1
|
Tabilin EJ, Gray DJ, Jiz MA, Mationg ML, Inobaya M, Avenido-Cervantes E, Sato M, Sato MO, Sako Y, Mu Y, You H, Kelly M, Cai P, Gordon CA. Schistosomiasis in the Philippines: A Comprehensive Review of Epidemiology and Current Control. Trop Med Infect Dis 2025; 10:29. [PMID: 39998033 PMCID: PMC11860700 DOI: 10.3390/tropicalmed10020029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Schistosomiasis japonica is an infectious parasitic disease caused by infection with the blood fluke Schistosoma japonicum, which is endemic in China, small pockets of Indonesia, and the Philippines. Of the three countries, the prevalence of infection is the highest in the Philippines, despite decades of mass drug administration (MDA). As a zoonosis with 46 potential mammalian definitive hosts and a snail intermediate host, the control and eventual elimination of S. japonicum requires management of these animal hosts in addition to new interventions for the human hosts, including health education and water, sanitation, and hygiene (WASH) infrastructure. In this review we examine the status and epidemiology of S. japonicum in the Philippines with an overview of the current control program there and what needs to be accomplished in the future to control and eliminate this disease in the country.
Collapse
Affiliation(s)
- Emmanuel John Tabilin
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Darren J. Gray
- Global Health & Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.G.); (M.L.M.)
- Don McManus Tropical Health Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Mario A. Jiz
- Immunology Department, Research Institute of Tropical Medicine, Manila 1781, Philippines; (M.A.J.); (E.A.-C.)
| | - Mary Lorraine Mationg
- Global Health & Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.G.); (M.L.M.)
| | - Marianette Inobaya
- Department of Epidemiology and Biostatistics, Research Institute of Tropical Medicine, Manila 1781, Philippines;
| | - Eleonor Avenido-Cervantes
- Immunology Department, Research Institute of Tropical Medicine, Manila 1781, Philippines; (M.A.J.); (E.A.-C.)
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata 951-8518, Japan;
| | - Marcello Otake Sato
- Division of Global Environment Parasitology, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata 956-8603, Japan;
| | - Yasuhito Sako
- Division of Parasitology, Department of Infectious Diseases, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
| | - Matthew Kelly
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 2601, Australia;
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
| | - Catherine A. Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (Y.M.); (H.Y.); (P.C.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
- Don McManus Tropical Health Centre, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
2
|
Ruiz AE, Pond-Tor S, Stuart R, Acosta LP, Coutinho HM, Leenstra T, Fisher S, Fahey O, McDonald EA, Jiz MA, Olveda RM, McGarvey ST, Friedman JF, Wu HW, Kurtis JD. Association of Antibodies to Helminth Defense Molecule 1 With Inflammation, Organomegaly, and Decreased Nutritional Status in Schistosomiasis Japonica. J Infect Dis 2024; 230:1023-1032. [PMID: 38942608 PMCID: PMC11481327 DOI: 10.1093/infdis/jiae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Immunomodulation enhances parasite fitness by reducing inflammation-induced morbidity in the mammalian host, as well as by attenuating parasite-targeting immune responses. Using a whole-proteome differential screening method, we identified Schistosoma japonicum helminth defense molecule 1 (SjHDM-1) as a target of antibodies expressed by S. japonicum-resistant but not S. japonicum-susceptible individuals. In a longitudinal cohort study (n = 644) conducted in a S. japonicum-endemic region of the Philippines, antibody levels to SjHDM-1 did not predict resistance to reinfection but were associated with increased measures of inflammation. Individuals with high levels of anti-SjHDM-1 immunoglobulin G had higher levels of C-reactive protein than those with low anti-SjHDM-1. High anti-SjHDM-1 immunoglobulin G responses were also associated with reduced biomarkers of nutritional status (albumin), as well as decreased anthropometric measures of nutritional status (weight-for-age and height-for-age z scores) and increased measures of hepatomegaly. Our results suggest that anti-SjHDM-1 responses inhibit the immunomodulatory function of SjHDM-1, resulting in increased morbidity rates.
Collapse
Affiliation(s)
- Amanda E Ruiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Ronald Stuart
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Luz P Acosta
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Hannah M Coutinho
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Tjalling Leenstra
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Sydney Fisher
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Owen Fahey
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Emily A McDonald
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Mario A Jiz
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
- Department of Immunology, Research Institute of Tropical Medicine, Manila, the Philippines
| | - Remigio M Olveda
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Stephen T McGarvey
- Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Jennifer F Friedman
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Hannah Wei Wu
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pediatrics, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
| | - Jonathan D Kurtis
- Center for International Health Research, Rhode Island Hospital, Brown University Medical School, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Barban do Patrocinio A. Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The parasite blood flukes belonging to the genus Schistosoma cause schistosomiasis. Among the Schistosoma species that infect humans, three stand out: Schistosoma japonicum (S. japonicum), which occurs in Asia, mainly in China and the Philippines; Schistosoma haematobium (S. haematobium), which occurs in Africa; and Schistosoma mansoni (S. mansoni), which occurs in Africa and South America and the center of Venezuela (Brazil). Research has shown that these species comprise strains that are resistant to Praziquantel (PZQ), the only drug of choice to fight the disease. Moreover, patients can be reinfected even after being treated with PZQ , and this drug does not act against young forms of the parasite. Therefore, several research groups have focused their studies on new molecules for disease treatment and vaccine development. This chapter will focus on (i) parasite resistance to PZQ , (ii) molecules that are currently being developed and tested as possible drugs against schistosomiasis, and (iii) candidates for vaccine development with a primary focus on clinical trials.
Collapse
|
5
|
Tang Y, Zhou K, Guo Q, Chen C, Jia J, Guo Q, Lu K, Li H, Fu Z, Liu J, Lin J, Yu X, Hong Y. Characterisation and preliminary functional analysis of N-acetyltransferase 13 from Schistosoma japonicum. BMC Vet Res 2021; 17:335. [PMID: 34686208 PMCID: PMC8540080 DOI: 10.1186/s12917-021-03045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background N-acetyltransferase 13 (NAT13) is a probable catalytic component of the ARD1A-NARG1 complex possessing alpha (N-terminal) acetyltransferase activity. Results In this study, a full-length complementary DNA (cDNA) encoding Schistosoma japonicum NAT13 (SjNAT13) was isolated from schistosome cDNAs. The 621 bp open reading frame of SjNAT13 encodes a polypeptide of 206 amino acids. Real-time PCR analysis revealed SjNAT13 expression in all tested developmental stages. Transcript levels were highest in cercariae and 21-day-old worms, and higher in male adult worms than female adult worms. The rSjNAT13 protein induced high levels of anti-rSjNAT13 IgG antibodies. In two independent immunoprotection trials, rSjNAT13 induced 24.23% and 24.47% reductions in the numbers of eggs in liver. RNA interference (RNAi) results showed that small interfering RNA (siRNA) Sj-514 significantly reduced SjNAT13 transcript levels in worms and decreased egg production in vitro. Conclusions Thus, rSjNAT13 might play an important role in the development and reproduction of schistosomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03045-y.
Collapse
Affiliation(s)
- Yalan Tang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Kerou Zhou
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Qingqing Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Cheng Chen
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jing Jia
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Qinghong Guo
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xingang Yu
- College of Life Science and Engineering, Foshan University, Foshan, 528231, People's Republic of China.
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No.518 Ziyue Road, Minhang District, Shanghai, 200241, People's Republic of China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|