1
|
Vizzi E, Rosales RE, Piñeros O, Fernández R, Inaty D, López K, Peña L, De Freitas-Linares A, Navarro D, Neri S, Durán O, Liprandi F. Emergence of Equine-like G3P[8] Rotavirus Strains Infecting Children in Venezuela. Viruses 2025; 17:410. [PMID: 40143336 PMCID: PMC11946648 DOI: 10.3390/v17030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Rotavirus alphagastroenteritidis is the leading cause of acute gastroenteritis worldwide in young humans and animals. In 2023-2024, a relatively high rotavirus detection rate (34.5%) was detected in children with diarrhea in Caracas. All rotavirus strains were typed as P[8], using a multiplex RT-PCR assay, while the G-type was not identified. This unusual pattern, not previously observed in Venezuela, prompted the VP7 gene sequencing of nineteen strains, which displayed a high sequence identity (99.3-100%) compatible with the G3 genotype. These strains clustered into a well-supported lineage IX encompassing human reassortants of equine-like G3P[8] strains described elsewhere, showing a very close genetic relationship (99.0-99.9%). Old G3 rotavirus isolates obtained from diarrheic samples in the past were included in the analysis and grouped into lineage I together with ancestral reference G3 strains. The novel G3P[8]s carry amino acid changes in VP7-neutralizing epitopes, compared with the RotaTeq-WI78-8-vaccine strain. Full genome sequencing of a representative strain revealed a genotype constellation including an equine-like G3P[8] in a DS-1-like backbone (I2-R2-C2-M2-A2-N2-T2-E2-H2), confirming the role of animal strains as a source of diversification, and the importance of unceasingly revising molecular typing strategies and vaccine efficacy to guarantee their success.
Collapse
Affiliation(s)
- Esmeralda Vizzi
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Rita E. Rosales
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Oscar Piñeros
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - Rixio Fernández
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| | - David Inaty
- Departamento de Pediatría, Clínica Las Ciencias, Caracas 1040, Venezuela;
| | - Karolina López
- Unidad de Gastroenterología y Nutrición, Hospital General “Dr. Miguel Pérez Carreño”, Caracas 1020, Venezuela; (K.L.); (D.N.)
| | - Laura Peña
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Angela De Freitas-Linares
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Dianora Navarro
- Unidad de Gastroenterología y Nutrición, Hospital General “Dr. Miguel Pérez Carreño”, Caracas 1020, Venezuela; (K.L.); (D.N.)
| | - Sandra Neri
- Hospital de Niños “Dr. José Manuel de los Ríos”, Caracas 1050, Venezuela; (L.P.); (A.D.F.-L.); (S.N.)
| | - Osmary Durán
- Hospital Militar Universitario “Dr. Carlos Arvelo”, Caracas 1020, Venezuela;
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020-A, Venezuela; (R.E.R.); (O.P.); (R.F.); (F.L.)
| |
Collapse
|
2
|
Prunas O, Asare EO, Sajewski E, Li Y, Pithawala Z, Weinberger DM, Warren JL, Armah GE, Cunliffe NA, Iturriza-Gómara M, Lopman BA, Pitzer VE. Global estimates of rotavirus vaccine efficacy and effectiveness: a rapid review and meta-regression analysis. EClinicalMedicine 2025; 81:103122. [PMID: 40115174 PMCID: PMC11925534 DOI: 10.1016/j.eclinm.2025.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/23/2025] Open
Abstract
Background Rotavirus is the leading cause of diarrhoea worldwide, particularly affecting young children. While national rotavirus immunization programs have reduced rotavirus morbidity and mortality, vaccine performance varies considerably between high-income and low-income settings. Methods We updated a previous systematic review of studies reporting rotavirus vaccine efficacy and vaccine effectiveness against severe rotavirus-associated gastroenteritis (RVGE) by performing a rapid review from July 1, 2020 through October 16, 2024. We included randomized controlled trials reporting vaccine efficacy against severe RVGE and case-control and cohort studies reporting vaccine effectiveness against hospitalization with RVGE in children <5 years old for current internationally licensed vaccines. We developed a meta-regression model for vaccine efficacy and effectiveness using widely available country-specific predictors of rotavirus vaccine performance and simultaneously estimated the relationship between vaccine efficacy and effectiveness. We used the model to predict vaccine efficacy and effectiveness for all countries and assessed its predictive accuracy using a modified leave-one-country-out validation approach. Findings Predicted vaccine efficacy ranged from 69.6% to 94.3% across countries in the Americas, European, and Western Pacific Regions, with a decreased efficacy ranging from 18.6% to 85.3% in the African, South-East Asian, and Eastern Mediterranean regions. Estimates of vaccine effectiveness were generally lower than vaccine efficacy when efficacy was greater than 60%, but effectiveness was predicted to be higher when vaccine efficacy was low. A strong correlation (r = 0.63) was found between the observed and predicted vaccine efficacy and effectiveness, with 98.2% of observed efficacy and effectiveness estimates falling within the 95% prediction intervals. Interpretation Our approach enhances the understanding of global variation in rotavirus vaccine performance and can be used to inform predictions of the potential impact of rotavirus vaccines for countries that have yet to introduce them. Higher-quality data on predictor variables and broader regional representation in vaccine trials are required for more robust vaccine performance estimates. Funding National Institutes of Health/National Institute of Allergy and Infectious Diseases (R01AI112970) and the Bill & Melinda Gates Foundation (INV-17940).
