1
|
Lohani SC, Ramer-Tait AE, Li Q. High-fat diet feeding exacerbates HIV-1 rectal transmission. mSystems 2024; 9:e0132223. [PMID: 38303112 PMCID: PMC10949459 DOI: 10.1128/msystems.01322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
High-fat diet (HFD) is well known to impact various aspects of gut health and has been associated with many diseases and inflammation. However, the impact of HFD feeding on HIV-1 rectal transmission has not yet been well addressed. With an increasing threat of HIV-1 infection in men who have sex with men (MSM), where the rectal route is the primary mode of infection, it is imperative to understand the impact of HFD on gut microbiota and inflammation and consequently, its effect on HIV-1 rectal transmission. Here, we utilized our double humanized bone marrow, liver, thymus (dHu-BLT) mouse model to assess the impact of HFD feeding on the host's susceptibility to HIV-1 rectal transmission. We found that feeding an HFD successfully altered the gut microbial composition within 3 weeks in the dHu-BLT mouse model. In addition, levels of inflammatory mediators, specifically IL-12p70, IP-10, ICAM-1, and fecal calprotectin, were significantly higher in HFD-fed mice compared to control mice on a regular chow diet. We also observed that significantly different inflammatory markers (IL-12p70 and ICAM-1) were negatively correlated with the number of observed ASVs, Shannon diversity, and Faith's diversity in the HFD-fed group. Notably, when repeatedly challenged with a low dose of HIV-1 via a rectal route, mice receiving an HFD were significantly more susceptible to HIV-1 rectal infection than control mice. Together, these results underscore the impact of HFD feeding on the gut microbiota and inflammation and suggest the significance of diet-induced gut microbial dysbiosis and inflammation in promoting viral infection.IMPORTANCEHFD induces gut microbial dysbiosis and inflammation and has been associated with many infections and disease progression; however, its impact on HIV-1 rectal transmission is largely unknown. Given the increasing threat of HIV-1 incidence in men who have sex with men (MSM), it has become crucial to comprehend the impact of factors associated with gut health, like HFD consumption, on host susceptibility to HIV-1 rectal transmission. This is particularly important since anal intercourse remains the primary mode of HIV transmission within the MSM group. In this study, utilizing our unique mouse model, featuring both the human immune system and gut microbiota, we showed that HFD feeding led to gut microbial dysbiosis, induced inflammation, and increased HIV-1 rectal transmission. Collectively, our study highlights the significant impact of HFD on gut microbiota and inflammation and suggests an HFD consumption as a potential risk factor for promoting HIV-1 rectal susceptibility.
Collapse
Affiliation(s)
- Saroj Chandra Lohani
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Qingsheng Li
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Jelinski J, Kowatsch MM, Lafrance MA, Berger A, Pedersen J, Azizi H, Li Y, Scholte F, Gomez A, Hollett N, Le T, Wade M, Fausther-Bovendo H, de La Vega MA, Babuadze G, XIII A, Lamarre C, Racine T, Kang CY, Yao XJ, Alter G, Arts E, Fowke KR, Kobinger GP. Rhesus macaques show increased resistance to repeated SHIV intrarectal exposure following a heterologous regimen of rVSV vector vaccine expressing HIV antigen. Emerg Microbes Infect 2023; 12:2251595. [PMID: 37649434 PMCID: PMC10486302 DOI: 10.1080/22221751.2023.2251595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.
Collapse
Affiliation(s)
- Joseph Jelinski
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Monika M. Kowatsch
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | - Alice Berger
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jannie Pedersen
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Hiva Azizi
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Yue Li
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Florine Scholte
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alejandro Gomez
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Natasha Hollett
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Toby Le
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Matthew Wade
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Hugues Fausther-Bovendo
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Marc-Antoine de La Vega
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - George Babuadze
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ara XIII
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Claude Lamarre
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Trina Racine
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Xiao-Jian Yao
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Eric Arts
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Gary P. Kobinger
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
3
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
4
|
Balle C, Konstantinus IN, Jaumdally SZ, Havyarimana E, Lennard K, Esra R, Barnabas SL, Happel AU, Moodie Z, Gill K, Pidwell T, Karaoz U, Brodie E, Maseko V, Gamieldien H, Bosinger SE, Myer L, Bekker LG, Passmore JAS, Jaspan HB. Hormonal contraception alters vaginal microbiota and cytokines in South African adolescents in a randomized trial. Nat Commun 2020; 11:5578. [PMID: 33149114 PMCID: PMC7643181 DOI: 10.1038/s41467-020-19382-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Young women in sub-Saharan Africa are disproportionally affected by HIV infection and unintended pregnancies. However, hormonal contraceptive (HC) use may influence HIV risk through changes in genital tract microbiota and inflammatory cytokines. To investigate this, 130 HIV negative adolescent females aged 15-19 years were enrolled into a substudy of UChoose, an open-label randomized crossover study (NCT02404038), comparing acceptability and contraceptive product preference as a proxy for HIV prevention delivery methods. Participants were randomized to injectable norethisterone enanthate (Net-En), combined oral contraceptives (COC) or etonorgesterol/ethinyl estradiol combined contraceptive vaginal ring (CCVR) for 16 weeks, then crossed over to another HC for 16 weeks. Cervicovaginal samples were collected at baseline, crossover and exit for characterization of the microbiota and measurement of cytokine levels; primary endpoints were cervical T cell activation, vaginal microbial diversity and cytokine concentrations. Adolescents randomized to COCs had lower vaginal microbial diversity and relative abundance of HIV risk-associated taxa compared to Net-En or CCVR. Cervicovaginal inflammatory cytokine concentrations were significantly higher in adolescents randomized to CCVR compared to COC and Net-En. This suggests that COC use may induce an optimal vaginal ecosystem by decreasing bacterial diversity and inflammatory taxa, while CCVR use is associated with genital inflammation.
Collapse
Affiliation(s)
- Christina Balle
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Iyaloo N Konstantinus
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shameem Z Jaumdally
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Enock Havyarimana
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Katie Lennard
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Rachel Esra
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun L Barnabas
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katherine Gill
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Tanya Pidwell
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Ulas Karaoz
- Earth and Environmental Science, Lawrence Berkeley National Laboratories, Berkeley, CA, 94720, USA
| | - Eoin Brodie
- Earth and Environmental Science, Lawrence Berkeley National Laboratories, Berkeley, CA, 94720, USA.,University of California, Berkeley, CA, USA
| | - Venessa Maseko
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Hoyam Gamieldien
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Steven E Bosinger
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine; Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Landon Myer
- Division of Epidemiology, Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Linda-Gail Bekker
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S Passmore
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Heather B Jaspan
- Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. .,Seattle Children's Research Institute, Seattle, WA, USA. .,University of Washington Department of Pediatrics and Global Health, Seattle, WA, USA.
| |
Collapse
|
5
|
Mbuya W, Mcharo R, Mhizde J, Mnkai J, Mahenge A, Mwakatima M, Mwalongo W, Chiwerengo N, Hölscher M, Lennemann T, Saathoff E, Rwegoshora F, Torres L, Kroidl A, Geldmacher C, Held K, Chachage M. Depletion and activation of mucosal CD4 T cells in HIV infected women with HPV-associated lesions of the cervix uteri. PLoS One 2020; 15:e0240154. [PMID: 33007050 PMCID: PMC7531815 DOI: 10.1371/journal.pone.0240154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The burden of HPV-associated premalignant and malignant cervical lesions remains high in HIV+ women even under ART treatment. In order to identify possible underlying pathophysiologic mechanisms, we studied activation and HIV co-receptor expression in cervical T-cell populations in relation to HIV, HPV and cervical lesion status. METHODS Cervical cytobrush (n = 468: 253 HIV- and 215 HIV+; 71% on ART) and blood (in a subset of 39 women) was collected from women in Mbeya, Tanzania. Clinical data on HIV and HPV infection, as well as ART status was collected. T cell populations were characterized using multiparametric flow cytometry-based on their expression of markers for cellular activation (HLA-DR), and memory (CD45RO), as well as HIV co-receptors (CCR5, α4β7). RESULTS Cervical and blood T cells differed significantly, with higher frequencies of T cells expressing CD45RO, as well as the HIV co-receptors CCR5 and α4β7 in the cervical mucosa. The skewed CD4/CD8 T cell ratio in blood of HIV+ women was mirrored in the cervical mucosa and HPV co-infection was linked to lower levels of mucosal CD4 T cells in HIV+ women (%median: 22 vs 32; p = 0.04). In addition, HIV and HPV infection, and especially HPV-associated cervical lesions were linked to significantly higher frequencies of HLA-DR+ CD4 and CD8 T cells (p-values < 0.05). Interestingly, HPV infection did not significantly alter frequencies of CCR5+ or α4β7+ CD4 T cells. CONCLUSION The increased proportion of activated cervical T cells associated with HPV and HIV infection, as well as HPV-associated lesions, together with the HIV-induced depletion of cervical CD4 T cells, may increase the risk for HPV infection, associated premalignant lesions and cancer in HIV+ women. Further, high levels of activated CD4 T cells associated with HPV and HPV-associated lesions could contribute to a higher susceptibility to HIV in HPV infected women.
