antibodies. This reflects the specificity of the humoral immune response induced by the SPf66 construct. Among vaccinated children, antibody titres against SPf66 decreased over time following the third dose. However, 18 months after the third dose, SPf66 recipients still had significantly higher IgG titres and stimulation indices of peripheral blood mononuclear cells (PBMC) than placebo recipients. Within the vaccine group, there is a trend for increasing anti-SPf66 IgG titre to be associated with decreasing risk of clinical malaria but this was not statistically significant. Results also show the difficulties of establishing whether antibody responses are related to protection in field trials in endemic areas.
Collapse
Affiliation(s)
- P L Alonso
- Unidad de Epidemiologia y Bioestadistica, Hospital Clinic, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
al-Yaman F, Genton B, Taraika J, Alpers MP. Naturally acquired cellular immune responses to the synthetic malarial peptide SPf66 in children in Papua New Guinea. Trans R Soc Trop Med Hyg 1997; 91:709-12. [PMID: 9509186 DOI: 10.1016/s0035-9203(97)90534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A prospective longitudinal study to examine the relationship between cellular immune responses to the synthetic malarial peptide SPf66 and malaria infection and morbidity was carried out in 187 children aged 0.5-15 years in the Wosera area of Papua New Guinea. Cellular responses were assessed by proliferation and stimulation of cytokines representing the Th1 and Th2 cell subsets (interferon gamma [IFN gamma] and interleukin-4 [IL-4]. Most children (66%) did not respond to SPf66 by any measure. Among the responders, the highest response was obtained for IL-4 (19%) followed by IFN gamma (10%), and the least for proliferation (5%). Analyses of the relation of T cell response to malaria infection showed that the IFN gamma response to SPf66 was positively correlated with parasite density (r = 0.27, P = 0.001). There was no association between the cellular response to SPf66 and concurrent or subsequent malaria morbidity, whichever clinical definition was used. Thus none of these cellular immune responses predicted efficacy of SPf66 in this highly endemic area.
Collapse
Affiliation(s)
- F al-Yaman
- Papua New Guinea Institute of Medical Research, Madang.
| | | | | | | |
Collapse
|
44
|
Peduzzi P, Donta S, Iwane M. A review of the design of vaccine efficacy trials and a proposal for the design of the VA Cooperative Study of Active Immunotherapy of HIV Infection. CONTROLLED CLINICAL TRIALS 1997; 18:397-419. [PMID: 9315424 DOI: 10.1016/s0197-2456(97)00026-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We review the design of vaccine trials based on a search of the medical literature over the past four years, and present the proposed design of a therapeutic HIV vaccine efficacy study by the Department of Veterans Affairs Cooperative Studies Program. We explore the reasons for the atypical design of many vaccine trials, particularly the analysis of efficacy and how it differs from the more usual intent-to-treat analysis used in nonvaccine trials.
Collapse
Affiliation(s)
- P Peduzzi
- Cooperative Studies Program, VA Medical Center, West Haven, CT 06516, USA
| | | | | |
Collapse
|
45
|
Migasena S, Heppner DG, Kyle DE, Chongsuphajaisiddhi T, Gordon DM, Suntharasamai P, Permpanich B, Brockman A, Pitiuttutham P, Wongsrichanalai C, Srisuriya P, Phonrat B, Pavanand K, Viravan C, Ballou WR. SPf66 malaria vaccine is safe and immunogenic in malaria naive adults in Thailand. Acta Trop 1997; 67:215-27. [PMID: 9241386 DOI: 10.1016/s0001-706x(97)00061-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In preparation for an efficacy trial of malaria vaccine SPf66 in Thailand, a series of overlapping Phase I trials were conducted of US-manufactured SPf66. Here, two clinical lots were evaluated for safety and immunogenicity in a combined open-label trial. Eleven healthy, malaria naive, 18-44 year-old Thai men and women received three doses by subcutaneous injection in alternate arms at 0, 1 and 6 months. Safety was assessed by monitoring local and systemic reactogenicity and laboratory parameters. Common side effects were mild erythema, induration and tenderness at the site of injection which resolved within 24-48 h. At third immunization, two volunteers developed acute bilateral reactions with induration, erythema and pruritus limited to the sites of the second and third immunizations. Eight of 11 volunteers sero-converted by ELISA, six of whom would be classified as high responders by Colombian standards. Eight of 11 volunteers developed a lymphoproliferative response to the SPf66 antigen. Side effects were more common and antibody and lymphoproliferative responses greatest, among the four female volunteers. This initial study of SPf66 malaria vaccine in Asia constitutes an essential link between the initial Phase I study in the US and subsequent field studies in a semi-immune population in a malaria endemic area of Thailand. This study further establishes comparability of US-manufactured SPf66 with that of Colombian provenance and substantiates the validity of the subsequent negative efficacy results of SPf66 in a field trial in Thailand.