Collapse
Affiliation(s)
- Ottavia Prunas
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ernest O Asare
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elizabeth Sajewski
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Yueqi Li
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Zeaan Pithawala
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Joshua L Warren
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - George E Armah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nigel A Cunliffe
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miren Iturriza-Gómara
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Passarelli GV, Doldan P, Metz-Zumaran C, Keser Y, Boulant S, Stanifer ML. Rotavirus Spreads in a Spatially Controlled Manner. Cells 2025; 14:313. [PMID: 39996783 PMCID: PMC11854656 DOI: 10.3390/cells14040313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Rotavirus is an enteric virus that leads to 200,000 deaths worldwide every year. The live-cell imaging evaluating rotavirus infection of MA104 cells revealed that rotavirus replication and spread occurs in a spatially controlled manner. Specifically, following initial rotavirus infection, the infected cells die, and the second round of infection occurs in the restricted area surrounding the initially infected cell. Interestingly, we found that the time required to establish the secondary infection is shorter compared to the time required for the initial infection. To determine if this increase in the kinetic of secondary infection was due to the early release of viruses or priming of the cells that are infected during the secondary infection, we used a combination of live-cell microscopy, trypsin neutralization assays, and the pharmacological inhibition of calcium signaling. Together, our results show that the second round of infection required rotavirus to be released and accessible to extracellular proteases. In addition, we found that the calcium wave induced upon rotavirus infection was critical for initial infection but did not play a role in the establishment of a secondary infection. Finally, we uncovered that high viral titers released from the initial infection were sufficient to accelerate the rate of the secondary infection.
Collapse
Affiliation(s)
- Gianna V. Passarelli
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Patricio Doldan
- Department of Infectious Disease: Virology, Heidelberg University Hospital, 69205 Heidelberg, Germany
| | - Camila Metz-Zumaran
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32601, USA
- Department of Infectious Disease: Virology, Heidelberg University Hospital, 69205 Heidelberg, Germany
| | - Yagmur Keser
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Steeve Boulant
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32601, USA
- Department of Infectious Disease: Virology, Heidelberg University Hospital, 69205 Heidelberg, Germany
| | - Megan L. Stanifer
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| |
Collapse
|
4
|
Jesudason T, Sharomi O, Fleetwood K, Cheuk AL, Bermudez M, Schirrmacher H, Hauck C, Matthijnssens J, Hungerford D, Tordrup D, Carias C. Systematic literature review and meta-analysis on the prevalence of rotavirus genotypes in Europe and the Middle East in the post-licensure period. Hum Vaccin Immunother 2024; 20:2389606. [PMID: 39257173 PMCID: PMC11404614 DOI: 10.1080/21645515.2024.2389606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Previous systematic literature reviews of rotavirus genotype circulation in Europe and the Middle East are limited because they do not include country-specific prevalence data. This study documents country-specific evidence on the prevalence of rotavirus genotypes in Europe and the Middle East to enable more precise epidemiological modeling and contribute to the evidence-base about circulating rotavirus genotypes in the post-vaccination era. This study systematically searched PubMed, Embase and Scopus for all empirical epidemiological studies that presented genotype-specific surveillance data for countries in Europe and the Middle East published