Collapse
Affiliation(s)
- Wilbert Mbuya
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Ruby Mcharo
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
- University of Dar es Salaam -Mbeya College of Health and Allied Sciences (UDSM-MCHAS), Mbeya, Tanzania
| | - Jacklina Mhizde
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Jonathan Mnkai
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Anifrid Mahenge
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Maria Mwakatima
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Wolfram Mwalongo
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Nhamo Chiwerengo
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Michael Hölscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Tessa Lennemann
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Elmar Saathoff
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | | | | | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Mkunde Chachage
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
- University of Dar es Salaam -Mbeya College of Health and Allied Sciences (UDSM-MCHAS), Mbeya, Tanzania
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Cromarty R, Sigal A, Liebenberg LJ, Mckinnon LR, Abdool Karim SS, Passmore JAS, Archary D. Betamethasone induces potent immunosuppression and reduces HIV infection in a PBMC in vitro model. J Investig Med 2020; 69:28-40. [PMID: 33004468 PMCID: PMC7803916 DOI: 10.1136/jim-2020-001424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/15/2023]
Abstract
Genital inflammation is an established risk factor for increased HIV acquisition risk. Certain HIV-exposed seronegative populations, who are naturally resistant to HIV infection, have an immune quiescent phenotype defined by reduced immune activation and inflammatory cytokines at the genital tract. Therefore, the aim of this study was to create an immune quiescent environment using immunomodulatory drugs to mitigate HIV infection. Using an in vitro peripheral blood mononuclear cell (PBMC) model, we found that inflammation was induced using phytohemagglutinin and Toll-like receptor (TLR) agonists Pam3CSK4 (TLR1/2), lipopolysaccharide (LPS) (TLR4) and R848 (TLR7/8). After treatment with anti-inflammatory drugs, ibuprofen (IBF) and betamethasone (BMS), PBMCs were exposed to HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines to assess inflammation. Flow cytometry was used to measure immune activation (CD38, HLA-DR and CCR5) and HIV infection (p24 production) of CD4+ T cells. BMS potently suppressed inflammation (soluble cytokines, p<0.05) and immune activation (CD4+ T cells, p<0.05). BMS significantly reduced HIV infection of CD4+ T cells only in the LPS (0.98%) and unstimulated (1.7%) conditions (p<0.02). In contrast, IBF had minimal anti-inflammatory and immunosuppressive but no anti-HIV effects. BMS demonstrated potent anti-inflammatory effects, regardless of stimulation condition. Despite uniform immunosuppression, BMS differentially affected HIV infection according to the stimulation conditions, highlighting the complex nature of these interactions. Together, these data underscore the importance of interrogating inflammatory signaling pathways to identify novel drug targets to mitigate HIV infection.
Collapse
Affiliation(s)
- Ross Cromarty
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
| | - Alexander Sigal
- Africa Health Research Institute (AHRI), Durban, KwaZulu-Natal, South Africa
- Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Lenine Julie Liebenberg
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Lyle Robert Mckinnon
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Salim Safurdeen Abdool Karim
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jo-Ann Shelly Passmore
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Derseree Archary
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
7
|
Dabee S, Mkhize NN, Jaspan HB, Lewis D, Gumbi PP, Passmore JAS. Initiation of Antiretroviral Therapy Differentially Influences Genital and Systemic Immune Activation in HIV-Infected Women. AIDS Res Hum Retroviruses 2020; 36:821-830. [PMID: 32524856 DOI: 10.1089/aid.2019.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral therapy (ART) has significantly improved the quality of life of HIV-infected individuals: reducing plasma viremia, restoring CD4+ T cell numbers, and correcting imbalances in blood memory T cell subsets. While ART improves immune correlates at mucosal sites, including the lower female genital tract (FGT), ART initiation has been associated with reactivation of common FGT infections. We investigated the effect of ART on immune activation and inflammation in the genital tract. We measured blood and genital T cell activation, proliferation, and immunosenescence (CD38, HLADR, Ki67, CD127, and CD57), and cytokine levels in women on ART for ∼7 years (cross-sectional analysis) or initiating ART (immediately before and 1 month after). Effector memory T cells predominated in blood and FGT during chronic infection, irrespective of ART status. In women initiating ART, 1 month was insufficient for T cell reconstitution, or alterations in T cell subset distribution, despite both plasma and genital viral loads decreasing to undetectable levels in most participants. Initiating ART was accompanied by a decline in plasma IP-10 that correlated with decreased blood CD38 expression in blood (p = .0204) but not in the FGT. The reduction in plasma (but not genital) cytokine levels due to ART initiation was dependent on their concentrations before treatment. While T cell activation decreased significantly in blood (CD4: p = .032; CD8: p = .0137), activation levels remained similar in the genital tract despite 1 month of treatment. Overall, the decrease in cellular activation and inflammation seen in blood with ART initiation was not evident in the FGT.
Collapse
Affiliation(s)
- Smritee Dabee
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | | | - Heather B. Jaspan
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Seattle Childrens Hospital, Seattle, Washington, USA
| | - David Lewis
- Western Sydney Sexual Health Centre, Parramatta, Australia
- Westmead Clinical School and Centre for Infectious Diseases and Microbiology & Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - Pamela P. Gumbi
- Department of Biochemistry, University of KwaZulu Natal, Pietermaritzburg, South Africa
| | - Jo-Ann S. Passmore
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- NRF-DST Centre of Excellence in HIV Prevention, Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
8
|
Partner HIV Serostatus Impacts Viral Load, Genital HIV Shedding, and Immune Activation in HIV-Infected Individuals. J Acquir Immune Defic Syndr 2020; 82:51-60. [PMID: 31169767 DOI: 10.1097/qai.0000000000002089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies of seronegative individuals in HIV discordant relationships provide important insights into the effects of HIV exposure on the seronegative partner, but few have examined the impact of partner serostatus on disease progression in seropositive individuals. We investigated the impact of HIV serostatus on clinical and biological factors influencing HIV disease progression in 337 HIV-infected heterosexual individuals in stable long-term HIV-seroconcordant or HIV-serodiscordant relationships. Seroconcordant individuals had significantly higher plasma viral loads (pVLs) than HIV-infected partners in serodiscordant partnerships [4.4 log10 copies RNA/mL (interquartile range 3.7-5.0) versus 3.9 (3.3-4.5), P < 0.0001], irrespective of gender. pVLs correlated inversely with CD4 T-cell counts, although CD4 counts did not differ significantly between seroconcordant and serodiscordant individuals. HIV+ seroconcordant individuals had higher frequencies of CCR5 CD4 and CD8 T cells (P = 0.03 and P = 0.02, respectively) than HIV+ individuals in serodiscordant relationships and higher concentrations of plasma IL-1β (P = 0.04), TNF-α (P = 0.02), and IL-10 (P = 0.02). Activated CD4 T-cell frequencies and TNF-α were the most influential in determining variation in pVLs, independently of CD4 counts. In addition, HIV+ seroconcordant women had significantly higher genital VLs (gVLs) than HIV+ women in serodiscordant relationships (P < 0.001), with pVLs correlating significantly with gVLs (Rho = 0.65, P < 0.0001). Cervical and blood T-cell activation tended to correlate positively, although partner seroconcordance did not influence genital T-cell activation. We conclude that HIV+ seroconcordant individuals have higher frequencies of activated, CCR5-expressing T cells in blood and higher pVLs and gVLs than their HIV+ counterparts in discordant relationships, which could translate to faster disease progression or larger viral reservoir.
Collapse
|
9
|
Cromarty R, Sigal A, Liebenberg LJP, McKinnon LR, Abdool Karim SS, Passmore JAS, Archary D. Diminished HIV Infection of Target CD4+ T Cells in a Toll-Like Receptor 4 Stimulated in vitro Model. Front Immunol 2019; 10:1705. [PMID: 31396221 PMCID: PMC6664077 DOI: 10.3389/fimmu.2019.01705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Genital inflammation is associated with increased HIV acquisition risk. Induction of an inflammatory response can occur through the recognition of pathogenic or commensal microbes by Toll-like receptors (TLRs) on various immune cells. We used a in vitro peripheral blood mononuclear cell (PBMC) system to understand the contribution of TLR stimulation in inducing inflammation and the activation of target T cells, and its effect on HIV susceptibility. PBMCs were stimulated with TLR agonists LPS (TLR4), R848 (TLR7/8), and Pam3CSK4 (TLR1/2), and then infected with HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines in cell culture supernatants. Flow cytometry was used to measure the activation state (CD38 and HLA-DR), and CCR5 expression on CD4+ and CD8+ T cells. Although TLR agonists induced higher cytokine and chemokine secretion, they did not significantly activate CD4+ and CD8+ T cells and showed decreased CCR5 expression relative to the unstimulated control. Despite several classes of inflammatory cytokines and chemokines being upregulated by TLR agonists, CD4+ T cells were significantly less infectable by HIV after TLR4-stimulation than the unstimulated control. These data demonstrate that the inflammatory effects that occur in the presence TLR agonist stimulations do not necessarily translate to the activation of T cells. Most importantly, the finding that TLR4-stimulation reduces rather than increases susceptibility of CD4+ T cells to HIV infection in this in vitro system strongly suggests that the increased chemokine and possible antiviral factor expression induced by these TLR agonists play a powerful although complex role in determining HIV infection risk.
Collapse
Affiliation(s)
- Ross Cromarty
- Centre for the AIDS Programme of Research in South Africa, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lenine J P Liebenberg
- Centre for the AIDS Programme of Research in South Africa, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Jo-Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Medical School, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, Nelson Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Murphy K, Keller MJ, Anastos K, Sinclair S, Devlin JC, Shi Q, Hoover DR, Starkman B, McGillick J, Mullis C, Minkoff H, Dominguez-Bello MG, Herold BC. Impact of reproductive aging on the vaginal microbiome and soluble immune mediators in women living with and at-risk for HIV infection. PLoS One 2019; 14:e0216049. [PMID: 31026271 PMCID: PMC6485713 DOI: 10.1371/journal.pone.0216049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/12/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Reproductive aging may impact the vaginal microbiome and genital tract mucosal immune environment and contribute to genital tract health in women living with and at-risk for HIV infection. METHODS A cross-sectional study of 102 HIV+ (51 premenopausal, 51 postmenopausal) and 39 HIV-uninfected (HIV-) (20 premenopausal, 19 postmenopausal) women was performed in Bronx and Brooklyn, NY. Cervicovaginal lavage (CVL) was collected for quantification of innate antimicrobial activity against E. coli, HSV-2 and HIV and immune mediators by Luminex and ELISA. Microbiome studies by qPCR and 16S rRNA sequencing were performed on vaginal swabs. RESULTS HIV+ postmenopausal compared to premenopausal participants had lower median E. coli bactericidal activity (41% vs. 62%, p = 0.001), lower median gene copies of Lactobacillus crispatus (p = 0.005) and Lactobacillus iners (p = 0.019), lower proportions of Lactobacillus iners, higher proportions of Gardnerella and Atopobium vaginae and lower levels of human beta defensins (HBD-2, HBD-3) and secretory leukocyte protease inhibitor (SLPI), p<0.001. HSV-2 inhibitory activity was higher in HIV+ postmenopausal compared to premenopausal participants (37% vs. 17%, p = 0.001) and correlated with the proinflammatory molecules interleukin (IL) 6, IL-8, human neutrophil peptide (HNP) 1-3, lactoferrin and fibronectin. Similar trends were observed in HIV- postmenopausal compared to premenopausal participants. HIV inhibitory activity did not differ by reproductive status in the HIV+ participants but was significantly higher in HIV- postmenopausal compared to premenopausal participants and in participants with suppressed plasma viral load, and inversely correlated with gene copies of G. vaginalis and BVAB2. A significant proportion of HIV+ participants on ART exhibited HIV enhancing activity. CONCLUSIONS HIV+ postmenopausal compared to premenopausal participants have less CVL E. coli bactericidal activity, reflecting a reduction in Lactobacilli and a greater proportion of Gardnerella and A. vaginae, and more HSV-2 inhibitory activity, reflecting increased mucosal inflammation. The effect of menopause on mucosal immunity was greater in HIV+ participants, suggesting a synergistic impact. Promotion of a lactobacillus dominant vaginal microbiome and reduced mucosal inflammation may improve vaginal health and reduce risk for shedding of HIV and potential for HIV transmission in HIV+ menopausal women.
