1
|
Xiang J, Chang Q, McLinden JH, Bhattarai N, Welch JL, Kaufman TM, Stapleton JT. Characterization of "Off-Target" Immune Modulation Induced by Live Attenuated Yellow Fever Vaccine. J Infect Dis 2024; 229:786-794. [PMID: 36994927 PMCID: PMC10938199 DOI: 10.1093/infdis/jiad086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Live attenuated vaccines alter immune functions and are associated with beneficial outcomes. We previously demonstrated that live attenuated yellow fever virus (YFV) vaccine (LA-YF-Vax) dampens T-cell receptor (TCR) signaling in vitro via an RNA-based mechanism. We examined study participants before and after LA-YF-Vax to assess TCR-mediated functions in vivo. METHODS Serum samples and peripheral blood mononuclear cells (PBMCs) were obtained before and after LA-YF-Vax (with or without additional vaccines) or quadrivalent influenza vaccine. TCR-mediated activation was determined by interleukin 2 release or phosphorylation of the lymphocyte-specific Src kinase. TCR-regulating phosphatase (protein tyrosine phosphatase receptor type E [PTPRE]) expression was also measured. RESULTS Compared with prevaccination findings, LA-YF-Vax recipient PBMCs demonstrated transient reduction in interleukin 2 release after TCR stimulation and PTPRE levels, unlike in control participants who received quadrivalent influenza vaccine. YFV was detected in 8 of 14 participants after LA-YF-Vax. After incubation of healthy donor PBMCs in serum-derived extracellular vesicles prepared from LA-YF-Vax recipients, TCR signaling and PTPRE levels were reduced after vaccination, even in participants without detectable YFV RNA. CONCLUSIONS LA-YF-Vax reduces TCR functions and PTPRE levels after vaccination. Extracellular vesicles from serum recapitulated this effect in healthy cells. This likely contributes to the reduced immunogenicity for heterologous vaccines after LA-YF-Vax administration. Identification of specific immune mechanisms related to vaccines should contribute to understanding of the "off-target," beneficial effects of live vaccines.
Collapse
Affiliation(s)
- J Xiang
- Iowa City Department of Veterans Affairs Healthcare System, University of Iowa, Iowa City, Iowa, USA
| | - Q Chang
- Iowa City Department of Veterans Affairs Healthcare System, University of Iowa, Iowa City, Iowa, USA
| | - J H McLinden
- Iowa City Department of Veterans Affairs Healthcare System, University of Iowa, Iowa City, Iowa, USA
| | - N Bhattarai
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - J L Welch
- Iowa City Department of Veterans Affairs Healthcare System, University of Iowa, Iowa City, Iowa, USA
| | - T M Kaufman
- Iowa City Department of Veterans Affairs Healthcare System, University of Iowa, Iowa City, Iowa, USA
| | - Jack T Stapleton
- Iowa City Department of Veterans Affairs Healthcare System, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
van Meijgaarden KE, Li W, Moorlag SJCFM, Koeken VACM, Koenen HJPM, Joosten LAB, Vyakarnam A, Ahmed A, Rakshit S, Adiga V, Ottenhoff THM, Li Y, Netea MG, Joosten SA. BCG vaccination-induced acquired control of mycobacterial growth differs from growth control preexisting to BCG vaccination. Nat Commun 2024; 15:114. [PMID: 38167829 PMCID: PMC10761850 DOI: 10.1038/s41467-023-44252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Bacillus Calmette-Guèrin - vaccination induces not only protection in infants and young children against severe forms of tuberculosis, but also against non-tuberculosis related all-cause mortality. To delineate different factors influencing mycobacterial growth control, here we first investigate the effects of BCG-vaccination in healthy Dutch adults. About a quarter of individuals already control BCG-growth prior to vaccination, whereas a quarter of the vaccinees acquires the capacity to control BCG upon vaccination. This leaves half of the population incapable to control BCG-growth. Single cell RNA sequencing identifies multiple processes associated with mycobacterial growth control. These data suggest (i) that already controllers employ different mechanisms to control BCG-growth than acquired controllers, and (ii) that half of the individuals fail to develop measurable growth control irrespective of BCG-vaccination. These results shed important new light on the variable immune responses to mycobacteria in humans and may impact on improved vaccination against tuberculosis and other diseases.
