1
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Pearson M, Bourne N, Freiberg AN. Efficacy of Polyphenylene Carboxymethylene (PPCM) Gel at Protecting Type I Interferon Receptors Knockout Mice from Intravaginal Ebola Virus Challenge. Viruses 2024; 16:1693. [PMID: 39599808 PMCID: PMC11598907 DOI: 10.3390/v16111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Ebola virus (EBOV) is one of three filovirus members of the Orthoebolavirus genus that can cause severe Ebola disease (EBOD) in humans. Transmission predominantly occurs from spillover events from wildlife but has also happened between humans with infected bodily fluids. Specifically, the sexual route through infectious male survivors could be the origin of flare up events leading to the deaths of multiple women. More studies are needed to comprehend this route of infection which has recently received more focus. The use of microbicides prior to intercourse is of interest if neither of the Ebola vaccines are an option. These experimental products have been used against sexually transmitted diseases, and recently polyphenylene carboxymethylene (PPCM) showed efficacy against EBOV in vitro. Shortly after, the first animal model of EBOV sexual transmission was established using type I interferon receptors (IFNAR-/-) knockout female mice in which mortality endpoint could be achieved. Here, we investigated PPCM efficacy against a mouse-adapted (ma)EBOV isolate in IFNAR-/- mice and demonstrated that 4% PPCM gel caused a 20% reduction in mortality in two distinct groups compared to control groups when inoculated prior to virus challenge. Among animals that succumbed to disease despite PPCM treatment, we report an increase in median survival time as well as a less infectious virus, and fewer virus positive vaginal swabs compared to those from vehicle-treated animals, altogether indicating the beneficial effect of using PPCM prior to exposure. A post-study analysis of the different gel formulations tested indicated that buffering the gels would have prevented an increase in acidity seen only in vehicles, suggesting that PPCM antiviral efficacy against EBOV was suboptimal in our experimental set-up. These results are encouraging and warrant further studies using optimized stable formulations with the goal of providing additional safe protective countermeasures from sexual transmission of EBOV in humans.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Terry L. Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Madison Pearson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Fletcher P, Clancy CS, O’Donnell KL, Doratt BM, Malherbe DC, Rhoderick JF, Feldmann F, Hanley PW, Takada A, Messaoudi I, Marzi A. Pathogenic differences of cynomolgus macaques after Taï Forest virus infection depend on the viral stock propagation. PLoS Pathog 2024; 20:e1012290. [PMID: 38861571 PMCID: PMC11195944 DOI: 10.1371/journal.ppat.1012290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024] Open
Abstract
Taï Forest virus (TAFV) is a negative-sense RNA virus in the Filoviridae family. TAFV has caused only a single human infection, but several disease outbreaks in chimpanzees have been linked to this virus. Limited research has been done on this human-pathogenic virus. We sought to establish an animal model to assess TAFV disease progression and pathogenicity at our facility. We had access to two different viral stock preparations from different institutions, both originating from the single human case. Type I interferon receptor knockout mice were inoculated with TAFV stock 1 or stock 2 by the intraperitoneal route. Inoculation resulted in 100% survival with no disease regardless of viral stock preparation or infectious dose. Next, cynomolgus macaques were inoculated with TAFV stock 1 or stock 2. Inoculation with TAFV stock 1 resulted in 100% survival and robust TAFV glycoprotein-specific IgG responses including neutralizing antibodies. In contrast, macaques infected with TAFV stock 2 developed disease and were euthanized 8-11 days after infection exhibiting viremia, thrombocytopenia, and increased inflammatory mediators identified by transcriptional analysis. Histopathologic analysis of tissue samples collected at necropsy confirmed classic filovirus disease in numerous organs. Genomic differences in both stock preparations were mapped to several viral genes which may have contributed to disease severity. Taken together, we demonstrate that infection with the two TAFV stocks resulted in no disease in mice and opposing disease phenotypes in cynomolgus macaques, highlighting the impact of viral stock propagation on pathogenicity in animal models.