Collapse
Affiliation(s)
- Kerry Murphy
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Marla J. Keller
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Shada Sinclair
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - J. Cooper Devlin
- Department of Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Qiuhu Shi
- School of Health Sciences and Practice, New York Medical College, Valhalla, New York, United States of America
| | - Donald R. Hoover
- Rutgers University, Piscataway, New Jersey, United States of America
| | - Brian Starkman
- State University of New York/Downstate Medical Center School of Medicine, Brooklyn, New York, United States of America
| | - Jamie McGillick
- Cincinnati Children’s Medical Center, Cincinnati, Ohio, United States of America
| | - Caroline Mullis
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Howard Minkoff
- Department of Obstetrics and Gynecology, Maimonides Medical Center, and State University of New York/Downstate Medical Center, Brooklyn, New York, United States of America
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, and Department of Anthropology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Betsy C. Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Defining characteristics of genital health in South African adolescent girls and young women at high risk for HIV infection. PLoS One 2019; 14:e0213975. [PMID: 30947260 PMCID: PMC6448899 DOI: 10.1371/journal.pone.0213975] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 03/05/2019] [Indexed: 01/24/2023] Open
Abstract
The genital tract of African women has been shown to differ from what is currently accepted as ‘normal’, defined by a pH≤4.5 and lactobacilli-dominated microbiota. Adolescent girls and young women (AGYW) from sub-Saharan Africa are at high risk for HIV, and we hypothesized that specific biological factors are likely to be influential. This study aimed to compare characteristics of vaginal health in HIV-negative AGYW (16-22-years-old), from two South African communities, to international norms. We measured plasma hormones, vaginal pH, presence of BV (Nugent scoring), sexually transmitted infections (multiplex PCR for Chlamydia trachomatis, Neisseria gonorrhoea, Trichomonas vaginalis, Mycoplasma genitalium) and candidiasis (Gram stain) in AGYW (n = 298) from Cape Town and Soweto. Cervicovaginal microbiota was determined by 16S pyrosequencing; 44 genital cytokines were measured by Luminex; and cervical T-cell activation/proliferation (CCR5, HLA-DR, CD38, Ki67) was measured by multiparametric flow cytometry. 90/298 (30.2%) AGYW were negative for BV, candidiasis and bacterial STIs. L. crispatus and L. iners were the dominant bacteria in cervicovaginal swabs, and the median vaginal pH was 4.7. AGYW with L. crispatus-dominant microbiota (42.4%) generally had the lowest cytokine concentrations compared to women with more diverse microbiota (34/44 significantly upregulated cytokines). Frequencies of CCR5+CD4+ T-cells co-expressing CD38 and HLA-DR correlated positively with interleukin (IL)-6, TNF-α, GRO-α, macrophage inflammatory protein (MIP)-1α, and IL-9. While endogenous oestrogen had an immune-dampening effect on IL-6, TNF-related apoptosis-inducing ligand (TRAIL) and IL-16, injectable hormone contraceptives (DMPA and Net-EN) were associated with significantly lower endogenous hormone concentrations (p<0.0001 for oestrogen and progesterone) and upregulation of 34/44 cytokines. Since genital inflammation and the presence of activated CD4+ T cells in the genital tract have been implicated in increased HIV risk in South African women, the observed high levels of genital cellular activation and cytokines from AGYW may point towards biological factors increasing HIV risk in this region.
Collapse
|
12
|
Sivro A, McKinnon LR. Mucosal HIV Shedding During ART. J Infect Dis 2019; 216:1484-1486. [PMID: 29240894 DOI: 10.1093/infdis/jix551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aida Sivro
- Centre for the AIDS Programme of Research in South Africa, Durban.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa, Durban.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology, University of Nairobi, Kenya
| |
Collapse
|
13
|
Sabbaj S, Mestecky J. Evaluation of Mucosal Humoral and Cellular Immune Responses to HIV in External Secretions and Mucosal Tissues. CURRENT IMMUNOLOGY REVIEWS 2019; 15:41-48. [PMID: 33312087 PMCID: PMC7731984 DOI: 10.2174/1573395514666180621152303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/14/2018] [Accepted: 05/24/2018] [Indexed: 11/22/2022]
Abstract
The mucosal immune systems of the genital and intestinal tracts as the most frequent sites of HIV-1 entry, display remarkable immunological differences from the systemic immune compartment which must be considered in the evaluation of humoral and cellular immune responses to HIV-1. Marked differences in the fluids from the genital and intestinal tracts and in plasma with respect to the Ig isotypes, their levels, molecular forms and distinct effector functions must be taken into consideration in the evaluation and interpretation of humoral immune responses. Because of the low levels and highly pronounced variation in Ig content, HIV-1-specific antibody concentrations should be always related to the levels of total Ig of a given isotype. This practice will avoid inevitable differences due to the small volumes of collected fluids and sample dilution during the collection and processing of samples from external secretions. Furthermore, appropriate controls and immunochemical assays should be used to complement and confirm results generated by ELISA, which is prone to false positivity. In the evaluation of antibody-mediated virus neutralization in external secretions, precautions and rigorous controls must be used to exclude the effect of innate humoral factors. The evaluation of cell-mediated immune responses in mucosal tissues is difficult due to the low yields of cells obtained from tissue biopsies or cytobrush scrapings. Furthermore, tissue biopsies of, for example rectal mucosa, provide information pertinent exclusively to this local site, which due to the differences in distribution of cells of different phenotypes, do not provide information generalized to the entire intestinal tract. Importantly, studies concerning the kinetics of cellular responses are difficult to perform due to the limited availability of samples or to the inability of obtaining frequent repeated tissue biopsies. For sampling the female genital tract parallel collection of menstrual and peripheral blood yields high numbers of cells that permit their detailed phenotypic and functional analyses. In contrast to tissue biopsies, this non-traumatic collection procedure, results in high cell yields and repeated monthly sampling permits extensive and parallel functional studies of kinetics and unique characteristics of HIV-1-specific cellular responses in the female genital tract and peripheral blood.
Collapse
Affiliation(s)
- Steffanie Sabbaj
- Departments of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
14
|
Rodríguez-Alba JC, Abrego-Peredo A, Gallardo-Hernández C, Pérez-Lara J, Santiago-Cruz JW, Jiang JW, Espinosa E. HIV Disease Progression: Overexpression of the Ectoenzyme CD38 as a Contributory Factor? Bioessays 2019; 41:e1800128. [PMID: 30537007 PMCID: PMC6545924 DOI: 10.1002/bies.201800128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Despite abundant evidence associating CD38 overexpression and CD4 T cell depletion in HIV infection, no causal relation has been investigated. To address this issue, a series of mechanisms are proposed, supported by evidence from different fields, by which CD38 overexpression can facilitate CD4 T cell depletion in HIV infection. According to this model, increased catalytic activity of CD38 may reduce CD4 T cells' cytoplasmic nicotin-amide adenine dinucleotide (NAD), leading to a chronic Warburg effect. This will reduce mitochondrial function. Simultaneously, CD38's catalytic products ADPR and cADPR may be transported to the cytoplasm, where they can activate calcium channels and increase cytoplasmic Ca2+ concentrations, further altering mitochondrial integrity. These mechanisms will decrease the viability and regenerative capacity of CD4 T cells. These hypotheses can be tested experimentally, and might reveal novel therapeutic targets. Also see the video abstract here https://youtu.be/k1LTyiTKPKs.
Collapse
Affiliation(s)
- J. C. Rodríguez-Alba
- Flow Cytometry Core Facility, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - A. Abrego-Peredo
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - C. Gallardo-Hernández
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. Pérez-Lara
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J. W. Santiago-Cruz
- Maestría en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - J., W. Jiang
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA, 29425
| | - E. Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases (INER), Mexico City, Mexico
| |
Collapse
|
15
|
Increased degranulation of immune cells is associated with higher cervical viral load in HIV-infected women. AIDS 2018; 32:1939-1949. [PMID: 29912065 DOI: 10.1097/qad.0000000000001925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The activation of effector immune cells at the cervicovaginal mucosa (CVM) might influence the cervical HIV load and thus the secondary transmission; however, limited information is available about the innate effector cells at CVM during HIV infection. In this study, we quantified and assessed the activation of the effector immune cells at the CVM of HIV-infected women with different disease outcomes: nonprogressive HIV disease (LTNPs) and chronic HIV-infected (CHI) and their relationship with cervical viral shedding. METHOD The phenotype and frequency of cytobrush-derived effector immune cells like natural killer cells, T cells, and dendritic cells and their degranulation status (CD107a expression as a surrogate marker of activation) was determined using flow cytometry in age-matched HIV- infected and uninfected women and their association with cervical HIV load was determined. RESULT The frequencies of dendritic cells, CD56, CD56 natural killer cell subsets were similar in both the study groups and also within the HIV-infected women with and without progressive disease. The frequencies of CD56CD16 natural killer cells (P = 0.04) and degranulating CD56 natural killer cells were significantly higher among HIV-infected women (P < 0.05). Among HIV-infected women, LTNP women showed reduced degranulation of natural killer and CD8 T cells than seen in the CHI women, which was also associated with lower cervical viral load (P < 0.05). CONCLUSION The present study showed that increased degranulation of natural killer and T cells is associated with higher HIV shedding at the CVM of HIV-infected women. Hence reduction of the local immune activation at CVM could be an effective strategy to reduce the cervical viral load.