Collapse
Affiliation(s)
- S Migasena
- Vaccine Trial Center, Mahidol University, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Facer CA, Tanner M. Clinical trials of malaria vaccines: progress and prospects. ADVANCES IN PARASITOLOGY 1997; 39:1-68. [PMID: 9241814 DOI: 10.1016/s0065-308x(08)60044-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C A Facer
- Department of Haematology, St Bartholomew's and The Royal London School of Medicine and Dentistry, UK
| | | |
Collapse
|
47
|
Robinson JW, Rosas M, Guzman F, Patarroyo ME, Moreno A. Comparison of prevalence of anti-hepatitis C virus antibodies in differing South American populations. J Med Virol 1996; 50:188-92. [PMID: 8915886 DOI: 10.1002/(sici)1096-9071(199610)50:2<188::aid-jmv13>3.0.co;2-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Very little is known about the distribution of hepatitis C virus (HCV) within South America. To assess the exposure of the general population to this virus, a number of sera obtained from three distinct geographical and racial groups were screened using a combination of immunoassays. Initial screening was undertaken with an inhouse immunoassay (core-ELISA) using synthetic peptides based on the N-terminus of the HCV core protein. Sera which were repeatedly positive by core-ELISA were also assessed using a commercial third-generation assay. The highest prevalence rate (2.3%) was seen in sera taken from the Tumaco region of Colombia. Lower rates were found in sera taken from La T, Ecuador (0.7%) and Las Majadas, Venezuela (0.7%). This indicates significantly different prevalence in different racial and geographical groups within the region.
Collapse
Affiliation(s)
- J W Robinson
- Instituto de Inmunología, Hospital San Juan de Dios, Universidad Nacional de Colombia, Santafé de Bogotá, Colombia
| | | | | | | | | |
Collapse
|
48
|
Urdaneta M, Prata A, Struchiner CJ, Tosta CE, Tauil P, Boulos M. Safety evaluation of SPf66 malaria vaccine in Brazil. Rev Soc Bras Med Trop 1996; 29:497-501. [PMID: 8885674 DOI: 10.1590/s0037-86821996000500014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
The frequency and description of side effects secondary to the subcutaneous application of SPf66 malaria vaccine and placebo are reported for each dose of application in the participants of the vaccine efficacy trial in Brazil. Side effects evaluated two hours after each application were detected in 8.0%, 30.2% and 8.8%, for the 1st, 2nd and 3rd dose, respectively, in the SPf66 group, and in 7.0%, 8.5% and 2.9% in the placebo group. Local reactions such as mild inflammation, nodule and pain or erythema frequently accompanied by pruritus were the most common reactions detected in both groups (3.8%, 29.1% and 8.5% in the SPf66 group and 4.0%, 7.6% and 2.5% in the placebo group). Among vaccinees, local side effects after the 2nd dose were more frequent in females. Systemic side effects were expressed mainly through general symptoms referred by the participants and were most frequent after the 1st dose in both groups (4.3% in the SPf66 group and 3.0% in the placebo group). Muscle aches and fever were referred by few participants. No severe adverse reactions were detected for either dose of application or group.
Collapse
Affiliation(s)
- M Urdaneta
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | | | | | | | | | | |
Collapse
|
49
|
Tine JA, Lanar DE, Smith DM, Wellde BT, Schultheiss P, Ware LA, Kauffman EB, Wirtz RA, De Taisne C, Hui GS, Chang SP, Church P, Hollingdale MR, Kaslow DC, Hoffman S, Guito KP, Ballou WR, Sadoff JC, Paoletti E. NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. Infect Immun 1996; 64:3833-44. [PMID: 8751936 PMCID: PMC174300 DOI: 10.1128/iai.64.9.3833-3844.1996] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The highly attenuated NYVAC vaccinia virus strain has been utilized to develop a multiantigen, multistage vaccine candidate for malaria, a disease that remains a serious global health problem and for which no highly effective vaccine exists. Genes encoding seven Plasmodium falciparum antigens derived from the sporozoite (circumsporozoite protein and sporozoite surface protein 2), liver (liver stage antigen 1), blood (merozoite surface protein 1, serine repeat antigen, and apical membrane antigen 1), and sexual (25-kDa sexual-stage antigen) stages of the parasite life cycle were inserted into a single NYVAC genome to generate NYVAC-Pf7. Each of the seven antigens was expressed in NYVAC-Pf7-infected culture cells, and the genotypic and phenotypic stability of the recombinant virus was demonstrated. When inoculated into rhesus monkeys, NYVAC-Pf7 was safe and well tolerated. Antibodies that recognize sporozoites, liver, blood, and sexual stages of P. falciparum were elicited. Specific antibody responses against four of the P.falciparum antigens (circumsporozoite protein, sporozoite surface protein 2, merozoite surface protein 1, and 25-kDa sexual-stage antigen) were characterized. The results demonstrate that NYVAC-Pf7 is an appropriate candidate vaccine for further evaluation in human clinical trials.
Collapse
Affiliation(s)
- J A Tine
- Virogenetics Corporation, Troy, New York 12180, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Recent population-based efficacy trials of the synthetic malaria vaccine SPf66 have shown restricted, if any, clinical protection against Plasmodium falciparum infection. Despite the well-established role of antibodies in effector responses against asexual blood-stage malaria parasites, the titres of anti-SPf66 IgG antibodies do not correlate with the ability of sera from vaccine recipients to inhibit parasite growth in vitro nor with partial clinical protection which could be detected in some trials. Qualitative or functional parameters of SP66-induced antibody responses, such as IgG subclass composition and affinity, may be more predictive of clinical protection against malaria than quantitative estimates of antibody concentration or titre. Since these parameters are readily estimated by laboratory techniques currently available, and may be modulated by changes in vaccination protocols and by the use of different adjuvants, a better understanding of qualitative antibody responses induced by SPf66 and other asexual blood-stage malaria vaccine candidates, and of their relationship with clinical protection in vivo, is urgently needed for the improvement of currently used immunization schedules.
Collapse
Affiliation(s)
- M Ferreira
- Department of Parasitology, University of São Paulo, Brazil
| |
Collapse
|