between 2006 and 2021. The STROBE checklist was used to assess the quality of included studies. Proportional meta-analysis was conducted using the generic inverse variance method with arcsine transformation and generalized linear-mixed models to summarize genotype prevalence. Our analysis estimated the genotype prevalence by country across three date categories corresponding with rotavirus seasons: 2006-2010, 2011-2015, 2016-2021. A total of 7601 deduplicated papers were identified of which 88 studies were included in the final review. Rotavirus genotypes exhibited significant variability across regions and time periods, with G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and, to a lesser extent G12P[8], being the most prevalent genotypes through different regions and time-periods. Uncommon genotypes included G3P[9] in Poland, G2P[6] in Iraq, G4P[4] in Qatar, and G9P[4] as reported by the European Rotavirus Network. There was high genotype diversity with routinely identified genotypes being G1P[8], G2P[4], G3P[8], G4P[8], and G9P[8]; there was high variability across time periods and regions. Continued surveillance at the national and regional levels is relevant to support further research and inform public health decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jelle Matthijnssens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Epidemiological VirologyRega Institute, Leuven, Belgium
| | - Daniel Hungerford
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
5
|
Raboba JL, Rahajamanana VL, Rakotojoelimaria HE, Masembe YV, Martin PR, Weldegebriel GG, Diallo AO, Burnett E, Tate JE, Parashar UD, Mwenda JM, Seheri M, Magagula N, Mphahlele J, Robinson AL. Monovalent rotavirus vaccine effectiveness and long-term impact among children <5 years old in Antananarivo, Madagascar, 2010-2022. Vaccine 2024; 42:126321. [PMID: 39260057 PMCID: PMC11866102 DOI: 10.1016/j.vaccine.2024.126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Monovalent rotavirus vaccine substantially reduced rotavirus disease burden after introduction (May 2014) in Madagascar. We examined the effectiveness and long-term impact on acute watery diarrhea and rotavirus-related hospitalizations among children <5 years old at two hospitals in Antananarivo, Madagascar (2010-2022). METHODS We used a test-negative case-control design to estimate monovalent rotavirus vaccine effectiveness (VE) against laboratory-confirmed rotavirus hospitalizations among children age 6-23 months with documented vaccination status adjusted for year of symptom onset, rotavirus season, age group, nutritional status, and clinical severity. To evaluate the impact, we expanded to children age 0-59 months with acute watery diarrhea. First, we used admission logbook data to compare the proportion of all hospitalizations attributed to diarrhea in the pre-vaccine (January 2010-December 2013), transition period (January 2014-December 2014), and post-vaccine (January 2015-December 2022) periods. Second, we used active surveillance data (June 2013-May 2022) to describe rotavirus positivity and detected genotypes by vaccine introduction period and surveillance year (1 June-31 May). RESULT Adjusted VE of at least one dose against hospitalization due to rotavirus diarrhea among children age 6-23 months was 61 % (95 % CI: -39 %-89 %). The annual median proportion of hospitalizations attributed to diarrhea declined from 28 % in the pre-vaccine to 10 % in the post-vaccine period. Rotavirus positivity among hospitalized children age 0-59 months with acute watery diarrhea was substantially higher during the pre-vaccine (59 %) than the post-vaccine (23 %) period. In the pre-vaccine period, G3P[8] (76 %) and G2P[4] (12 %) were the dominant genotypes detected. Although genotypes varied by surveillance year, G1P[8] and G2P[4] represented >50 % of the genotypes detected post-introduction. CONCLUSIONS Rotavirus vaccine has been successfully implemented in Madagascar's routine childhood immunization program and had a large impact on rotavirus disease burden, supporting continued use of rotavirus vaccines in Madagascar.