Collapse
|
16
|
Greene SA, McGrath CJ, Lehman DA, Marson KG, Trinh TT, Yatich N, Nyongesa-Malava E, Kiptinness C, Richardson BA, John-Stewart GC, De Vuyst H, Sakr SR, Mugo NR, Chung MH. Increased Cervical Human Immunodeficiency Virus (HIV) RNA Shedding Among HIV-Infected Women Randomized to Loop Electrosurgical Excision Procedure Compared to Cryotherapy for Cervical Intraepithelial Neoplasia 2/3. Clin Infect Dis 2018; 66:1778-1784. [PMID: 29272368 PMCID: PMC6248794 DOI: 10.1093/cid/cix1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/17/2017] [Indexed: 01/20/2023] Open
Abstract
Background Treatment of human immunodeficiency virus (HIV)-infected women to prevent cervical cancer may stimulate HIV RNA cervical shedding and risk HIV transmission. Methods From 2011 to 2014, 400 HIV-infected women diagnosed with cervical intraepithelial neoplasia 2/3 in Kenya were randomized to loop electrosurgical excision procedure (LEEP) or cryotherapy. Cervical samples were collected at baseline and 3 weekly intervals. Samples were tested for HIV RNA using the Gen-Probe Aptima HIV assay with a minimum detection level of 60 copies/swab and analyzed using generalized estimating equations. Results Women who received LEEP had significantly higher cervical HIV RNA levels than those who received cryotherapy at weeks 2 (adjusted incident rate ratio [aIRR], 1.07; P = .038) and 3 (aIRR, 1.08; P = .046). Within LEEP, significantly higher cervical shedding was found at weeks 2 (2.03 log10 copies/swab; P < .001) and 3 (2.04 log10 copies/swab; P < .001) compared to baseline (1.80 log10 copies/swab). Cervical HIV RNA was significantly higher following LEEP for up to 3 weeks among women on antiretroviral treatment (ART) (0.18 log10 copies/swab increase; P = .003) and in ART-naive women (1.13 log10 copies/swab increase; P < .001) compared to baseline. Within cryotherapy, cervical shedding increased in ART-naive women (0.72 log10 copies/swab increase; P = 0.004) but did not increase in women on ART. Conclusions Women randomized to LEEP had a larger increase in post-procedural cervical HIV shedding than cryotherapy. Benefits of cervical cancer prevention outweigh the risk of HIV sexual transmission; our findings underscore the importance of risk-reduction counseling. Clinical Trials Registration NCT01298596.
Collapse
Affiliation(s)
- Sharon A Greene
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
| | | | - Dara A Lehman
- Department of Global Health, University of Washington, Seattle
- Division of Human Biology, Fred Hutchinson Cancer Research Center,
Seattle
| | - Kara G Marson
- Department of Global Health, University of Washington, Seattle
| | - T Tony Trinh
- Department of Global Health, University of Washington, Seattle
| | - Nelly Yatich
- Department of Global Health, University of Washington, Seattle
| | | | | | - Barbra A Richardson
- Department of Global Health, University of Washington, Seattle
- Department of Biostatistics, University of Washington, Seattle
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research
Center, Seattle
| | - Grace C John-Stewart
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Medicine, Division of Allergy and Infectious Diseases,
University of Washington, Seattle
| | - Hugo De Vuyst
- Infection and Cancer Epidemiology Group, International Agency for Research on
Cancer, Lyon, France
| | | | - Nelly R Mugo
- Department of Global Health, University of Washington, Seattle
| | - Michael H Chung
- Department of Global Health, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Medicine, Division of Allergy and Infectious Diseases,
University of Washington, Seattle
| |
Collapse
|
17
|
Chen Y, Traore YL, Yang S, Lajoie J, Fowke KR, Rickey DW, Ho EA. Implant delivering hydroxychloroquine attenuates vaginal T lymphocyte activation and inflammation. J Control Release 2018; 277:102-113. [PMID: 29545105 DOI: 10.1016/j.jconrel.2018.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
Abstract
Evidence suggests that women who are naturally resistant to HIV infection exhibit low baseline immune activation at the female genital tract (FGT). This "immune quiescent" state is associated with lower expression of T-cell activation markers, reduced levels of gene transcription and pro-inflammatory cytokine or chemokine production involved in HIV infection while maintaining an intact immune response against pathogens. Therefore, if this unique immune quiescent state can be pharmacologically induced locally, it will provide an excellent women-oriented strategy against HIV infection To our knowledge, this is the first research article evaluating in vivo, an innovative trackable implant that can provide controlled delivery of hydroxychloroquine (HCQ) to successfully attenuate vaginal T lymphocyte activation and inflammation in a rabbit model as a potential strategy to induce an "immune quiescent" state within the FGT for the prevention of HIV infection. This biocompatible implant can deliver HCQ above therapeutic concentrations in a controlled manner, reduce submucosal immune cell recruitment, improve mucosal epithelium integrity, decrease protein and gene expression of T-cell activation markers, and attenuate the induction of key pro-inflammatory mediators. Our results suggest that microbicides designed to maintain a low level of immune activation at the FGT may offer a promising new strategy for reducing HIV infection.
Collapse
Affiliation(s)
- Yufei Chen
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada; College of Pharmacy, University of Manitoba, Canada
| | - Yannick L Traore
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada
| | - Sidi Yang
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Canada; Department of Medical Microbiology, University of Nairobi, Kenya
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Canada; Department of Community Health Sciences, University of Manitoba, Canada; Department of Medical Microbiology, University of Nairobi, Kenya
| | - Daniel W Rickey
- Department of Radiology, University of Manitoba, Canada; Department of Physics & Astronomy, University of Manitoba, Canada
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, Canada.
| |
Collapse
|
18
|
Neisseria gonorrhoeae co-infection exacerbates vaginal HIV shedding without affecting systemic viral loads in human CD34+ engrafted mice. PLoS One 2018; 13:e0191672. [PMID: 29360873 PMCID: PMC5779692 DOI: 10.1371/journal.pone.0191672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023] Open
Abstract
HIV synergy with sexually transmitted co-infections is well-documented in the clinic. Co-infection with Neisseria gonorrhoeae in particular, increases genital HIV shedding and mucosal transmission. However, no animal model of co-infection currently exists to directly explore this relationship or to bridge the gap in understanding between clinical and in vitro studies of this interaction. This study aims to test the feasibility of using a humanized mouse model to overcome this barrier. Combining recent in vivo modelling advancements in both HIV and gonococcal research, we developed a co-infection model by engrafting immunodeficient NSG mice with human CD34+ hematopoietic stem cells to generate humanized mice that permit both systemic HIV infection and genital N. gonorrhoeae infection. Systemic plasma and vaginal lavage titres of HIV were measured in order to assess the impact of gonococcal challenge on viral plasma titres and genital shedding. Engrafted mice showed human CD45+ leukocyte repopulation in blood and mucosal tissues. Systemic HIV challenge resulted in 104−105 copies/mL of viral RNA in blood by week 4 post-infection, as well as vaginal shedding of virus. Subsequent gonococcal challenge resulted in unchanged plasma HIV levels but higher viral shedding in the genital tract, which reflects published clinical observations. Thus, human CD34+ stem cell-transplanted NSG mice represent an experimentally tractable animal model in which to study HIV shedding during gonococcal co-infection, allowing dissection of molecular and immunological interactions between these pathogens, and providing a platform to assess future therapeutics aimed at reducing HIV transmission.
Collapse
|
19
|
Lennard K, Dabee S, Barnabas SL, Havyarimana E, Blakney A, Jaumdally SZ, Botha G, Mkhize NN, Bekker LG, Lewis DA, Gray G, Mulder N, Passmore JAS, Jaspan HB. Microbial Composition Predicts Genital Tract Inflammation and Persistent Bacterial Vaginosis in South African Adolescent Females. Infect Immun 2018; 86:e00410-17. [PMID: 29038128 PMCID: PMC5736802 DOI: 10.1128/iai.00410-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
Abstract
Young African females are at an increased risk of HIV acquisition, and genital inflammation or the vaginal microbiome may contribute to this risk. We studied these factors in 168 HIV-negative South African adolescent females aged 16 to 22 years. Unsupervised clustering of 16S rRNA gene sequences revealed three clusters (subtypes), one of which was strongly associated with genital inflammation. In a multivariate model, the microbiome compositional subtype and hormonal contraception were significantly associated with genital inflammation. We identified 40 taxa significantly associated with inflammation, including those reported previously (Prevotella, Sneathia, Aerococcus, Fusobacterium, and Gemella) as well as several novel taxa (including increased frequencies of bacterial vaginosis-associated bacterium 1 [BVAB1], BVAB2, BVAB3, Prevotella amnii, Prevotella pallens, Parvimonas micra, Megasphaera, Gardnerella vaginalis, and Atopobium vaginae and decreased frequencies of Lactobacillus reuteri, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners). Women with inflammation-associated microbiomes had significantly higher body mass indices and lower levels of endogenous estradiol and luteinizing hormone. Community functional profiling revealed three distinct vaginal microbiome subtypes, one of which was characterized by extreme genital inflammation and persistent bacterial vaginosis (BV); this subtype could be predicted with high specificity and sensitivity based on the Nugent score (≥9) or BVAB1 abundance. We propose that women with this BVAB1-dominated subtype may have chronic genital inflammation due to persistent BV, which may place them at a particularly high risk for HIV infection.
