1
|
Szablewski CM, McBride DS, Trock SC, Habing GG, Hoet AE, Nelson SW, Nolting JM, Bowman AS. Evolution of influenza A viruses in exhibition swine and transmission to humans, 2013-2015. Zoonoses Public Health 2024; 71:281-293. [PMID: 38110691 PMCID: PMC10994755 DOI: 10.1111/zph.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
AIMS Swine are a mixing vessel for the emergence of novel reassortant influenza A viruses (IAV). Interspecies transmission of swine-origin IAV poses a public health and pandemic risk. In the United States, the majority of zoonotic IAV transmission events have occurred in association with swine exposure at agricultural fairs. Accordingly, this human-animal interface necessitates mitigation strategies informed by understanding of interspecies transmission mechanisms in exhibition swine. Likewise, the diversity of IAV in swine can be a source for novel reassortant or mutated viruses that pose a risk to both swine and human health. METHODS AND RESULTS In an effort to better understand those risks, here we investigated the epidemiology of IAV in exhibition swine and subsequent transmission to humans by performing phylogenetic analyses using full genome sequences from 272 IAV isolates collected from exhibition swine and 23 A(H3N2)v viruses from human hosts during 2013-2015. Sixty-seven fairs (24.2%) had at least one pig test positive for IAV with an overall estimated prevalence of 8.9% (95% CI: 8.3-9.6, Clopper-Pearson). Of the 19 genotypes found in swine, 5 were also identified in humans. There was a positive correlation between the number of human cases of a genotype and its prevalence in exhibition swine. Additionally, we demonstrated that A(H3N2)v viruses clustered tightly with exhibition swine viruses that were prevalent in the same year. CONCLUSIONS These data indicate that multiple genotypes of swine-lineage IAV have infected humans, and highly prevalent IAV genotypes in exhibition swine during a given year are also the strains detected most frequently in human cases of variant IAV. Continued surveillance and rapid characterization of IAVs in exhibition swine can facilitate timely phenotypic evaluation and matching of candidate vaccine strains to those viruses present at the human-animal interface which are most likely to spillover into humans.
Collapse
Affiliation(s)
| | - Dillon S. McBride
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Susan C. Trock
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gregory G. Habing
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Armando E. Hoet
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Sarah W. Nelson
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Jacqueline M. Nolting
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| | - Andrew S. Bowman
- The Ohio State University, Department of Veterinary Preventive Medicine, Columbus, OH, USA
| |
Collapse
|
2
|
Padykula I, Damodaran L, Young KT, Krunkosky M, Griffin EF, North JF, Neasham PJ, Pliasas VC, Siepker CL, Stanton JB, Howerth EW, Bahl J, Kyriakis CS, Tompkins SM. Pandemic Risk Assessment for Swine Influenza A Virus in Comparative In Vitro and In Vivo Models. Viruses 2024; 16:548. [PMID: 38675891 PMCID: PMC11053818 DOI: 10.3390/v16040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Swine influenza A viruses pose a public health concern as novel and circulating strains occasionally spill over into human hosts, with the potential to cause disease. Crucial to preempting these events is the use of a threat assessment framework for human populations. However, established guidelines do not specify which animal models or in vitro substrates should be used. We completed an assessment of a contemporary swine influenza isolate, A/swine/GA/A27480/2019 (H1N2), using animal models and human cell substrates. Infection studies in vivo revealed high replicative ability and a pathogenic phenotype in the swine host, with replication corresponding to a complementary study performed in swine primary respiratory epithelial cells. However, replication was limited in human primary cell substrates. This contrasted with our findings in the Calu-3 cell line, which demonstrated a replication profile on par with the 2009 pandemic H1N1 virus. These data suggest that the selection of models is important for meaningful risk assessment.