Collapse
Affiliation(s)
- Julia Liliane Raboba
- Department of Child Health, Centre Hospitalier Universitaire Mère Enfant Tsaralàlana, Antananarivo, Madagascar
| | | | | | | | | | - Goitom G Weldegebriel
- World Health Organization, Inter-Country Support Team: East and Southern Africa (WHO IST/ESA), Harare, Zimbabwe
| | - Alpha Oumar Diallo
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Eleanor Burnett
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jaqueline E Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jason M Mwenda
- World Health Organization (WHO) Regional Office for Africa (WHO/AFRO), Brazzaville, Democratic Republic of the Congo
| | - Mapaseka Seheri
- Department of Virology, Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Nonkululeko Magagula
- Department of Virology, Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Jeffrey Mphahlele
- Department of Virology, Diarrhoeal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Annick Lalaina Robinson
- Department of Child Health, Centre Hospitalier Universitaire Mère Enfant Tsaralàlana, Antananarivo, Madagascar
| |
Collapse
|
6
|
Carter MH, Gribble J, Diller JR, Denison MR, Mirza SA, Chappell JD, Halasa NB, Ogden KM. Human Rotaviruses of Multiple Genotypes Acquire Conserved VP4 Mutations during Serial Passage. Viruses 2024; 16:978. [PMID: 38932271 PMCID: PMC11209247 DOI: 10.3390/v16060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human rotaviruses exhibit limited tropism and replicate poorly in most cell lines. Attachment protein VP4 is a key rotavirus tropism determinant. Previous studies in which human rotaviruses were adapted to cultured cells identified mutations in VP4. However, most such studies were conducted using only a single human rotavirus genotype. In the current study, we serially passaged 50 human rotavirus clinical specimens representing five of the genotypes most frequently associated with severe human disease, each in triplicate, three to five times in primary monkey kidney cells then ten times in the MA104 monkey kidney cell line. From 13 of the 50 specimens, we obtained 25 rotavirus antigen-positive lineages representing all five genotypes, which tended to replicate more efficiently in MA104 cells at late versus early passage. We used Illumina next-generation sequencing and analysis to identify variants that arose during passage. In VP4, variants encoded 28 mutations that were conserved for all P[8] rotaviruses and 12 mutations that were conserved for all five genotypes. These findings suggest there may be a conserved mechanism of human rotavirus adaptation to MA104 cells. In the future, such a conserved adaptation mechanism could be exploited to study human rotavirus biology or efficiently manufacture vaccines.
Collapse
Affiliation(s)
- Maximilian H. Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara A. Mirza
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Natasha B. Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Carias C, Hartwig S, Kanibir N, Matthijnssens J, Tu Y. Letter to the Editor on Cross-Protection of RotaTeq. J Pediatr 2024; 268:113952. [PMID: 38336206 DOI: 10.1016/j.jpeds.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Affiliation(s)
| | | | - Nabi Kanibir
- Global Medical and Scientific Affairs, MSD International GmbH Luzern, Switzerland
| | - Jelle Matthijnssens
- Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Research Institute for Medical Research, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
8
|
Granovskiy DL, Khudainazarova NS, Evtushenko EA, Ryabchevskaya EM, Kondakova OA, Arkhipenko MV, Kovrizhko MV, Kolpakova EP, Tverdokhlebova TI, Nikitin NA, Karpova OV. Novel Universal Recombinant Rotavirus A Vaccine Candidate: Evaluation of Immunological Properties. Viruses 2024; 16:438. [PMID: 38543803 PMCID: PMC10976063 DOI: 10.3390/v16030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 05/23/2024] Open
Abstract
Rotavirus infection is a leading cause of severe dehydrating gastroenteritis in children under 5 years of age. Although rotavirus-associated mortality has decreased considerably because of the introduction of the worldwide rotavirus vaccination, the global burden of rotavirus-associated gastroenteritis remains high. Current vaccines have a number of disadvantages; therefore, there is a need for innovative approaches in rotavirus vaccine development. In the current study, a universal recombinant rotavirus antigen (URRA) for a novel recombinant vaccine candidate against rotavirus A was obtained and characterised. This antigen included sequences of the VP8* subunit of rotavirus spike protein VP4. For the URRA, for the first time, two approaches were implemented simultaneously-the application of a highly conserved neutralising epitope and the use of the consensus of the extended protein's fragment. The recognition of URRA by antisera to patient-derived field rotavirus isolates was proven. Plant virus-based spherical particles (SPs), a novel, effective and safe adjuvant, considerably enhanced the immunogenicity of the URRA in a mouse model. Given these facts, a URRA + SPs vaccine candidate is regarded as a prospective basis for a universal vaccine against rotavirus.
Collapse
Affiliation(s)
- Dmitriy L. Granovskiy
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Nelli S. Khudainazarova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Ekaterina A. Evtushenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Ekaterina M. Ryabchevskaya
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Olga A. Kondakova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Marina V. Arkhipenko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Marina V. Kovrizhko
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Elena P. Kolpakova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Tatyana I. Tverdokhlebova
- Rostov Research Institute of Microbiology and Parasitology, 344010 Rostov-On-Don, Russia; (M.V.K.); (E.P.K.); (T.I.T.)
| | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| | - Olga V. Karpova
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (E.A.E.); (E.M.R.); (O.A.K.); (M.V.A.); (N.A.N.); (O.V.K.)
| |
Collapse
|