Collapse
Affiliation(s)
- Katie Lennard
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Smritee Dabee
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Shaun L Barnabas
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Enock Havyarimana
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Anna Blakney
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerrit Botha
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - David A Lewis
- Western Sydney Sexual Health Centre, Parramatta, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
- Sydney Medical School-Westmead, University of Sydney, Sydney, Australia
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Glenda Gray
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Nicola Mulder
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
King CC, Ellington SR, Davis NL, Coombs RW, Pyra M, Hong T, Mugo N, Patel RC, Lingappa JR, Baeten JM, Kourtis AP. Prevalence, Magnitude, and Correlates of HIV-1 Genital Shedding in Women on Antiretroviral Therapy. J Infect Dis 2017; 216:1534-1540. [PMID: 29240922 PMCID: PMC5853287 DOI: 10.1093/infdis/jix550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 01/10/2023] Open
Abstract
Background Genital human immunodeficiency virus (HIV) RNA shedding can continue despite HIV being undetectable in blood, and can be associated with transmission. Methods We included African women on antiretroviral therapy (ART). Linear and generalized linear mixed models were used to compare the magnitude and prevalence of genital shedding, respectively, by time since ART initiation. Multivariable logistic regression with generalized estimating equations was used to assess predictors of genital shedding among women with undetectable plasma viral load (VL). Results Among 1114 women, 5.8% of visits with undetectable plasma VL and 23.6% of visits with detectable VL had genital shedding. The proportion of visits with genital shedding decreased with time since ART initiation but the magnitude of shedding remained unchanged when plasma VL was undetectable (P = .032). Prevalence of shedding did not vary by time since ART initiation when plasma VL was detectable (P = .195), though the magnitude of shedding significantly increased (P = .04). Predictors of genital shedding were HIV disease stage, antiretroviral regimen, and genital ulcers or cervical tenderness. Discussion In addition to ART, reducing immune activation through prevention and treatment of HIV-related conditions and genital tract infections may decrease the risk of HIV-1 shedding and potential transmission.
Collapse
Affiliation(s)
- Caroline C King
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sascha R Ellington
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Nicole L Davis
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Robert W Coombs
- Department of Laboratory Medicine, University of Washington, Seattle
- Department of Medicine, University of Washington, Seattle
| | - Maria Pyra
- Department of Epidemiology, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
| | - Ting Hong
- Department of Global Health, University of Washington, Seattle
| | - Nelly Mugo
- Department of Epidemiology, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
| | - Rena C Patel
- Department of Medicine, University of Washington, Seattle
| | - Jairam R Lingappa
- Department of Medicine, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
| | - Jared M Baeten
- Department of Medicine, University of Washington, Seattle
- Department of Epidemiology, University of Washington, Seattle
- Department of Global Health, University of Washington, Seattle
| | - Athena P Kourtis
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
21
|
Thurman AR, Yousefieh N, Chandra N, Kimble T, Asin S, Rollenhagen C, Anderson SM, Herold BC, Freiermuth JL, Starkman BS, Mesquita PM, Richardson-Harman N, Cunningham T, Hillier S, Rabe L, Schwartz JL, Doncel GF. Comparison of Mucosal Markers of Human Immunodeficiency Virus Susceptibility in Healthy Premenopausal Versus Postmenopausal Women. AIDS Res Hum Retroviruses 2017; 33:807-819. [PMID: 28398069 DOI: 10.1089/aid.2016.0320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to characterize cervicovaginal (CV) mucosal factors modulating susceptibility to human immunodeficiency virus (HIV) acquisition in healthy premenopausal (PRE) and postmenopausal (POST) women before and after treatment with estradiol (E2). We compared CV mucosal epithelial histology and immune cells, vaginal microbiota, antimicrobial activity of and soluble mucosal protein concentrations in the CV fluid lavage (CVL), and p24 antigen production after ex vivo infection of ectocervical tissues with HIV-1BaL among PRE women (n = 20) in the follicular and luteal phases of the menstrual cycle and POST women (n = 17) at baseline and after ∼1 month of treatment with 0.01% vaginal E2 cream. Compared to PRE women, we measured higher levels of p24 antigen after ex vivo infection in tissues from POST women. POST women had a significantly thinner vaginal epithelium with decreased tight junction proteins and a higher density of mucosal immune T cells and lower levels of CD1a antigen-presenting cells, antimicrobial peptides, and inflammatory cytokines in the CVL (p values <.05). POST women had higher vaginal pH and lower vaginal Lactobacilli (p values <.05) than PRE women. After vaginal E2 therapy, CV endpoints and ex vivo HIV replication in POST tissues were similar to those observed in PRE tissues. The CV mucosa in POST women is thinned and compromised, with increased HIV-target immune cells and decreased antimicrobial factors, being more susceptible to HIV infection. After POST women receive topical E2 treatment, mucosal endpoints are similar to PRE levels.
Collapse
Affiliation(s)
- Andrea Ries Thurman
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Nazita Yousefieh
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Neelima Chandra
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Thomas Kimble
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Susana Asin
- V.A. Medical Center, White River Junction, Vermont
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Christiane Rollenhagen
- V.A. Medical Center, White River Junction, Vermont
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Sharon M. Anderson
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | | | | | | | | | | | - Tina Cunningham
- Center for Health Analytics and Discovery, Eastern Virginia Medical School, Norfolk, Virginia
| | - Sharon Hillier
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lorna Rabe
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Jill L. Schwartz
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Gustavo F. Doncel
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
22
|
Jaumdally SZ, Picton A, Tiemessen CT, Paximadis M, Jaspan HB, Gamieldien H, Masson L, Coetzee D, Williamson AL, Little F, Gumbi PP, Passmore JAS. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships. Immunology 2017; 151:464-473. [PMID: 28398593 DOI: 10.1111/imm.12743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022] Open
Abstract
Several host factors have been implicated in resistance to HIV infection in individuals who remain HIV-seronegative despite exposure. In a cohort of HIV-serodiscordant heterosexual couples, we investigated interactions between systemic inflammation and T-cell activation in resistance to HIV infection. Males and females in stable long-term relationships with either HIV-infected or uninfected partners were recruited, blood T-cell activation (CD38, HLA-DR, CCR5 and Ki67) and plasma cytokine concentrations were evaluated. The HIV-negative exposed individuals had significantly lower frequencies of CCR5+ CD4+ and CD8+ T cells than unexposed individuals. Mean fluorescence intensity of CCR5 expression on CD4+ T cells was significantly lower in HIV-negative exposed than unexposed individuals. Protective CCR5 haplotypes (HHA/HHF*2, HHF*2/HHF*2, HHC/HHF*2, HHA/HHA, HHA/HHC and HHA/HHD) tended to be over-represented in exposed compared with unexposed individuals (38% versus 28%, P = 0·58) whereas deleterious genotypes (HHC/HHD, HHC/HHE, HHD/HHE, HHD/HHD and HHE/HHE) were under-represented (26% versus 44%; P = 0·16). Plasma concentrations of interleukin-2 (P = 0·02), interferon-γ (P = 0·05) and granulocyte-macrophage colony-stimulating factor (P = 0·006) were lower in exposed compared with unexposed individuals. Activation marker expression and systemic cytokine concentrations were not influenced by gender. We conclude that the dominant signature of resistance to HIV infection in this cohort of exposed but uninfected individuals was lower T-cell CCR5 expression and plasma cytokine concentrations.
Collapse
Affiliation(s)
- Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Anabela Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - David Coetzee
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Pamela P Gumbi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Women who have genital inflammation are at increased risk of sexual HIV infection. The purpose of this review is to evaluate the mechanisms for this relationship, causes of genital inflammation, and strategies to manage this condition. RECENT FINDINGS We have recently shown in a cohort of South African women that HIV seroconversion was associated with persistently raised genital inflammatory cytokines (including MIP-1α, MIP-1β, and IP-10). Elevated inflammatory cytokine concentrations may facilitate HIV infection by recruiting and activating HIV target cells and disrupting the mucosal epithelial barrier. Bacterial vaginosis and sexually transmitted infections (STIs), which are predominantly asymptomatic in women, cause lower genital tract inflammation and increased HIV acquisition risk. In Africa, where syndromic management of STIs and bacterial vaginosis is standard-of-care, the substantial burden of asymptomatic infections has likely contributed to high-HIV incidence rates. SUMMARY A genital inflammatory profile contributes to the high risk of HIV acquisition in African women. STIs and bacterial vaginosis are poorly managed in Africa and other developing nations and as such remain major drivers of persistent genital inflammation and HIV acquisition among these women.
Collapse
|
24
|
Abstract
BACKGROUND Plasma HIV RNA is the most significant determinant of cervical HIV shedding. However, shedding is also associated with sexually transmitted infections (STIs) and cervical inflammation. The mechanism by which this occurs is poorly understood. There is evidence that systemic immune activation promotes viral entry, replication, and HIV disease progression. We hypothesized that systemic immune activation would be associated with an increase in HIV genital shedding. METHODS Clinical assessments, HIV RNA in plasma and genital secretions, and markers of immune activation (CD38(+)DR(+) and CD38(-)DR(-)) on CD4(+) and CD8(+) T cells in blood were evaluated in 226 HIV+ women enrolled in the Women's Interagency HIV Study. There were 569 genital evaluations of which 159 (28%) exhibited HIV RNA shedding, defined as HIV viral load >80 copies per milliliter. We tested associations between immune activation and shedding using generalized estimating equations with logit link function. RESULTS In the univariate model, higher levels of CD4(+) and CD8(+) T-cell activation in blood were significantly associated with genital tract shedding. However, in the multivariate model adjusting for plasma HIV RNA, STIs, and genital tract infections, only higher levels of resting CD8(+) T cells (CD38(-)DR(-)) were significantly inversely associated with HIV shedding in the genital tract (odds ratios = 0.44, 95% confidence interval: 0.21 to 0.9, P = 0.02). CONCLUSIONS The association of systemic immune activation with genital HIV shedding is multifactorial. Systemic T-cell activation is associated with genital tract shedding in univariate analysis but not when adjusting for plasma HIV RNA, STIs, and genital tract infections. In addition, women with high percentage of resting T cells are less likely to have HIV shedding compared with those with lower percentages. These findings suggest that a higher percentage of resting cells, as a result of maximal viral suppression with treatment, may decrease local genital activation, HIV shedding, and transmission.