Collapse
Affiliation(s)
- Ian Padykula
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Lambodhar Damodaran
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Kelsey T. Young
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - Madelyn Krunkosky
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - Emily F. Griffin
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| | - James F. North
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Peter J. Neasham
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Vasilis C. Pliasas
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Chris L. Siepker
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | - James B. Stanton
- Department of Pathology, University of Georgia, Athens, GA 30602, USA
| | | | - Justin Bahl
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Constantinos S. Kyriakis
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA
| | - Stephen Mark Tompkins
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
- Emory-UGA Centers of Excellence for Influenza Research and Surveillance (CEIRS), Athens, GA 30602, USA
| |
Collapse
|
3
|
Opriessnig T, Gauger PC, Filippsen Favaro P, Rawal G, Magstadt DR, Digard P, Lee HM, Halbur PG. An experimental universal swine influenza a virus (IAV) vaccine candidate based on the M2 ectodomain (M2e) peptide does not provide protection against H1N1 IAV challenge in pigs. Vaccine 2024; 42:220-228. [PMID: 38087714 DOI: 10.1016/j.vaccine.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/13/2023] [Accepted: 12/02/2023] [Indexed: 01/01/2024]
Abstract
Swine flu is a common disease problem in North American pig populations and swine influenza A viruses (IAV) are extremely diverse and the lack of cross protection between heterologous strains is impacting vaccine efficacy in the field. The objective of this study was to design and test a novel swine flu vaccine targeting the M2 ectodomain (M2e) of IAV, a highly conserved region within the IAV proteome. In brief, an M2e peptide was designed to match the predominant swine IAV M2 sequence based on global analysis of sequences from pigs and humans. The resulting sequence was used to synthesize the M2e peptide coupled to a carrier protein. The final vaccine concentration was 200 µg per dose, and a commercial, microemulsion-based aqueous adjuvant was added. Nine 3-week-old IAV negative piglets were randomly assigned to three groups and rooms including non-vaccinated pigs (NEG-CONTROLs) and vaccinated pigs using the intramuscular (M2e-IM) or the intranasal route (M2e-IN). Vaccinations were done at weaning and again at 2 weeks later. An in-house enzyme-linked immunosorbent assay (ELISA) was developed and validated to study the M2e IgG antibody response and demonstrated M2e-IM pigs had a higher systemic antibody response compared to M2e-IN pigs. Subsequently, an IAV challenge study was conducted. The results indicated that M2e-IM vaccinated pigs were not protected from H1N1 (US pandemic clade, global clade 1A.3.3.2) challenge despite having a strong humoral anti-M2e immune response. In conclusion, while the experimental IAV vaccine was able to induce anti-M2e antibodies, when challenged with H1N1, the vaccinated pigs were not protected, perhaps indicating that reactivity to the M2e antigen alone is not sufficient to reduce clinical signs, lesions or shedding associated with experimental IAV challenge.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA; Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Edinburgh, UK.
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | | | - Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| | - Paul Digard
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Hui-Min Lee
- The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Patrick G Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
McBride DS, Nolting JM, Nelson SW, Spurck MM, Bliss NT, Kenah E, Trock SC, Bowman AS. Shortening Duration of Swine Exhibitions to Reduce Risk for Zoonotic Transmission of Influenza A Virus. Emerg Infect Dis 2022; 28:2035-2042. [PMID: 36084650 PMCID: PMC9514346 DOI: 10.3201/eid2810.220649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reducing zoonotic influenza A virus (IAV) risk in the United States necessitates mitigation of IAV in exhibition swine. We evaluated the effectiveness of shortening swine exhibitions to <72 hours to reduce IAV risk. We longitudinally sampled every pig daily for the full duration of 16 county fairs during 2014-2015 (39,768 nasal wipes from 6,768 pigs). In addition, we estimated IAV prevalence at 195 fairs during 2018-2019 to test the hypothesis that <72-hour swine exhibitions would have lower IAV prevalence. In both studies, we found that shortening duration drastically reduces IAV prevalence in exhibition swine at county fairs. Reduction of viral load in the barn within a county fair is critical to reduce the risk for interspecies IAV transmission and pandemic potential. Therefore, we encourage fair organizers to shorten swine shows to protect the health of both animals and humans.
Collapse
|
5
|
Chauhan RP, Gordon ML. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J Vet Diagn Invest 2022; 34:177-189. [PMID: 35037523 PMCID: PMC8921814 DOI: 10.1177/10406387211068023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rapidly evolving antigenic diversity of influenza A virus (IAV) genomes in swine makes it imperative to detect emerging novel strains and track their circulation. We analyzed in our review the sequencing technologies used for subtyping and characterizing swine IAV genomes. Google Scholar, PubMed, and International Nucleotide Sequence Database Collaboration (INSDC) database searches identified 216 studies that have utilized Sanger, second-, and third-generation sequencing techniques to subtype and characterize swine IAV genomes up to 31 March 2021. Sanger dideoxy sequencing was by far the most widely used sequencing technique for generating either full-length (43.0%) or partial (31.0%) IAV genomes in swine globally; however, in the last decade, other sequencing platforms such as Illumina have emerged as serious competitors for the generation of whole-genome sequences of swine IAVs. Although partial HA and NA gene sequences were sufficient to determine swine IAV subtypes, whole-genome sequences were critical for determining reassortments and identifying unusual or less frequently occurring IAV subtypes. The combination of Sanger and second-generation sequencing technologies also greatly improved swine IAV characterization. In addition, the rapidly evolving third-generation sequencing platform, MinION, appears promising for on-site, real-time sequencing of complete swine IAV genomes. With a higher raw read accuracy, the use of the MinION could enhance the scalability of swine IAV testing in the field and strengthen the swine IAV disease outbreak response.
Collapse
Affiliation(s)
| | - Michelle L. Gordon
- Michelle L. Gordon, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Rd, Durban 4001, South Africa.
| |
Collapse
|
6
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|