Collapse
Affiliation(s)
| | - Wenchao Li
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie A C M Koeken
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King's College, London, UK
| | - Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Laboratory of Human Immunology, Division of Infectious Diseases, St. John's Research Institute, Bangalore, India
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Li
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Ford A, Hwang A, Mo AX, Baqar S, Touchette N, Deal C, King D, Earle K, Giersing B, Dull P, Hall BF. Meeting Summary: Global Vaccine and Immunization Research Forum, 2021. Vaccine 2023; 41:1799-1807. [PMID: 36803897 PMCID: PMC9938725 DOI: 10.1016/j.vaccine.2023.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 02/21/2023]
Abstract
The 2021 Global Vaccine and Immunization Research Forum highlighted the considerable advances and recent progress in research and development for vaccines and immunization, critically reviewed lessons learned from COVID-19 vaccine programs, and looked ahead to opportunities for this decade. For COVID-19, decades of investments in basic and translational research, new technology platforms, and vaccines targeting prototype pathogens enabled a rapid, global response. Unprecedented global coordination and partnership have played an essential role in creating and delivering COVID-19 vaccines. More improvement is needed in product attributes such as deliverability, and in equitable access to vaccines. Developments in other priority areas included: the halting of two human immunodeficiency virus vaccine trials due to lack of efficacy in preventing infection; promising efficacy results in Phase 2 trials of two tuberculosis vaccines; pilot implementation of the most advanced malaria vaccine candidate in three countries; trials of human papillomavirus vaccines given in single-dose regimens; and emergency use listing of a novel, oral poliomyelitis type 2 vaccine. More systematic, proactive approaches are being developed for fostering vaccine uptake and demand, aligning on priorities for investment by the public and private sectors, and accelerating policy making. Participants emphasized that addressing endemic disease is intertwined with emergency preparedness and pandemic response, so that advances in one area create opportunities in the other. In this decade, advances made in response to the COVID-19 pandemic should accelerate availability of vaccines for other diseases, contribute to preparedness for future pandemics, and help to achieve impact and equity under Immunization Agenda 2030.
Collapse
Key Words
- bcg, bacille calmette-guérin
- bnab, broadly neutralizing antibody
- cepi, coalition for epidemic preparedness innovations
- chim, controlled human infection model
- ecvp, evidence considerations for vaccine policy
- eua, emergency use authorization
- eul, emergency use listing
- gvap, global vaccine action plan
- gvirf, global vaccine and immunization research forum
- hiv, human immunodeficiency virus
- hpv, human papillomavirus
- ia2030, immunization agenda 2030
- mers, middle east respiratory syndrome
- nopv-2, novel oral poliomyelitis type 2 vaccine
- ppp, public–private partnership
- r&d, research and development
- sars, severe acute respiratory syndrome
- vips, vaccine innovation prioritisation strategy
Collapse
Affiliation(s)
- Andrew Ford
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Angela Hwang
- Angela Hwang Consulting, PO Box 6601, Albany, CA 94706, USA.
| | - Annie X. Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Nancy Touchette
- Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Deborah King
- Infectious Disease Health Challenge - Prevention, Wellcome Trust, London NW1 2BE, United Kingdom.
| | - Kristen Earle
- Vaccine Development & Surveillance, Bill & Melinda Gates Foundation, PO Box 23350, Seattle, Washington 98102, USA.
| | - Birgitte Giersing
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland.
| | - Peter Dull
- Vaccine Development & Surveillance, Bill & Melinda Gates Foundation, PO Box 23350, Seattle, Washington 98102, USA.