Collapse
|
25
|
CD38 Expression in a Subset of Memory T Cells Is Independent of Cell Cycling as a Correlate of HIV Disease Progression. DISEASE MARKERS 2016; 2016:9510756. [PMID: 27064238 PMCID: PMC4808674 DOI: 10.1155/2016/9510756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/05/2023]
Abstract
In order to determine if the expression of the activation marker CD38 can correlate with HIV disease progression independently of cycling, we performed a cluster-based multivariate correlation analysis of total circulating CD4+ T cell counts and viral loads with frequencies of CD38 and Ki67 expression on CD4+ lymphocytes from patients with untreated HIV infection, stratified in maturation subpopulations, and subpopulation subsets defined by the expression of CXCR5, CXCR3, and CCR4. The frequencies of the activated phenotypes %CD38+ Ki67− and %CD38+ Ki67+ of the CXCR5− CXCR3− CCR4+ (“pre-Th2”) central memory (TCM) cell subset clustered together, comprising a significant negative correlate of total circulating CD4+ T cell counts and a positive correlate of viral load in multivariate analysis. Frequency of cycling-uncoupled CD38 expression in “pre-Th2” TCM cells was a negative correlate of total circulating CD4+ T cell counts in univariate analysis, which was not the case of their %CD38+ Ki67+. CXCR5+ CXCR3− CCR4− TCM cells were underrepresented in patients, and their absolute counts correlated negatively with their %CD38+ Ki67− but not with their % CD38+ Ki67+. Our results may imply that CD38 expression either reflects or participates in pathogenic mechanisms of HIV disease independently of cell cycling.
Collapse
|
26
|
Olesen R, Swanson MD, Kovarova M, Nochi T, Chateau M, Honeycutt JB, Long JM, Denton PW, Hudgens MG, Richardson A, Tolstrup M, Østergaard L, Wahl A, Garcia JV. ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions. J Clin Invest 2016; 126:892-904. [PMID: 26854925 DOI: 10.1172/jci64212] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 12/10/2015] [Indexed: 11/17/2022] Open
Abstract
The recently completed HIV prevention trials network study 052 is a landmark collaboration demonstrating that HIV transmission in discordant couples can be dramatically reduced by treating the infected individual with antiretroviral therapy (ART). However, the cellular and virological events that occur in the female reproductive tract (FRT) during ART that result in such a drastic decrease in transmission were not studied and remain unknown. Here, we implemented an in vivo model of ART in BM/liver/thymus (BLT) humanized mice in order to better understand the ability of ART to prevent secondary HIV transmission. We demonstrated that the entire FRT of BLT mice is reconstituted with human CD4+ cells that are shed into cervicovaginal secretions (CVS). A high percentage of the CD4+ T cells in the FRT and CVS expressed CCR5 and therefore are potential HIV target cells. Infection with HIV increased the numbers of CD4+ and CD8+ T cells in CVS of BLT mice. Furthermore, HIV was present in CVS during infection. Finally, we evaluated the effect of ART on HIV levels in the FRT and CVS and demonstrated that ART can efficiently suppress cell-free HIV-RNA in CVS, despite residual levels of HIV-RNA+ cells in both the FRT and CVS.
Collapse
|
27
|
Early HIV-1 infection is associated with reduced frequencies of cervical Th17 cells. J Acquir Immune Defic Syndr 2015; 68:6-12. [PMID: 25296095 DOI: 10.1097/qai.0000000000000389] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The hallmark of HIV infection is progressive but variable rates of systemic and mucosal CD4 depletion, leading to immunodeficiency. The impact of early HIV infection on cervical CD4 T-cell populations in humans remains poorly described. METHODS We analyzed cytobrush-derived immune cells by flow cytometry and cytokines in cervicovaginal lavage from participants in early HIV (<6 months postinfection), chronic HIV, and HIV-uninfected controls. RESULTS CD4:CD8 ratios declined rapidly in both the cervix and the blood following HIV infection. In contrast, absolute cervical CD4 T-cell counts in early HIV were comparable to HIV-uninfected participants, declining only in chronic infection. Early HIV infection was associated with increases in RANTES and MIP3a in cervicovaginal fluids. Concurrently, slight increases in activated cells (CD38HLA-DR) and higher levels of CTLA4 expression on Tregs in the cervix were observed. Although study groups did not differ with respect to levels of CCR5, integrin B7, or CD69, the frequencies of Th17 cells (defined as CCR6CCR10) was reduced by >10-fold in early HIV infection and Th1 cells (defined as CCR6CXCR3) were reduced by >2-fold. Although CCR6CCR10 cells did not differ in HIV receptor expression, these cells produced higher levels of interferon gamma and interleukin 17. CONCLUSIONS These data support the model of initial CD4 T-cell depletion followed by overall T-cell influx in response to infection and concomitant increases in immune activation, inflammation, and regulatory markers. These data are among the earliest characterization of the cellular milieu in the female genital tract following male-to-female HIV transmission.
Collapse
|
28
|
Chachage M, Geldmacher C. Immune system modulation by helminth infections: potential impact on HIV transmission and disease progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 828:131-49. [PMID: 25253030 DOI: 10.1007/978-1-4939-1489-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Mkunde Chachage
- Department of Cellular Immunology, National Institute for Medical Research-Mbeya Medical Research Centre (NIMR-MMRC), Hospital Hill road, Mbeya, Tanzania,
| | | |
Collapse
|
29
|
HIV-1 shedding from the female genital tract is associated with increased Th1 cytokines/chemokines that maintain tissue homeostasis and proportions of CD8+FOXP3+ T cells. J Acquir Immune Defic Syndr 2015; 67:357-64. [PMID: 25202922 DOI: 10.1097/qai.0000000000000336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND HIV-1 shedding from the female genital tract is associated with increased sexual and perinatal transmission and has been broadly evaluated in cross-sectional studies. However, few longitudinal studies have evaluated how the immune microenvironment effects shedding. METHODS Thirty-nine HIV-1-infected women had blood, cervicovaginal lavage, and biopsies of the uterine cervix taken quarterly for up to 5 years. Cytokines/chemokines were quantified by Luminex assay in cervicovaginal lavage, and cellular phenotypes were characterized using immunohistochemistry in cervical biopsies. Comparisons of cytokine/chemokine concentrations and the percent of tissue staining positive for T cells were compared using generalized estimating equations between non-shedding and shedding visits across all women and within a subgroup of women who intermittently shed HIV-1. RESULTS Genital HIV-1 shedding was more common when plasma HIV-1 was detected. Cytokines associated with cell growth (interleukin-7), Th1 cells/inflammation (interleukin-12p70), and fractalkine were significantly increased at shedding visits compared with non-shedding visits within intermittent shedders and across all subjects. Within intermittent shedders and across all subjects, FOXP3 T cells were significantly decreased at shedding visits. However, there were significant increases in CD8 cells and proportions of CD8FOXP3 T cells associated with HIV-1 shedding. CONCLUSIONS Within intermittent HIV-1 shedders, decreases in FOXP3 T cells at the shedding visit suggests that local HIV-1 replication leads to CD4 T-cell depletion, with increases in the proportion of CD8FOXP3 cells. HIV-1-infected cell loss may promote a cytokine milieu that maintains cellular homeostasis and increases immune suppressor cells in response to HIV-1 replication in the cervical tissues.
Collapse
|
30
|
Kahle EM, Bolton M, Hughes JP, Donnell D, Celum C, Lingappa JR, Ronald A, Cohen CR, de Bruyn G, Fong Y, Katabira E, McElrath MJ, Baeten JM. Plasma cytokine levels and risk of HIV type 1 (HIV-1) transmission and acquisition: a nested case-control study among HIV-1-serodiscordant couples. J Infect Dis 2014; 211:1451-60. [PMID: 25389306 DOI: 10.1093/infdis/jiu621] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A heightened proinflammatory state has been hypothesized to enhance human immunodeficiency virus type 1 (HIV-1) transmission - both susceptibility of HIV-1-exposed persons and infectiousness of HIV-1-infected persons. METHODS Using prospective data from heterosexual African couples with HIV-1 serodiscordance, we conducted a nested case-control analysis to assess the relationship between cytokine concentrations and the risk of HIV-1 acquisition. Case couples (n = 120) were initially serodiscordant couples in which HIV-1 was transmitted to the seronegative partner during the study; control couples (n = 321) were serodiscordant couples in which HIV-1 was not transmitted to the seronegative partner. Differences in a panel of 30 cytokines were measured using plasma specimens from both HIV-1-susceptible and HIV-1-infected partners. Plasma was collected before seroconversion for cases. RESULTS For both HIV-1-infected and HIV-1-susceptible partners, cases and controls had significantly different mean responses in cytokine panels (P < .001, by the Hotelling T(2) test), suggesting a broadly different pattern of immune activation for couples in which HIV-1 was transmitted, compared with couples without transmission. Individually, log10 mean concentrations of interleukin 10 (IL-10) and CXCL10 were significantly higher for both HIV-1-susceptible and HIV-1-infected case partners, compared with HIV-1-susceptible and HIV-1-infected control partners (P < .01 for all comparisons). In multivariate analysis, HIV-1 transmission was significantly associated with elevated CXCL10 concentrations in HIV-1-susceptible partners (P = .001) and with elevated IL-10 concentrations in HIV-1-infected partners (P = .02). CONCLUSIONS Immune activation, as measured by levels of cytokine markers, particularly elevated levels of IL-10 and CXCL1, are associated with increased HIV-1 susceptibility and infectiousness.