Collapse
Affiliation(s)
- Paige Fletcher
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chad S. Clancy
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brianna M. Doratt
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Delphine C. Malherbe
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Joseph F. Rhoderick
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
3
|
Webb AL, Schindell BG, Soule G, Siddik AB, Abrenica B, Memon H, Su RC, Safronetz D, Kindrachuk J. Characterizing changes in transcriptome and kinome responses in testicular cells during infection by Ebola virus. NPJ VIRUSES 2024; 2:12. [PMID: 40295798 PMCID: PMC11721128 DOI: 10.1038/s44298-024-00022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/26/2024] [Indexed: 04/30/2025]
Abstract
Ebola virus (EBOV) is able to persist and actively replicate in the reproductive tract of male disease survivors months or years after recovery from Ebola virus disease (EVD)1. Persistent EBOV infections are usually asymptomatic and can be transmitted sexually, but the host and viral factors that mediate these infections have not been characterized2,3. We investigated the interaction between host and viral factors during EBOV infection of the blood testis barrier (BTB), with a focus on Sertoli cells as a potential reservoir for viral persistence. We assessed viral replication kinetics and host responses of mouse testicular Leydig cells and Sertoli cells infected with EBOV Makona (i.e. infectious EBOV) and collected samples up to 28 days post-infection. Viral replication was apparent in both cell lines, but intracellular early viral loads were much higher in Leydig cells compared to Sertoli cells. We used RNAseq analysis to characterize transcriptomic responses of Leydig cells and Sertoli cells to EBOV infection over time. Further investigation of early interactions between host cells and EBOV was performed using virus-like particles (EBOV trVLP) and assays of phosphorylation-based cell signaling. Our findings indicate that virus-treated Sertoli cells responded more rapidly and robustly than Leydig cells, and with a particular emphasis on detection of, and response to, external stimuli. We discuss how the roles played by Sertoli cells in immune privilege and spermatogenesis may affect their initial and continued response to EBOV infection in a manner that could facilitate asymptomatic persistence.
Collapse
Affiliation(s)
- Andrew L Webb
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Brayden G Schindell
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Geoff Soule
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Abu B Siddik
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Bernard Abrenica
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Harram Memon
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- JC Wilt Infectious Diseases Research Center, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - David Safronetz
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Marzi A, Hanley PW, Furuyama W, Haddock E, Martens CA, Scott DP, Feldmann H. Atypical Ebola Virus Disease in a Rhesus Macaque. J Infect Dis 2023; 228:S617-S625. [PMID: 37477943 PMCID: PMC10651074 DOI: 10.1093/infdis/jiad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023] Open
Abstract
Ebola virus (EBOV)-Makona infected more than 30 000 people from 2013 to 2016 in West Africa, among them many health care workers including foreign nationals. Most of the infected foreign nationals were evacuated and treated in their respective home countries, resulting in detailed reports of the acute disease following EBOV infection as well as descriptions of symptoms now known as post-Ebola syndrome, which occurred months after the infection. Symptoms associated with this syndrome include uveitis and neurological manifestations. In 1 of our EBOV-Makona nonhuman primate (NHP) studies, 1 NHP was euthanized on day 28 after infection having completely recovered from the acute disease. During convalescence, this NHP developed neurological signs and acute respiratory distress requiring euthanasia. The organ tropism had changed with high virus titers in lungs, brain, eye, and reproductive organs but no virus in the typical target organs for acute EBOV infection. This in part reflects sequelae described for EBOV survivors albeit developing quicker after recovery from acute disease.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Wakako Furuyama
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Elaine Haddock
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig A Martens
- Research Technology Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
5
|
Escaffre O, Juelich TL, Smith JK, Zhang L, Bourne N, Freiberg AN. The Susceptibility of BALB/c Mice to a Mouse-Adapted Ebola Virus Intravaginal Infection. Viruses 2023; 15:1590. [PMID: 37515275 PMCID: PMC10386242 DOI: 10.3390/v15071590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Ebola virus (EBOV) causes Ebola virus disease (EVD), which is characterized by hemorrhagic fever with high mortality rates in humans. EBOV sexual transmission has been a concern since the 2014-2016 outbreak in Africa, as persistent infection in the testis and transmission to women was demonstrated. The only study related to establishing an intravaginal small animal infection model was recently documented in IFNAR-/- mice using wild-type and mouse-adapted EBOV (maEBOV), and resulted in 80% mortality, supporting epidemiological data. However, this route of transmission is still poorly understood in women, and the resulting EVD from it is understudied. Here, we contribute to this field of research by providing data from immunocompetent BALB/c mice. We demonstrate that progesterone priming increased the likelihood of maEBOV vaginal infection and of exhibiting the symptoms of disease and seroconversion. However, our data suggest subclinical infection, regardless of the infective dose. We conclude that maEBOV can infect BALB/c mice through vaginal inoculation, but that this route of infection causes significantly less disease compared to intraperitoneal injection at a similar dose, which is consistent with previous studies using other peripheral routes of inoculation in that animal model. Our data are inconsistent with the disease severity described in female patients, therefore suggesting that BALB/c mice are unsuitable for modeling typical EVD following vaginal challenge with maEBOV. Further studies are required to determine the mechanisms by which EVD is attenuated in BALB/c mice, using maEBOV via the vaginal route, as in our experimental set-up.
Collapse
Affiliation(s)
- Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Terry L Juelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Jennifer K Smith
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Nigel Bourne
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections & Immunity and Sealy & Smith Foundation, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|