| | - B. Fenton Hall
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA
| |
Collapse
|
4
|
Trunk G, Davidović M, Bohlius J. Non-Specific Effects of Bacillus Calmette-Guérin: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Vaccines (Basel) 2023; 11:vaccines11010121. [PMID: 36679966 PMCID: PMC9866113 DOI: 10.3390/vaccines11010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Vaccines induce antigen-specific immunity, which provides long-lived protection from the target pathogen. Trials from areas with high incidence rates for infectious diseases indicated that the tuberculosis vaccine Bacillus Calmette-Guérin (BCG) induces in addition non-specific immunity against various pathogens and thereby reduces overall mortality more than would have been expected by just protecting from tuberculosis. Although recent trials produced conflicting results, it was suggested that BCG might protect from non-tuberculosis respiratory infections and could be used to bridge the time until a specific vaccine against novel respiratory diseases like COVID-19 is available. METHODS We performed a systematic search for randomized controlled trials (RCTs) published between 2011 and December 9th, 2022, providing evidence about non-specific effects after BCG vaccination, assessed their potential for bias, and meta-analyzed relevant clinical outcomes. We excluded RCTs investigating vaccination with an additional vaccine unless outcomes from a follow-up period before the second vaccination were reported. RESULTS Our search identified 16 RCTs including 34,197 participants. Vaccination with BCG caused an estimated 44% decrease in risk for respiratory infections (hazard ratio (HR) 0.56, 95% confidence interval (CI) 0.39-0.82) with substantial heterogeneity between trials (I2 = 77%). There was evidence for a protective effect on all-cause mortality of 21% if follow-up was restricted to one year (HR 0.79, 95% CI 0.64-0.99). We did not find evidence for an effect when we considered longer follow-up (HR 0.88, 95% CI 0.75-1.03). Infection-related mortality after BCG vaccination was reduced by 33% (HR 0.67; 95% CI 0.46-0.99), mortality for sepsis by 38% (HR 0.62, 95% CI 0.41-0.93). There was no evidence for a protective effect of BCG vaccination on infections of any origin (HR 0.84, 95% CI 0.71-1.00), COVID-19 (HR 0.88, 95% CI 0.68-1.14), sepsis (HR 0.78, 95% CI 0.55-1.10) or hospitalization (HR 1.01, 95% CI 0.91-1.11). CONCLUSIONS According to these results, depending on the setting, vaccination with BCG provides time-limited partial protection against non-tuberculosis respiratory infections and may reduce mortality. These findings underline BCG's potential (1) in pandemic preparedness against novel pathogens especially in developing countries with established BCG vaccination programs but limited access to specific vaccines; (2) in reducing microbial infections, antimicrobial prescriptions and thus the development of antimicrobial resistance. There is a need for additional RCTs to clarify the circumstances under which BCG's non-specific protective effects are mediated.
Collapse
Affiliation(s)
- Gerhard Trunk
- Independent Researcher, 3007 Bern, Switzerland
- Correspondence:
| | - Maša Davidović
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
- Graduate School of Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Julia Bohlius
- University of Basel, 4001 Basel, Switzerland
- Department for Education and Training, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Neonatal Bacillus Calmette-Guérin Vaccination to Prevent Early-Life Eczema: A Systematic Review and Meta-analysis. Dermatitis 2022; 33:S3-S16. [PMID: 36125788 DOI: 10.1097/der.0000000000000945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Increasing evidence suggests that early-life bacillus Calmette-Guérin (BCG) vaccine could prevent atopic eczema through its beneficial off-target effects. In this meta-analysis, 3 randomized control trials with similar methods were included and enabled robust estimations with low heterogeneity, involving a total of 5655 children randomized to early-life BCG Denmark (n = 2832) or no BCG (n = 2823). Meta-analyses suggest a beneficial effect of BCG to prevent eczema (risk ratio [RR], 0.89; 95% confidence interval [CI], 0.82-0.98). In subgroup analyses, BCG was more beneficial in boys (RR, 0.84; 95% CI, 0.74-0.95) and in children born to 2 atopic parents (RR, 0.81; 95% CI, 0.68-0.97). The NNT to prevent one case of eczema among children of 1 or 2 atopic parent was 20 (95% CI, 12-50). Bacillus Calmette-Guérin Denmark leads to an 11% reduction in the risk of eczema in early life. A greater effect was observed with increasing predisposition. Given its well-established safety profile, neonatal BCG vaccination should be considered for children of atopic parents.
Collapse
|
6
|
Is the BCG Vaccine an Answer to Future Pandemic Preparedness? Vaccines (Basel) 2022; 10:vaccines10020201. [PMID: 35214660 PMCID: PMC8876484 DOI: 10.3390/vaccines10020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
While the development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines was rapid, time to development and implementation challenges remain that may impact the response to future pandemics. Trained immunity via bacille Calmette-Guerin (BCG) vaccination (an antigen agnostic strategy) offers a potential intervention against future novel pathogens via an existing, safe, and widely distributed vaccine to protect vulnerable populations and preserve health system capacity while targeted vaccines are developed and implemented.
Collapse
|