Collapse
Affiliation(s)
| | - Michael Bolton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | | | - Deborah Donnell
- Department of Epidemiology Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Connie Celum
- Department of Epidemiology Department of Global Health Department of Medicine
| | - Jairam R Lingappa
- Department of Global Health Department of Medicine Department of Pediatrics, University of Washington
| | - Allan Ronald
- Department of Medicine, University of Manitoba, Winnepeg, Canada
| | - Craig R Cohen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco
| | - Guy de Bruyn
- Perinatal HIV Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Elly Katabira
- Infectious Disease Institute, Makerere University, Kampala, Uganda
| | - M Juliana McElrath
- Department of Global Health Department of Medicine Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle
| | - Jared M Baeten
- Department of Epidemiology Department of Global Health Department of Medicine
| | | |
Collapse
|
31
|
Rollenhagen C, Lathrop MJ, Macura SL, Doncel GF, Asin SN. Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides. Mucosal Immunol 2014; 7:1165-74. [PMID: 24496317 PMCID: PMC4137741 DOI: 10.1038/mi.2014.3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 02/04/2023]
Abstract
Herpes Simplex virus Type-2 (HSV-2) increases the risk of HIV-1 acquisition, yet the mechanism for this viral pathogen to regulate the susceptibility of the cervicovaginal mucosa to HIV-1 is virtually unknown. Using ex vivo human ectocervical tissue models, we report greater levels of HIV-1 reverse transcription, DNA integration, RNA expression, and virions release in HIV-1/HSV-2 co-infected tissues compared with HIV-1 only infected tissues (P<0.05). Enhanced HIV-1 replication was associated with increased CD4, CCR5, and CD38 transcription (P<0.05) and increased number of CD4(+)/CCR5(+)/CD38(+) T cells in HIV-1/HSV-2 co-infected tissues compared with tissues infected with HIV-1 alone. Tenofovir (TFV) 1% gel, the leading microbicide candidate, demonstrated only partial protection against HIV-1, when applied vaginally before and after sexual intercourse. It is possible that mucosal inflammation, in particular that induced by HSV-2 infection, may have decreased TFV efficacy. HSV-2 upregulated the number of HIV-1-infected cells and elevated the concentration of TFV needed to decrease HIV-1 infection. Similarly, only high concentrations of TFV inhibited HSV-2 replication in HIV-1/HSV-2-infected tissues. Thus, HSV-2 co-infection and mucosal immune cell activation should be taken into consideration when designing preventative strategies for sexual transmission of HIV-1.
Collapse
Affiliation(s)
- C Rollenhagen
- V.A. Medical Center, White River Junction, Vermont, USA,Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - M J Lathrop
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA
| | - S L Macura
- V.A. Medical Center, White River Junction, Vermont, USA
| | - G F Doncel
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - S N Asin
- V.A. Medical Center, White River Junction, Vermont, USA,Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, USA,
| |
Collapse
|
32
|
Systemic cytokine levels show limited correlation with risk of HIV-1 acquisition. J Acquir Immune Defic Syndr 2014; 66:135-9. [PMID: 24413043 DOI: 10.1097/qai.0000000000000104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been hypothesized that immune activation and inflammation may increase HIV-1 susceptibility, and that cytokines may be useful biomarkers for risk. Within a prospective cohort, we conducted a nested case-control analysis of plasma cytokine levels among women who acquired HIV-1 <3 months after sampling, compared with 3 different control groups. We observed associations between lower interleukin (IL)-6 and IL-10 and higher IL-7 levels with HIV-1 acquisition, however, these associations were inconsistent when comparing with different control groups. Inconsistent results within our study and among previous studies suggest that reproducible findings are needed before cytokines are useful biomarkers for HIV-1 susceptibility.
Collapse
|
33
|
Thakar M, Patil R, Shukre S, Bichare S, Kadam P, Khopkar P, Ghate M, Paranjape R. Short communication: genital tumor growth factor-β1 levels in HIV-infected Indian women are associated with reduced levels of innate antimicrobial products and increased HIV shedding. AIDS Res Hum Retroviruses 2014; 30:648-53. [PMID: 24547777 DOI: 10.1089/aid.2013.0030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumor growth factor (TGF)-β1 is a cytokine with potent immunoinhibitory functions and is known to be secreted by vaginal epithelial cells. The present study was designed to determine the association of cervicovaginal levels of TGF- β1 with various innate immune secretions such as cytokines and antimicrobial polypeptides [Trappin-2/Elafin and secretory leukocyte protease inhibitor (SLPI)] and cervical HIV shedding in HIV-infected Indian women. TGF- β1, antimicrobial polypeptides, and cytokine levels were estimated in the cervicovaginal lavages (CVLs) of 36 age-matched HIV-infected and 31 HIV-uninfected asymptomatic Indian women using an ELISA and Bio-Plex Assay, respectively. The nonparametric Mann-Whitney test and Spearman's test were used to compare the levels from both the groups and to determine the association of the TGF-β1 levels with cervical viral shedding and antimicrobial peptides. The levels of Trappin-2/Elafin and SLPI were similar in the CVLs of HIV-infected and HIV-uninfected women, but were significantly associated with a low cervical viral load (r=-0.501, p=0.005 for Trappin-2/Elafin and r=-0.488, p=0.007 for SLPI). Eleven (30.5%) of the 36 HIV-infected women showed 5- to 30-fold higher levels of TGF-β1 as compared to the levels in uninfected women. The TGF-β1 levels were significantly associated with higher cervical viral load (r=0.425, p=0.03) and with lower levels of Trappin-2/Elafin (r=-0.407, p=0.03) and SLPI (r=-0.405, p=0.04). The findings indicate a possible interdependent mechanism driving the identified higher TGF-β1 and lower antimicrobial peptide (Trappin-2/Elafin and SLPI) levels at the genital mucosa surface in HIV-infected women. We postulate that a combination of increased TGF-β1 secretion and altered levels of Trappin-2/Elafin and SLPI contributes to increased HIV shedding. The observation warrants further studies to identify the underlying mechanisms linking increased mucosal TGF-β1 levels and genital HIV shedding. Considering the known association of HIV and cervical cancers, it will also be important to assess the predictive capacity of TGF-β1 levels in HIV-associated cervical malignancies.
Collapse
Affiliation(s)
- Madhuri Thakar
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Rahul Patil
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Subodh Shukre
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Shubhangi Bichare
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Poonam Kadam
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Priyanka Khopkar
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Manisha Ghate
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| | - Ramesh Paranjape
- National AIDS Research Institute, MIDC Bhosari, Pune, Maharashtra, India
| |
Collapse
|
34
|
Immune correlates of HIV exposure without infection in foreskins of men from Rakai, Uganda. Mucosal Immunol 2014; 7:634-44. [PMID: 24150258 PMCID: PMC3997757 DOI: 10.1038/mi.2013.83] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/21/2013] [Accepted: 09/09/2013] [Indexed: 02/04/2023]
Abstract
Human immunodeficiency virus (HIV) susceptibility is heterogenous, with some HIV-exposed but seronegative (HESN) individuals remaining uninfected despite repeated exposure. Previous studies in the cervix have shown that reduced HIV susceptibility may be mediated by immune alterations in the genital mucosa. However, immune correlates of HIV exposure without infection have not been investigated in the foreskin. We collected sub-preputial swabs and foreskin tissue from HESN (n=20) and unexposed control (n=57) men undergoing elective circumcision. Blinded investigators assayed swabs for HIV-neutralizing IgA, innate antimicrobial peptides, and cytokine levels. Functional T-cell subsets from foreskin tissue were assessed by flow cytometry. HESN foreskins had elevated α-defensins (3,027 vs. 1,795 pg ml(-1), P=0.011) and HIV-neutralizing IgA (50.0 vs. 13.5% of men, P=0.019). Foreskin tissue from HESN men contained a higher density of CD3 T cells (151.9 vs. 69.9 cells mm(-2), P=0.018), but a lower proportion of these was Th17 cells (6.12 vs. 8.04% of CD4 T cells, P=0.007), and fewer produced tumor necrosis factor α (TNFα) (34.3 vs. 41.8% of CD4 T cells, P=0.037; 36.9 vs. 45.7% of CD8 T cells, P=0.004). A decrease in the relative abundance of susceptible CD4 T cells and local TNFα production, in combination with HIV-neutralizing IgA and α-defensins, may represent a protective immune milieu at a site of HIV exposure.
Collapse
|
35
|
Ghosh M. Secreted mucosal antimicrobials in the female reproductive tract that are important to consider for HIV prevention. Am J Reprod Immunol 2014; 71:575-88. [PMID: 24754244 DOI: 10.1111/aji.12250] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/14/2014] [Indexed: 01/13/2023] Open
Abstract
The mucosal microenvironment of the female reproductive tract (FRT) is rich in secreted endogenous antimicrobials that provide the first line of defense against pathogens. This review focuses on the spectrum of secreted antimicrobials found in the FRT that have anti-HIV functions and are regulated by the natural hormonal changes in women's life cycle. Understanding the complex nature of FRT, mucosal microenvironment will enable us to better design therapeutic interventions for women against sexually transmitted pathogens.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
36
|
Prodger JL, Hirbod T, Gray R, Kigozi G, Nalugoda F, Galiwango R, Reynolds SJ, Huibner S, Wawer MJ, Serwadda D, Kaul R. HIV Infection in Uncircumcised Men Is Associated With Altered CD8 T-cell Function But Normal CD4 T-cell Numbers in the Foreskin. J Infect Dis 2014; 209:1185-94. [PMID: 24277744 PMCID: PMC3969543 DOI: 10.1093/infdis/jit644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-infected (HIV+) men are more susceptible to sexually transmitted infections, and may be superinfected by HIV. We hypothesized that HIV induces immune alterations in the foreskin that may impact the subsequent acquisition/clearance of genital coinfections. METHODS Foreskin tissue and blood were obtained from 70 HIV-uninfected and 20 HIV+ men undergoing circumcision. T cells were characterized by flow cytometry, immunohistochemistry, and polymerase chain reaction. RESULTS There was substantial influx of CD8 T-cells into the foreskins of HIV+ men (108.8 vs 23.1 cells/mm(2); P < .001); but foreskin CD4 T-cell density was unchanged (43.0 vs 33.7/mm(2); P = .67), despite substantial blood depletion (409.0 vs 877.8 cells/µL; P < .001). While frequencies of foreskin C-C chemokine receptor type 5(+) (CCR5(+)) T cells, T regulatory cells, and T-helper 17 cells were unaltered in HIV+ men, CD8 T-cell production of tumor necrosis factor α (TNFα) was decreased. HIV-specific CD8 T cells were present in the foreskins of HIV+ men, although their frequency and function was reduced compared to the blood. CONCLUSIONS Foreskin CD4 T-cell density and CCR5 expression were not reduced during HIV infection, perhaps explaining susceptibility to HIV superinfection. Foreskin CD8 T-cell density was increased, but decreased production of TNFα may enhance susceptibility to genital coinfections in HIV+ men.
Collapse
Affiliation(s)
- Jessica L Prodger
- Clinical Science Division, Department of Medicine, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gibbs A, Hirbod T, Li Q, Bohman K, Ball TB, Plummer FA, Kaul R, Kimani J, Broliden K, Tjernlund A. Presence of CD8+ T cells in the ectocervical mucosa correlates with genital viral shedding in HIV-infected women despite a low prevalence of HIV RNA-expressing cells in the tissue. THE JOURNAL OF IMMUNOLOGY 2014; 192:3947-57. [PMID: 24639358 DOI: 10.4049/jimmunol.1302826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The female genital tract is a portal of entry for sexual HIV transmission and a possible viral reservoir. In this study, the ectocervical CD8+ T cell distribution was explored in situ and was related to expression of CD3 and HLA-DR and presence of HIV RNA. For this purpose, ectocervical tissue samples and genital secretions were collected from HIV-seropositive (HIV+) Kenyan female sex workers (FSWs) (n = 20), HIV-seronegative (HIV-) FSWs (n = 17), and HIV(-) lower-risk women (n = 21). Cell markers were assessed by in situ staining and by quantitative PCR. HIV RNA expression in tissue was analyzed by in situ hybridization, and viral shedding was assessed by quantitative PCR. The HIV+ FSW group had a higher amount of total cells and CD8+, CD3+, and HLA-DR+ cells compared with the HIV(-)FSW group and HIV- lower-risk women. The majority of CD8+ cells were CD3+ T cells, and the numbers of CD8+ cells correlated significantly with plasma and cervical viral load. HIV RNA expression in situ was found in 4 of the 20 HIV+FSW women but did not correlate with cervical or plasma viral load. Thus, the HIV+ women displayed high numbers of CD8+, CD3+, and HLA-DR+ cells, as well as a limited number of HIV RNA+ cells, in their ectocervical mucosa; hence, this localization cannot be neglected as a potential viral reservoir. The elevated levels of CD8+ T cells may play a role in the immunopathogenesis of HIV in the female genital tract.
Collapse
Affiliation(s)
- Anna Gibbs
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saharia KK, Koup RA. T cell susceptibility to HIV influences outcome of opportunistic infections. Cell 2013; 155:505-14. [PMID: 24243010 DOI: 10.1016/j.cell.2013.09.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 12/18/2022]
Abstract
During HIV infection, the timing of opportunistic infections is not always associated with severity of CD4 T cell depletion, and different opportunistic pathogens reactivate at different CD4 T cell thresholds. Here, we examine how differences in the phenotype and function of pathogen-specific CD4 T cells influence susceptibility to HIV infection. By focusing on three common opportunistic infections (Mycobacterium tuberculosis, human papillomavirus, and cytomegalovirus), we investigate how differential depletion of pathogen-specific CD4 T cells impacts the natural history of these pathogens in HIV infection. A broader understanding of this relationship can better inform treatment strategies against copathogens.
Collapse
Affiliation(s)
- Kapil K Saharia
- Institute of Human Virology and Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
39
|
Hirbod T, Kimani J, Tjernlund A, Cheruiyot J, Petrova A, Ball TB, Mugo N, Jaoko W, Plummer FA, Kaul R, Broliden K. Stable CD4 Expression and Local Immune Activation in the Ectocervical Mucosa of HIV-Infected Women. THE JOURNAL OF IMMUNOLOGY 2013; 191:3948-54. [DOI: 10.4049/jimmunol.1301220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Chandra N, Thurman AR, Anderson S, Cunningham TD, Yousefieh N, Mauck C, Doncel GF. Depot medroxyprogesterone acetate increases immune cell numbers and activation markers in human vaginal mucosal tissues. AIDS Res Hum Retroviruses 2013. [PMID: 23189932 DOI: 10.1089/aid.2012.0271] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The relationship between exogenous contraceptive hormones and permissiveness of the female genital tract to human immunodeficiency virus type 1 (HIV-1) is the subject of renewed debate. To better characterize the effect of depot medroxyprogesterone acetate (DMPA) on HIV-1 cellular targets and epithelial integrity in the vagina, we compared leukocyte populations, markers of activation and proliferation, and the density of intercellular junctional proteins in the vaginal epithelium of women during the follicular and luteal phases of the menstrual cycle and approximately 12 weeks after receiving a DMPA injection. This prospective cohort study involved 15 healthy women. Vaginal biopsies were obtained in the follicular and luteal phases of the menstrual cycle, and approximately 12 weeks following a 150-mg intramuscular injection of DMPA. Leukocyte populations, activation phenotype, and epithelial tight junction and adherens proteins were evaluated by immunohistochemistry. After receiving DMPA, the numbers of CD45, CD3, CD8, CD68, HLA-DR, and CCR5 bearing immune cells were significantly (p<0.05) increased in vaginal tissues, compared to the follicular and/or luteal phases of untreated cycles. There were no significant differences in immune cell populations between the follicular and luteal phases of the control cycle. There were also no statistically significant differences in epithelial thickness and density of epithelial tight junction and adherens proteins among the follicular, luteal, and post-DMPA treatment sampling points. In this pilot study, vaginal immune cell populations were significantly altered by exogenous progesterone, resulting in increased numbers of T cells, macrophages, and HLA-DR- and CCR5-positive cells.
Collapse
Affiliation(s)
- Neelima Chandra
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Andrea Ries Thurman
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Sharon Anderson
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Tina Duong Cunningham
- Department of Epidemiology and Biostatistics, Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, Virginia
| | - Nazita Yousefieh
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Christine Mauck
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
41
|
Genital Inflammation Predicts HIV-1 Shedding Independent of Plasma Viral Load and Systemic Inflammation. J Acquir Immune Defic Syndr 2013; 61:436-40. [PMID: 22878424 DOI: 10.1097/qai.0b013e31826c2edd] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In women, genital HIV-1 RNA levels predict the risk of HIV-1 transmission independent of plasma viral load. To better understand the factors that contribute to genital HIV-1 shedding, we evaluated the relationships between genital and plasma cytokine concentrations and HIV-1 RNA levels. Vaginal, but not plasma, levels of interferon gamma-induced protein 10 (IP-10) were significantly associated with vaginal viral load, independent of plasma viral load. Thus, efforts to decrease HIV-1 transmission must take into account the role of local inflammation, which is not necessarily reflected in plasma measurements.
Collapse
|
42
|
Aghaeepour N, Jalali A, O’Neill K, Chattopadhyay PK, Roederer M, Hoos HH, Brinkman RR. RchyOptimyx: cellular hierarchy optimization for flow cytometry. Cytometry A 2012; 81:1022-30. [PMID: 23044634 PMCID: PMC3726344 DOI: 10.1002/cyto.a.22209] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/07/2012] [Accepted: 09/05/2012] [Indexed: 12/19/2022]
Abstract
Analysis of high-dimensional flow cytometry datasets can reveal novel cell populations with poorly understood biology. Following discovery, characterization of these populations in terms of the critical markers involved is an important step, as this can help to both better understand the biology of these populations and aid in designing simpler marker panels to identify them on simpler instruments and with fewer reagents (i.e., in resource poor or highly regulated clinical settings). However, current tools to design panels based on the biological characteristics of the target cell populations work exclusively based on technical parameters (e.g., instrument configurations, spectral overlap, and reagent availability). To address this shortcoming, we developed RchyOptimyx (cellular hieraRCHY OPTIMization), a computational tool that constructs cellular hierarchies by combining automated gating with dynamic programming and graph theory to provide the best gating strategies to identify a target population to a desired level of purity or correlation with a clinical outcome, using the simplest possible marker panels. RchyOptimyx can assess and graphically present the trade-offs between marker choice and population specificity in high-dimensional flow or mass cytometry datasets. We present three proof-of-concept use cases for RchyOptimyx that involve 1) designing a panel of surface markers for identification of rare populations that are primarily characterized using their intracellular signature; 2) simplifying the gating strategy for identification of a target cell population; 3) identification of a non-redundant marker set to identify a target cell population.
Collapse
Affiliation(s)
- Nima Aghaeepour
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adrin Jalali
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kieran O’Neill
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Mario Roederer
- Vaccine Research Center, National Institute of Health, Bethesda, Massachusetts
| | - Holger H. Hoos
- Department of Computer Science, University of British Columbia, British Columbia, Canada
| | - Ryan R. Brinkman
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, British Columbia, Canada
| |
Collapse
|
43
|
Naranbhai V, Abdool Karim SS, Altfeld M, Samsunder N, Durgiah R, Sibeko S, Abdool Karim Q, Carr WH. Innate immune activation enhances hiv acquisition in women, diminishing the effectiveness of tenofovir microbicide gel. J Infect Dis 2012; 206:993-1001. [PMID: 22829639 DOI: 10.1093/infdis/jis465] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The antiretroviral agent, tenofovir, formulated as a vaginal microbicide gel, reduces human immunodeficiency virus (HIV) acquisition by 39% in women. This study assessed the role of preexisting immune activation in HIV acquisition in women from the CAPRISA 004 trial, to identify potential strategies to increase the effectiveness of tenofovir gel. Systemic cytokine and cellular immune mediators (platelets and natural killer [NK] cells) were assessed in women at high risk for HIV assigned to either tenofovir or placebo gel in the CAPRISA 004 trial. Notwithstanding tenofovir gel use, women who acquired HIV had significantly higher systemic innate immune activation prior to infection than women who remained uninfected. Activation of both soluble (cytokine) and cellular (NK cells) immune mediators were associated with HIV acquisition, individually or in combination. Hence, an innate immune activation suppressant could be added to tenofovir gel as a potential combination gel strategy in developing the next generation of higher efficacy antiretroviral microbicides.
Collapse
Affiliation(s)
- Vivek Naranbhai
- CAPRISA - Centre for the AIDS Programme of Research in South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Madan RP, Carpenter C, Fiedler T, Kalyoussef S, McAndrew TC, Viswanathan S, Kim M, Keller MJ, Fredricks DN, Herold BC. Altered biomarkers of mucosal immunity and reduced vaginal Lactobacillus concentrations in sexually active female adolescents. PLoS One 2012; 7:e40415. [PMID: 22808157 PMCID: PMC3393710 DOI: 10.1371/journal.pone.0040415] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/07/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. METHODOLOGY/PRINCIPAL FINDINGS Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15-18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. CONCLUSIONS/SIGNIFICANCE Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females.
Collapse
Affiliation(s)
- Rebecca Pellett Madan
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|